轧制板形控制理论及技术.
轧钢机的弹性变形、轧件厚度及板形控制

1、基本功能和类型 一般称之为板厚自动控制(AGC)系统(Automatic Gauge Control),它包括: 测厚部份 检测轧件的实际厚度 厚度比较及调节系统 与设定值比较得出厚差δh,经计算后得出压下调节量δS。 辊缝调节 根据实际测出的压下量变化△S与计算得出的δS 值进行比较,输出电流信号,使液压侗服阀动作,完成辊缝的调节。 轧件变形区部份 这是厚度控制的对象,也是闭环控制系统中的一环。 根据轧件的测厚方法,厚度AGC系统可分为三种类型: 1)直接测厚的反馈式AGC。由测厚仪直接测得轧机出口的轧件厚度h,与设定值比较后得出偏差δh ,将此反馈给系统变换为辊缝调节量δS ,使压下装置移动相应的值以消除厚差δh 。
α=1,K=∞ 全补偿 α>0 ∞>K>C 硬特性(部份补偿) α=0,K=C 恒原始辊缝控制 不补偿 α>-∞,C>K>0,软特性(反方向部份补偿) α= - ∞ ,K=0,△P =0 恒压力控制(反方向全补偿)
以上控制方式的关系曲线见图示。同时也可以用P-H图表示。
一般在成品机架上为保持出口板厚不变,采用硬特性。而在平整机上,采用恒压力控制保持压力波动为零,使其出口板形良好,同时消除轧辊偏心对板厚的影响。
在压力反馈回路中,给出不同的辊缝调节系数Cp ,就能实现各种控制特性的厚度控制。如果将位置反馈回路断开,只是将轧制力P与给定的轧制力P0相比较,使系统保持P= P0,这就实现了恒压力控制。
从以上分析可知,提高机座的刚度系数C可以减小工作机座的弹性变形从而提高板厚精度。但是刚度的提高是有限的,完全依靠机座刚度系数C的提高来达到板厚精度是不可能实现的。必须通过轧机的板厚自动控制系统,可对板厚变化进行补偿实现高精度轧制。
其物理意义为单位板厚变化所对应的轧制力变化。当厚度变化为零时,这时当量刚度K为∞。以下用弹跳方程来分析实现这一过程的原理。
轧制工艺过程控制原理与方法

轧机刚度可变的基本方 程:
h h x P C P
Km
Km
P P Km KE
1C
h -轧辊位置补偿之后的带钢轧出厚度偏差; C-轧辊位置补偿系数; KE-等效的轧机刚度系数; x-轧辊位1-104 Davy-Loewy带钢张力控制系统 轧机;2-张力计;3-液压缸位置;4-液压缸;5-张力偏差;
P金 属F(的B,压R,力H方, h程, f:,T, s )
塑性曲线B
金属的压力方程
曲线B的斜率代表轧件塑性 的塑性刚度M :
M P P h
(3)实际轧出厚度随辊缝而变化的规律
轧机的原始预调 辊缝值S0决定着 弹性曲线A的起 始位置。
图1-92 实际轧出厚度随辊缝变化的规律
(4)实际轧出厚度随轧机刚度而变化的规律
1.9 轧制工艺过程控制原理与方法
本节应掌握的知识点: 1.板带厚度控制基本原理; 2.板带宽度控制的基本方式; 3.板形的基本概念
高精度轧制,对板、带钢的要求:
1)板带钢的横向断面厚度分布均匀性; 2)板带钢的纵向断面厚度分布的均匀性 3)板带钢断面宽度在纵向长度上分布的均匀性。
为保证横向断面厚度分布的均匀而提出:
1)辊型及辊型设计; 2)板型及板型控制
为保证纵向厚度分布均匀而提出:
1)自动厚度控制理论; 2)自动厚度控制技术
为保证纵向宽度分布均匀而提出:
1)自由张力连轧; 2)小张力连轧。
1.9.1 厚度控制 (1 )产生板厚变化的原因 1) 轧辊辊型的影响
