﹡26.1.5 用待定系数法求二次函数的解析式

合集下载

用待定系数法求二次函数解析式的几种方法

用待定系数法求二次函数解析式的几种方法

用待定系数法求二次函数解析式的几种方法二次函数解析式是高中数学中最基本的概念,其表示的是简单的直线、抛物线或是曲线的方程。

它的复杂性使得学生更易于弄清楚,并且在数学知识的建立上也有较大的作用。

本文将介绍用待定系数法求二次函数解析式的几种方法。

首先,用待定系数法求二次函数解析式也称为求因式分解法,是一种求解二次函数解析式的有效方法。

它所给出的解析式可以使用此解析式求解函数的最大值、最小值以及极值点,有助于研究函数的拓展和深入分析。

求解二次函数解析式的待定系数法通常包括以下几个步骤:首先,将二次函数解析式以下式形式表达:ax + bx + c = 0;其次,求解ax + bx + c的系数a、b、c的解,即a、b、c的值,这样就可以得到完整的二次函数解析式;最后,根据完整的二次函数解析式,可以进行函数曲线的画法,以便对函数特征进行更深入的分析。

这种求解二次函数解析式的待定系数法还可以用来求二次不等式的解。

这些不等式的解也可以用上述的方法求出,只需将其表示成ax + bx + c 不等式的形式,并根据所给的条件来解系数a、b、c,从而得到最终的不等式解。

此外,学生也可以使用特殊的因式分解法,通过将二次函数解析式表示成ax+bx+c=f(x)形式,通过求出形式系数a、b、c来求解因式分解法。

这种方法可以用来求解多项式方程,从而得到多项式函数的解析式。

在求解二次函数时,还有一种简便而又实用的方法,即通过图表的方法,根据函数图象的特点求出函数的解析式,从而更加简单、快捷地求解二次函数。

通过以上介绍,用待定系数法求二次函数解析式的几种方法已经清楚地展示出来。

由此可见,求解二次函数解析式使用待定系数法可以得到准确、完整的解析式,从而有助于学生更好地理解函数的拓展及应用,进而深入认识数学知识,受益匪浅。

待定系数法求二次函数的解析式—知识讲解(基础)

待定系数法求二次函数的解析式—知识讲解(基础)

待定系数法求二次函数的解析式—知识讲解(基础)【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1.(2019秋•岳池县期末)已知二次函数图象过点O (0,0)、A (1,3)、B (﹣2,6),求函数的解析式和对称轴.【答案与解析】解:设二次函数的解析式为y=ax 2+bx+c , 把O (0,0)、A (1,3)、B (﹣2,6)各点代入上式得解得,∴抛物线解析式为y=2x 2+x ;∴抛物线的对称轴x=﹣=﹣=﹣.【总结升华】若给出抛物线上任意三点,通常可设一般式:y=ax 2+bx+c (a ≠0). 举一反三:【高清课程名称:待定系数法求二次函数的解析式高清ID 号: 356565 关联的位置名称(播放点名称):例1】【变式】已知:抛物线2y ax bx c =++经过A (0,5-),B (1,3-),C (1-,11-)三点,求它的顶点坐标及对称轴.【答案】设52-+=bx ax y (a ≠0),据题意列⎩⎨⎧--=--+=-51153b a b a ,解得⎩⎨⎧=-=42b a ,所得函数为5422-+-=x x y 对称轴方程:1=x ,顶点()31-,.2.(2019•巴中模拟)已知抛物线的顶点坐标为M (1,﹣2),且经过点N (2,3),求此二次函数的解析式.【答案与解析】解:已知抛物线的顶点坐标为M (1,﹣2),设此二次函数的解析式为y=a (x ﹣1)2﹣2, 把点(2,3)代入解析式,得: a ﹣2=3,即a=5,∴此函数的解析式为y=5(x ﹣1)2﹣2. 【总结升华】本题已知顶点,可设顶点式. 举一反三:【高清课程名称:待定系数法求二次函数的解析式高清ID 号: 356565 关联的位置名称(播放点名称):例2】【变式】在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,. (1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.【答案】(1)223y x x =--.(2)令0y =,得2230x x --=,解方程,得13x =,21x =-.∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,. ∴二次函数图象向右平移1个单位后经过坐标原点. 平移后所得图象与x 轴的另一个交点坐标为(40),.3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为2y ax bx c =++(a ≠0),由图象知函数图象经过点(3,0),(0,3).则有930,3,1,2a b c c ba⎧⎪++=⎪=⎨⎪⎪-=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩∴ 抛物线解析式为223y x x =-++.解法二:设抛物线解析式为12()()y a x x x x =--(a ≠0). 由图象知,抛物线与x 轴两交点为(-1,0),(3,0). 则有(1)(3)y a x x =+-,即223y ax ax a =--. 又33a -=,∴ 1a =-.∴ 抛抛物物解析式为223y x x =-++.解法三:设二次函数解析式为2()y a x h k =-+(a ≠0). 则有2(1)y a x k =-+,将点(3,0),(0,3)代入得40,3,a k a k +=⎧⎨+=⎩ 解得1,4.a k =-⎧⎨=⎩∴ 二次函数解析式为2(1)4y x =--+,即223y x x =-++.【总结升华】二次函数的解析式有三种不同的形式,它们是相互联系、并可相互转化的,在实际解题时,一定要根据已知条件的特点,灵活选择不同形式的解析式求解.类型二、用待定系数法解题4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y 轴交于点C .(1)求二次函数解析式; (2)求△ABC 的面积. 【答案与解析】(1)设抛物线解析式为(2)(4)y a x x =+-(a ≠0),将(3,5)代入得5(32)(34)a =+-,∴ 1a =-.∴ (2)(4)y x x =-+-. 即228y x x =-++.(2)由(1)知C(0,8), ∴ 1(42)8242ABC S =+⨯=△. 【总结升华】此题容易误将(3,5)当成抛物线顶点.将抛物线解析式设成顶点式.2019-2020学年数学中考模拟试卷一、选择题1.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:则下列关于这组数据的说法,正确的是( ) A .众数是2.3 B .平均数是2.4 C .中位数是2.5D .方差是0.012.如图,直线a ∥b .将一直角三角形的直角顶点置于直线b 上,若∠l =28°,则∠2的度数是( )A.108°B.118°C.128°D.152°3.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴的正半轴上,顶点B 在函数y =kx(x >0)的图象上,若∠C =60°,AB =2,则k 的值为( )AB C .1 D .24.