(a)圆柱形轧辊的空载辊缝;(b)受力过程中产生轧辊挠度
6-位置基准值;7-位置调节器;8-张力基准值
⑥带活套的热带连轧机组中间机架的张力控制系统
浅谈冷轧带钢板型自动控制技术

高。因而影 响轧机 的生产能力 。此外 ,板形 不 良也使轧
机所 能轧 出的最薄规格受到限制 。
2 . 冷轧带钢板型的测量方法 :1 1 目测板形 。 在冷轧
机上 采用大张力轧制时 ,借助 于木棍打击低 速轧制 的带
钢 。根据木棍 打击带 钢 的声 音 和回弹检测 张应力 的分
布 。2 ) 用磁 力板形仪 进行测量 。 在带 张力冷轧 的情况 下 ,由于导致产生板形缺陷的不均匀延伸将使轧制张力 沿板 宽方 向的分布发生改变。非接触式的磁 力板形仪是 利用 带钢张力分布不均而引起导磁率变化的原理而制作 的仪器。仪器 的测定部分 由编成一组 的多对 探测头所组 成 ,探测头 的数 目根据板宽不 同可分为5 ~ 1 1 对。上探测
斜 调节量 ,由轧辊 压下位置进行调整 。( 2 ) 弯辊 和C VC 调节 :弯辊调节具有动作快 、简单 ,没有滞后 的特点 ,
所 以首先进行弯辊调节 。当二次板形缺陷分量在弯辊调 节能力4 0 ~ 8 0 %范围以 内时 ,单独进行弯 曲调节 。当超
出这个范围时 ,则要投入C V C 系统 ,共 同对二次板形缺
右 。同时也发现该 系统还有不完善的地方 ,如系统对板
均 ,每一段测量 出与其相接触的- -4 , 段带材( 2 5 ~ 5 0 毫米
宽) 中的张应力 ,据此反推板形并 实行控制。
二 、板 形 自动控 制 技术
板形 自动控制系统是 由板形检测装置 、控制器和板
轧制理论与工艺 第三篇 板带材高精度轧制和板形控制

(a)板坯厚度变化时:压下的调整
量△S0与料厚的变化量并不相等
由三角形DEE/和三角形EE/F 可推出下式:
S
=
0
M K
h 0
图14—1 (a)板坯厚度变化时
主要用于前馈即预控AGC,即 在入口处预测料厚的波动,据 以调整压下,消除其影响。
轧制理论与工艺
RAL
(b)变形抗力变化时:压下的调整量△S0与轧出板厚变化量△h也不相等
建议的,1蒙相当于相对长度差为10-4。泼森定义板形为横向
上单位距离上的相对长度差,以mon/cm表示,即:
s
104
L L
B) 加拿大铝公司是取横向上最长与最短纵条之间的相对长度差
作为板形单位,称为 I 单位,1个I单位相当于相对长度差为
10-5。所以板形表示为:
st
105
L L
式中:L—最短纵条的长度,mm。
因素:轧辊的弹性变形、不均匀热膨胀和不均匀磨损
轧辊的不均匀热膨胀
轧辊受热和冷却沿辊身分布不均,一般辊身中部温度
高于边部,传动侧低于操作侧,径向辊面高于辊心。
这使得热膨胀精确计算困难,一般采用简化公式:
Rt yt KT(TZ TB )R KTTR
式中 TZ、TB——辊身中部和边部温度; R ——轧辊半径; ——轧辊材料的线膨胀系数; KT——考虑轧辊中心与表面温度不均分布的系数,一般=0.9。
S/0
P/K
h
S0
(P-P0)/K
h
h
S0
P
P0 K
S0—考虑预压变形后的空载辊缝。
轧制理论与工艺
RAL
14.1.1 板带厚度变化的原因和特点
影响板带厚度的主要因素:
《六辊平整机非对称轧制过程板形预报与控制技术》范文

《六辊平整机非对称轧制过程板形预报与控制技术》篇一一、引言六辊平整机作为金属板材加工的重要设备,其非对称轧制技术因能够提高轧制效率及板材的成型质量而受到广泛关注。
在六辊平整机轧制过程中,板形的预报与控制技术是保证产品质量的关键环节。
本文旨在探讨六辊平整机非对称轧制过程中板形的预报与控制技术,以提高板材的加工质量和生产效率。
二、非对称轧制过程板形预报(一)预报模型建立板形预报模型是六辊平整机非对称轧制过程的核心,其准确性直接影响到轧制过程的控制效果。
预报模型应综合考虑轧机的几何参数、轧制力、轧制速度等因素,以及板材的材质、厚度、宽度等特性。
通过建立数学模型,实现对板形变化的预测。
(二)预报方法研究板形预报方法包括数值模拟、物理模拟及实际生产数据的统计分析等。
数值模拟方法可利用有限元软件对轧制过程进行仿真,预测板形的变化趋势。
物理模拟方法则通过建立实验装置,模拟实际轧制过程,获取板形变化的规律。
实际生产数据的统计分析方法则是通过收集并分析实际生产过程中的数据,找出板形变化的规律和趋势。
三、板形控制技术(一)轧制力控制轧制力是控制板形的重要参数。
通过合理调整轧制力的大小和分布,可以控制板材的厚度、宽度和板形。
在非对称轧制过程中,应合理分配各辊的轧制力,保证板材的稳定轧制。
(二)速度控制速度控制是保证轧制过程稳定性的关键。
在非对称轧制过程中,应合理调整各辊的速度,使板材在轧制过程中保持稳定的运动状态,避免产生波浪、翘曲等板形问题。
(三)温度控制温度对板材的轧制过程和板形具有重要影响。
在非对称轧制过程中,应合理控制轧制温度,保证板材的塑性变形和热传导过程的稳定性,从而控制板形的变化。
四、技术应用与优化(一)技术应用在实际生产中,应将板形预报与控制技术应用于六辊平整机非对称轧制过程中。
通过实时监测和调整轧制参数,实现对板形的精确控制。
同时,应结合生产实际情况,不断优化预报与控制模型,提高板形的预报精度和控制效果。
热轧带钢生产中的板形控制

热轧带钢生产中的板形控制是保证产品质量的关键环节之一。
板形控制主要包括轧制工艺参数的调整和辊系结构的优化两方面。
本文将从这两个方面进行详细的介绍。
一、轧制工艺参数的调整1. 温度控制:热轧带钢的温度对板形控制有着重要影响。
过高的温度会导致带钢热膨胀,从而产生较大的板凸度;过低的温度则会导致带钢冷却过快,使得带钢变形不均匀。
因此,必须对热轧带钢的温度进行精确控制,确保其在适宜的温度范围内进行轧制。
在实际生产中,可以通过控制热轧带钢的加热温度、热轧温度和冷却方式等来实现温度控制。
可以采用先控制热轧带钢的加热温度,确保钢坯达到适宜的温度范围,然后通过控制热轧带钢的入口温度和轧制温度来进一步调整温度进行控制。
同时,还可以优化冷却方式,如采用水冷、风冷等方法进行冷却,以达到更好的板形控制效果。
2. 速度控制:热轧带钢的速度对板形控制同样具有重要影响。
速度过快会导致拉伸应力过大,从而使板形产生波状或弓形变形;速度过慢则会导致带钢在轧制过程中受到过多的应力作用,导致板形不稳定。
因此,在热轧带钢的生产过程中,需要对轧制速度进行合理的控制。
可以通过调整轧机的传动装置、辊道的排列方式、模块的配比等来实现速度控制。
同时,还可以通过控制轧机的压下量、变形度等工艺参数来进一步调整速度进行控制。
3. 张力控制:热轧带钢的张力对板形控制同样具有重要影响。
张力过大会导致带钢产生不均匀的塑性变形,从而使板形产生波状或弓形变形;张力过小则会导致带钢发生塑性回弹,导致板形不稳定。