在一条笔直的公路上有A 、B 两地,甲乙两人同时出发,甲骑自行车从A 地到B 地,乙骑自行车从B 地到A 地,到达A 地后立即按原路返回B 地.如图是甲、乙两人离B 地的距离(km)y 与行驶时间(h)x 之间的函数图象,下列说法中①A 、B 两地相距30千米;②甲的速度为15千米/时;③点M 的坐标为(23,20);④当甲、乙两人相距10千米时,他们的行驶时间是49小时或89小时. 正确的个数为( )A .1个B .2个C .3个D .4个5.如图,ABC ∆中,90ACB ∠=︒,4AC =,6BC =,CD 平分ACB ∠交AB 于点D ,点E 是AC 的中点,点P是CD上的一动点,则PA PE+的最小值是()A.B.6 C.D6.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.5 B.6 C.7 D.87.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=kx上(k>0,x>0),则k的值为()A.B.C.9 D.8.随着通讯市场竞争的日益激烈,某通讯公司的手机市话收费按原标准降低了a元后,再次下调了25%,现在的收费标准是每分钟b元,则原收费标准每分钟为()A.4()3b a-元B.4()3b a+元C.5()4b a-元D.5()4b a+元9.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个10.跳远项目中,以测量最靠近起跳线的点到起跳线的距离作为成绩.如图是小慧在跳远训练中的一跳,下列线段中,它的长度能作为她的成绩的是()A.线段PAB.线段PBC.线段ADD.线段BD11.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是()A.120°B.130°C.140°D.150°12.如图所示几何体的左视图是( )A. B. C. D.二、填空题13.在△ABC 中,AB =AC ,CD 是AB 边上的中线,点E 在边AC 上(不与A ,C 重合),且BE =CD .设ABBC=k ,若符合条件的点E 有两个,则k 的取值范围是_____.14.如图,两块三角尺的直角顶点靠在一起,BC=3,EF=2,G 为 DE 上一动点,把三角尺DEF 绕直角顶点 F 旋转一周,在这个旋转过程中,B ,G 两点的最小距离为_____.15.已知x 满足(x+3)3=64,则x 等于_____. 16.分解因式:29m - =___________.17.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______. 18.如图,在平面直角坐标系中,一次函数y =x+1的图象l 与y 轴交于点C ,A 1的坐标为(1,0),点B 1在直线l 上,且A 1B 1平行于y 轴,连接CA 1、OB 1交于点P 1,过点A 1作A 1B 2∥OB 1交直线l 于点B 2,过点B 1作B 1A 2∥CA 1交x 轴于点A 2,A 1B 2与B 1A 2交于点P 2,……,按此进行下去,则点P 2019的坐标为_____.三、解答题19.在箱子中有10张卡片,分别写有1到10的十个整数,从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中,第二次再从箱子中任取一张卡片,记下它的读数y ,试求x+y 是10的倍数的概率.20.(1)计算)0-4cos60°+(13)-1. (2)先化简,再求值:(2-43-3x x x +-13x -)·(22-21-32x x x x ++-2-2x ),其中x=4.21.如图,一次函数y =kx+b 的图象与坐标轴分别交于A 、B 两点,与反比例函数y =mx的图象在第一象限的交点为C ,CD ⊥x 轴于D ,若OB =3,OD =6,△AOB 的面积为3. (1)求一次函数与反比例函数的表达式; (2)当x >0时,比较kx+b 与mx的大小.22.计算:214)0452-︒⎛⎫ ⎪⎝⎭. 23.解不等式组()214111143x x x x ⎧+-⎪⎨+--≤⎪⎩>24.如图,在ABC ∆中,90BAC ∠=︒,AB AC =,AD BC D ⊥于点.(1)如图1,点E 、F 在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =. (2)点M ,N 分别在直线AD ,AC 上,且90BMN ∠=︒. ①如图2,当点M 在AD的延长线上时,求证:AB AN +=;②当点M 在点A ,D 之间,且30AMN =︒∠时,已知AB =AM 的长.25.有一块含30°角的直角三角板OMN ,其中∠MON =90°,∠NMO =30°,ON =,将这块直角三角板按如图所示位置摆放.等边△ABC 的顶点B 与点O 重合,BC 边落在OM 上,点A 恰好落在斜边MN 上,将等边△ABC 从图1的位置沿OM 方向以每秒1个单位长度的速度平移,边AB ,AC 分别与斜边MN 交于点E ,F (如图2所示),设△ABC 平移的时间为t (s )(0<t <6).