因此,在热轧带钢的生产过程中,需要对张力进行精确的控制。
可以通过调整轧机的辊道间隙、调整轧机的压下量、调整轧机的传动装置等来实现张力控制。
同时,还可以采用张力控制系统进行实时的张力监测和调整,以确保带钢在轧制过程中保持适宜的张力。
二、辊系结构的优化1. 辊系选择:辊系的选择对板形控制具有重要影响。
辊系的结构参数、辊型和辊材质等都会对板形产生影响。
合适的辊系选择可以实现板形的稳定控制,提高产品的表面质量和机械性能。
轧制厚度及板型控制

轧制厚度及板型控制导读:就爱阅读网友为您分享以下“轧制厚度及板型控制”资讯,希望对您有所帮助,感谢您对的支持! 厚度自动控制和板形控制项目1 板带材轧制中的厚度控制项目2 横向厚差与板形控制技术项目1板带材轧制中的厚度控制一、厚度自动控制的工艺基础 1.p-h图的建立(1)轧制时的弹性曲线轧出的带材厚度等于理论空载辊缝加弹跳值。
轧出厚度:h=S0 +P/K―――轧机的弹跳方程S0 ――空载辊缝P――轧制压力K――轧机的刚度系数根据弹跳方程绘制成的曲线(近似一条直线)――轧机弹性变形曲线,用A 表示。
A(2)轧件的塑性曲线根据轧制压力与压下量的关系绘制出的曲线――轧件塑性变形曲线,用B表示。
B(3)弹塑性曲线的建立将轧机弹性变形曲线与轧件塑性变形曲线绘制在一个坐标系中,称为弹塑性曲线,简称P-h图。
注意A线与B线交点的纵坐标为轧制力A线与B线交点的横坐标为板带实际轧出厚度2. p-h图的运用由p-h图看出:无论A线、B线发生变化,实际厚度都要发生变化。
保证实际厚度不变就要进行调整。
例如:B线发生变化(变为B‘),为保持厚度不变,A线移值A',是交点的坐标不变。
C线――等厚轧制线作用:板带厚度控制的工艺基础板带厚度控制的实质:不管轧制条件如何变化,总要使A 线和B 线交到C线上。
p-h图二、板带厚度变化的原因和特点影响板带厚度变化的因素:1、轧件温度、成分和组织性能不均匀的影响温度↑→变形抗力↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓变形抗力对轧出厚度的影响2、来料厚度不均匀的影响来料厚度↓→压下量↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓来料厚度对轧出厚度的影响3、张力变化的影响张力↑→变形抗力↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓张力对轧出厚度的影响4、轧制速度变化的影响通过影响摩擦系数和变形抗力来改变轧制压力。
摩擦系数↓→变形抗力↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓摩擦系数对轧出厚度的影响5、原始辊缝的影响原始辊缝减小,板厚度变薄。
浅谈轧机板形控制系统的组成及控制原理

电荷放大器将压电传感器生成的电荷信号转换为电压。 旋转变送器(PCM 变送器)将这些电荷放大器的输出信号 转换为(PCM 编码的)数字信号。数据通过电缆从旋转变 送器传递给安装在控制柜内的 PCM 解码器插架(PCM 已 经停产,现在基本都采用集成的 SIKO 模块代替 IOP 模块及 PCM 插架)。下图是 SIKO 模块实物图。
[1] 阿 亨 巴 赫 .OPTIROLL i2 SFC and SCA Training[CP/ K].2004[2021.5]. 设备厂家 .