(1)等边△ABC 的边长为 ;(2)在运动过程中,当 时,MN 垂直平分AB ;(3)当0<t <6时,求直角三角板OMN 与等边△ABC 重叠部分的面积S 与时间t 之间的函数关系式.【参考答案】*** 一、选择题二、填空题13.3k <<且1k ≠ 14. 15.16.(m -3)(m +3) 17.-718.20202019221,33⎛⎫-+ ⎪⎝⎭三、解答题 19.1 【解析】 【分析】本题是一个等可能事件的概率,试验发生包含的事件是先后取两次卡片,每次都有1~10这10个结果,满足条件的事件x+y 是10的倍数的数对可以列举出结果数,根据等可能事件的概率公式得到结果. 【详解】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是先后取两次卡片,每次都有1~10这10个结果, 故形成的数对(x ,y )共有100个.满足条件的事件x+y 是10的倍数的数对包括以下10个:(1,9),(9,1),(2,8),(8,2),(3,7),(7,3),(4,6),(6,4),(5,5),(10,10).故“x+y 是10的倍数”的概率为 1100.1100P ==. 【点睛】本题考查等可能事件的概率,是一个关于数字的题目,数字问题是概率中经常出现的题目,一般可以列举出要求的事件,然后根据概率公式计算.20.(1);(2)x-2,2. 【解析】 【分析】(1)先根据二次根式的性质、绝对值的意义、零指数幂、特殊角的三角函数值及负整数指数幂的意义逐项化简,再合并同类项或同类二次根式即可;(2)先根据分式的运算法则将所给代数式化简,再把x=4代入计算即可. 【详解】解:(1)原式4×12+3(2)原式=2-43-3x x x ++1-3x ·2(-1)(-1)(-2)x x x -2-2x=2(-2)-3x x ·-1-2x x -2-2x=2(-2)-3x x ·-3-2x x=x-2,当x=4时,原式=4-2=2. 【点睛】本题考查了实数的混合运算,分式的化简求值,熟练掌握特殊角的三角函数值、负整数指数幂的意义及分式的运算法则是解答本题的关键. 21.(1) 223y x =-,12y x =;(2) 当0<x <6时,kx+b <m x ,当x >6时,kx+b >mx【解析】 【分析】(1)根据点A 和点B 的坐标求出一次函数的解析式,再求出C 的坐标6,2) ,利用待定系数法求解即可求出解析式(2)由C (6,2)分析图形可知,当0<x <6时,kx+b <m x ,当x >6时,kx+b >mx【详解】 (1)S △AOB =12OA•OB=3,∴OA=2,∴点A的坐标是(0,﹣2),∵B(3,0)∴2 30 bk b=-⎧⎨+=⎩∴232 kb⎧=⎪⎨⎪=-⎩∴y=23x﹣2.当x=6时,y=23×6﹣2=2,∴C(6,2)∴m=2×6=12.∴y=12x.(2)由C(6,2),观察图象可知:当0<x<6时,kx+b<mx,当x>6时,kx+b>mx.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于求出C的坐标22.1【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【详解】解:原式=4﹣3+12=2﹣1=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.23.-5≤x<5 2【解析】【分析】分别解出两不等式的解集,再求其公共解.【详解】解:() 214111143x xx x⎧+-⎪⎨+--≤⎪⎩>①②由①得x<52;由②得x≥-5;∴不等式组的解集为-5≤x<52.【点睛】本题考查了解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.(1)见解析;(21.【解析】【分析】(1)先判断出∠BAD=∠CAD=45°,进而得出∠CAD=∠B,再判断出∠BDE=∠ADF,进而判断出△BDE≌△ADF,即可得出结论;(2)①先判断出AM=PM,进而判断出∠BMP=∠AMN,判断出△AMN≌△PMB,即可判断出AP=AB+AN,再判断出,即可得出结论;②先求出BD,再求出∠BMD=30°,最后用三角函数求出DM,即可得出结论.【详解】(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵AD⊥BC,∴BD=CD,∠BAD=∠CAD=45°,∴∠CAD=∠B,AD=BD,∵∠EDF=∠ADC=90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA),∴BE=AF;(2)①如图1,过点M作MP⊥AM,交AB的延长线于点P,∴∠AMP=90°,∵∠PAM=45°,∴∠P=∠PAM=45°,∴AM=PM,∵∠BMN=∠AMP=90°,∴∠BMP=∠AMN,∵∠DAC=∠P=45°,∴△AMN≌△PMB(ASA),∴AN=PB,∴AP=AB+BP=AB+AN,在Rt△AMP中,∠AMP=90°,AM=MP,∴,∴AM;②如图,在Rt△ABD中,AD=BD=2∵∠BMN=90°,∠AMN=30°,∴∠BMD=90°-30°=60°,在Rt△BDM中,DM=1BDtan BMD==∠,∴.