Fti = 每个测量区铝箔张力 Fri= 每个传感器的径向力 HExit= 铝箔出口厚度
图 2 传感器受力模型
图 1 板形辊结构
收稿时间 :2021-05 作者简介 :郭明明,生于 1985 年,男,助理工程师,高级技师,研究方向 : 自动化控制、传动控制、设备管理。
铝箔两边张力 Fti 会产生一个向下的压力 Fri 即传感器的 径向压力。那压电传感器上会产生电荷脉冲。每个脉冲的强 度取决于轧制铝箔在铝箔横截面上的长度分布情况 , 铝箔精 确位置对覆盖少的传感器影响很大,以至于只有传感器覆盖 面积超过额定 50%,系统才可以使用测量。
M 冶金冶炼 etallurgical smelting
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P0 0 S0’ g S
k α f h( f ) f=(P- P0)/k
0
x x x
H
h
P0:预压靠力
S0’ :原始空载辊缝 S0 :考虑预压变形时的(相当)空载辊缝 对应弹跳方程:
S :压力为0时辊缝指示器读数
P P0 h S0 K
1.2 塑性曲线
当 B、H、R、…….均一定时,可认为P随h而变
P
0 S2 S1
S3 h 2 h 1 h 3
H h(H)
3)影响P的因素←轧件及工艺方面原因 (1)轧件温度、成分、组织性能不均等
P 2 1 T2ْC< Tْ1C h2>h1
热轧TْC↕-- TْC↓→ σ↑(K↑)→ P↑→ P/K↑→ h↑
P2
P1
0 S0
h1
h2
H
h(H)
冷轧--σ↑(K↑)→ P↑→ P/K↑→ h↑
1 PE P 1 m1 s1 m2 s 2 K
入口、出口张力因子 m1取0.5~0.667、m2取0.335~0.5)
P
2 1 H 2>H 1 h2>h1 h1 h2 H1 H2 h(H)
(4)坯料尺寸变化
P2 P1
0 S0
B↕、H↕→∆h↕→P↕→P/K↕→ S↕→ h↕
P 2
P2
P1
1
σ2>σ1 h2>h1
0 S0
h1 h 2
H
h(H)
(2)速度变化--通过f、油膜厚度、变形抗力等起作用
P 1 2
热轧
V 2>V 1
油膜厚度↑ h2<h1
P1
P2
• 辊速V↕较大时油膜厚度↕→S↕→h↕
• V↑→油膜厚度↑→S↓→∆h↑→h↓
V↑
0 S0
h2
h1
H
h(H)
S 冷轧V↕ → f↕→ P↕→S↕→h↕ →油膜厚度↕→ P↕→S↕→h↕ V↑→f↓→σ↓→P↓→P/K↓→ S↓→ h↓
2)考虑预压变形时P-H图
P P
C—等厚线
弹跳方程: h:出口厚度
h S0
P P0 K
S0 :考虑预压变形时的(相当)空载辊缝
P0 0 α S0 (P- P0)/k h β
P0:预压靠力 K:轧机刚度系数
H (H)h
P:轧制压力
• 可较直观地分析H、h、P以及S0等参数关系,是弹跳方程和塑性方程联 解的一种图解形式; • 直观地反映了轧制条件和轧机刚度对h的影响,并能对轧机操作调整进 行分析,是厚控的基础。
S0’ S0
• 轧机刚度系数 K=tgα =∆P/∆f
kg/mm
• K物理意义:当轧机产生单位弹性变形时所需施加的负载量。
2)考虑预压变形时弹性曲线
gkl与0k’l’对称
l’ 压缩 k’ f’ S 人工零位 S0 S0 h P
l
拉伸
gf= 0f’=S 0f= S0’+ S = S0 P= P0
辊缝指示器
Institute》
《 The Iron and Steel
《ISIJ International》等。
方法:
从基本理论掌握入手,理论联系实际,学会分析及
解决实际问题的方法和能力。
第二讲
厚度控制原理及技术
厚度是板带钢最主要尺寸质量指标之一,厚度自控是现代板带生
产中不可缺少的重要组成部分。 高精度指厚度h 纵向的精确度---主要取决于有载辊缝的大小 横向的精确度---主要取决于有载辊缝的形状
2 厚度变化原因及特点(规律)
2.1 厚度差(h↕)类型:
1)头部厚度偏差:
主要原因:空载辊缝设置不当;
来料参数↕时未能及时调整S0 ;
2‘
件厚
设定值 3‘
1‘ 2 1 3
件长
2)同板厚差(纵向厚差): 主要原因:是P↕→使辊缝S0不变的情况下h↕
2.2 厚度变化主要原因及特点
1)影响K的因素
h S0
P
S↓
1 2
P1
P2
V 2>V 1 (f 2< f 1) h2<h1
h2 h 1 H h(H)
0 S0
(3)张力变化--通过Qp、K起作用 例:穿带、抛钢时,带钢头、尾张力是突然↑or消失的
P 1 q 2>q 1 h2<h1
P1
P2
2
0 S0
h2 h1 H
h(H)
q↕→Qp↕、K↕→P↕→头尾出现两个厚度增大区→↑切损 带张力时的轧制力
P P0 K
K:当轧机产生单位弹性变形时所需施加的负载量 K=f(P、B、V、辊材质、凸度、D工与D支接触状态…..) • 一般认为:在一定轧机上对一定产品B,可认为K不变
P K2 K1
K2> K1
• K↑→有利轧更薄 目前一般K>500~600t/mm
0 S0
h2 h1
H
h(H)
2)影响S0的因素 S0 决定轧机弹跳起始位置,包含: • 压下位置↕→即S0↕→h↕; • 轧机部件热胀、辊磨损、偏心→S0↕→h↕;
• 研究其:影响因素、变化规律、控制措施
1 P-h 图的建立
1.1 弹性曲线 --表示轧机弹性变形与轧制力间关系曲线 建立方法--实测 分 轧板法--改变辊缝S法、固定辊缝S法; 压靠法--人工零位法;
1)典型图示: P
l
P ∆P
P
g
∆f
k
α f f h
S0’: 原始空载辊缝 H h f:轧机弹性变形量
学习目的:
•了解及掌握高精度轧制技术基础理论知识。
•了解当前国内外现代轧制技术的(现状、特点、发展) 新工艺、新技术、新发展
学习要求:
•了解该学科的核心、科学前沿、发展动态。 如: 阅读国内核心刊物--《钢铁》、《轧钢》、 《金属学报》、《特殊钢》等;
国外刊物--《 Iron and
Steel Engineer》
轧制板形控制理论及技术
教材:
金属塑性加工学--轧制理论与工艺(第二版) 王廷溥,齐克敏主编,2002
主要参考书:
1,高精度轧制技术,黄庆学 梁爱生著,冶金工业出版社,2002。 2,高精度板带材轧制理论与实践,{美}V.B金兹伯格著, 姜明东 王国栋等译,冶金工业出版社,2000 3,带钢热连轧的模型与控制,孙一康著,冶金工业出版社,2002 4,带钢冷连轧计算机控制,孙一康著,冶金工业出版社,2002 5,金属塑性加工学----轧制理论与工艺(第二板), 冶金工业出版社,2001 6,
P
∆Pi β
∆hi
h3 h1 h2
H
(H)h
定义:件塑性刚度系数
M tg
Pi hi
1.3 弹-塑性曲线(P-H图)
为了讨论方便,弹、塑性曲线均用直线代替:
1)不考虑预压变形时P-H图 P
P
0
α S0 h
β H (H)h
• 对应弹跳方程基本形式:
h S0
P K
S0:将曲线以直线取代时的(假定)空载辊缝 K:轧机刚度系数