【点睛】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,锐角三角函数,判断出△BDE≌△ADF是解(1)的关键,构造出全等三角形是解(2)的关键.25.(1)3;(2)3;(3)22(03)84(36)tSt+<⎪=+<<….【解析】【分析】(1)根据,∠OMN=30°和△ABC为等边三角形,求证△OAM为直角三角形,然后即可得出答案.(2)易知当点C与M重合时直线MN平分线段AB,此时OB=3,由此即可解决问题;(3)分两种情形分别求解:当0<t≤3时,作CD⊥FM于D.根据S=S△MEB﹣2S△MDC,计算即可.②当3<t <6时,S=S△MEB.【详解】解:(1)在Rt△MON中,∵∠MON=90°,ON=M=30°∴OM=6,∵△ABC为等边三角形∴∠AOC=60°,∴∠OAM=90°∴OA⊥MN,即△OAM为直角三角形,∴OA=12OM=12×6=3.故答案为3.(2)易知当点C与M重合时直线MN平分线段AB,此时OB=3,所以t=3.故答案为3.(3)易知:OM=6,MN=,S△OMN=12×6=∵∠M=30°,∠MBA=60°,∴∠BEM=90°.①当0<t≤3时,作CD⊥FM于D.∵∠ACB=60°,∠M=30°,∠FCB=∠M+∠CFM,∴∠CFM=∠M=30°,∴CF=CM,∵CD⊥FM,∴DF=DM,∴S△CMF=2S△CDM,∵△MEB∽△MON,∴2MEBMONS BMS MB⎛⎫= ⎪⎝⎭,∴S△MEB=2822t-+,∵△MDC∽△MON,∴2MDCMONS MCS MN⎛⎫= ⎪⎝⎭,∴S△MDC=2848t-+,∴S=S△MEB﹣2S△MDC=﹣284+.②当3<t<6时,S=S△MEB=2822-+,综上所述,S=22(03)(36)tt+<<<⎩….【点睛】本题属于几何变换综合题,考查了平移变换,等边三角形的性质和判定,解直角三角形,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2019-2020学年数学中考模拟试卷一、选择题1.下列计算正确的是( ) A .b 2•b 3=b 6 B .(﹣a 2)3=a 6C .(ab )2=ab 2D .(﹣a )6÷(﹣a )3=﹣a 32.如图的四个转盘中,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )A. B. C. D.3.若关于x ,y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x+3y =6的解,则k 的值为( )A.34B.43C.﹣34D.﹣434.6月15日“父亲节”,小明准备送给父亲一个礼盒(如图所示),该礼盒的俯视图是( )A. B. C. D.5.下列标志中,是中心对称图形的是( )A. B. C. D.6.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,∠CAB =30°,AC =则图中阴影部分的面积是( )A .32π-B .32π C .3924π- D .3π-7.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22S S >乙甲;②22S S <甲乙.③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的是( )A.①③B.①④C.②④D.②③8.如图所示的几何体的左视图是()A.B.C.D.9.如图,DE∥MN,Rt△ABC的直角顶点C在DE上,顶点B在MN上,且BC平分∠ABM,若∠A=58°,则∠BCE的度数为()A.29°B.32°C.58°D.64°10.如图,在菱形ABCD中,AB=8,∠B=60°,P是AB上一点,BP=5,Q是CD边上ー动点,将四边形APQD沿直线PQ折叠,A的对应点A`.当CA`的长度最小时,则CQ的长为( )A.7 B.C.D.11.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .12.如图,已知等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点O ,则下列判断不正确的是( )A .△ABC ≌△DCB B .△AOD ≌△COBC .△ABO ≌△DCOD .△ADB ≌△DAC二、填空题 13.二次函数223y x =的图象如图所示,自原点开始依次向上作内角为60度、120度的菱形(其中两个顶点在抛物线上另两个顶点在y 轴上,相邻的菱形在y 轴上有一个公共点),则第2017个菱形的周长=______.14.写出一个解为11x y =⎧⎨=-⎩的二元一次方程是_____.15.如图,在矩形ABCD 中,AB=4,AD=3,矩形内部有一动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点的距离之和PA+PB 的最小值为______.16.中国的领水面积约为3700000km 2,将3700000用科学记数法表示为_____. 17.计算:=_____.18.利用标杆测量建筑物的高度的示意图如图所示,若标杆的高为米,测得米,米,则建筑物的高为__米.三、解答题19.2019年初,电影《流浪地球》和《绿皮书》陆续热播,为了解某大学1800名学生对两部电影的喜爱程度,调查小组随机抽取了该大学20名学生对两部电影打分,过程如下.收集数据20名大学生对两部电影的打分结果如下:《流浪地球》78 75 99 98 79 67 88 78 76 98 88 79 97 91 78 80 93 90 99 99《绿皮书》88 79 68 97 85 74 96 84 92 97 89 81 91 75 80 85 91 89 97 92整理、描述数据绘制了如下频数分布直方图和统计表,请补充完整.(说明:60≤x<70表示一般喜欢,70≤x<80表示比较喜欢,80≤x<90表示喜欢,90≤x<100表示超级喜欢)分析数据、推断结论(1)估计该大学超级喜欢电影《绿皮书》的有人;(2)你认为观众更喜欢这两部电影中的(填《流浪地球》或《绿皮书》),理由是.20.随着生活水平的提高,人们对饮水品质的需求越来越高,某公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B 型净水器的数量相等(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元,试销时A型净水器每台售价2500元,B型净水器每台售价2180元,公司决定从销售A型净水器的利润中按每台捐献a元作为公司帮扶贫困村饮水改造资金.若公司售完50台净水器并捐献扶贫资金后获得的最大利润不低于20200元但不超过23000元,求a 的取值范围.21.某学校打算假期组织老师外出旅游,初步统计,参加旅游的人数约在30~60人左右.该校联系了两家报价均为1200元的旅行社,甲旅行社的优惠措施是30人以内(包括30人)全额收费,超出部分每人打六折;乙旅行社的优惠措施是每人打九折,若人数在30人(包括30人)以上,还可免去两个人的费用. (1)该校选择哪一家旅行社合算?(2)若该校最终确定参加旅游的人数为48人,学校可给每位参加旅游的教师补贴200元,则参加旅游的教师每人至少要花多少钱?22.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D .(1)求证:∠APO =∠CPO ;(2)若⊙O 的半径为3,OP =6,∠C =30°,求PC 的长.23.(1)计算:(0+3tan30°﹣2|+11()2-(2)解方程:3+1x xx x -= 24.已知四边形ABCD 内接于O ,AB 为O 的直径,148BCD ∠=︒.(Ⅰ)如图①,若E 为AB 上一点,延长DE 交O 于点P ,连接AP ,求APD ∠的大小;(Ⅱ)如图②,过点A 作O 的切线,与DO 的延长线交于点P ,求APD ∠的大小.25.春暖花开,树木萌芽,某种时令蔬菜的价格呈上升趋势,若这种蔬菜开始时的售价为每斤20元,并且每天涨价2元,从第六天开始,保持每斤30元的稳定价格销售,直到11天结束,该蔬菜退市. (1)请写出该种蔬菜销售价格y 与天数x 之间的函数关系式;(2)若该种蔬菜于进货当天售完,且这种蔬菜每斤进价z 与天数x 的关系为z =﹣21(8)8-x +12(1≤x≤11),且x 为整数,那么该种蔬菜在第几天售出后,每斤获得利润最大?最大利润为多少?【参考答案】***一、选择题二、填空题13.806814.x+y=01516.7×10617.318.15三、解答题19.补全统计图与统计表见解析;(1)720;(2)见解析.【解析】【分析】(1)根据题干中所给数据,整理可补全直方图;再根据众数和中位数的定义可得;(2)答案不唯一,合理即可.【详解】(1)补全《流浪地球》的分布直方图如下:填统计表如下:估计该大学超级喜欢电影《绿皮书》的有1800×820=720(名),故答案为:720;(2)答案不唯一,喜欢《绿皮书》理由:在被调查者中,喜欢《绿皮书》的中位数高于喜欢的《流浪地球》中位数; 为《绿皮书》打分在80分以上的有16人,而为《流浪地球》打分在以上的只有12人.故答案为:《绿皮书》,在被调查者中,喜欢《绿皮书》的中位数高于喜欢的《流浪地球》中位数.【点睛】此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.20.(1)每台A 型、B 型净水器的进价分别是2000元、1800元;(2)a 的取值范围是20≤a≤90.【解析】【分析】(1)根据题意可以列出相应的分式方程,从而可以解答本题;(2)根据题意可以求得x 的取值范围和利润与x 的函数关系式,然后根据一次函数的性质即可解答本题.【详解】(1)设每台A 型的进价为m 元,5000045000200m m =-, 解得,m =2000,经检验,m =2000是原分式方程的解,∴m ﹣200=1800,答:每台A 型、B 型净水器的进价分别是2000元、1800元;(2)2000x+1800(50﹣x )≤98000,解得,x≤40,设公司售完50台净水器并捐款后获得的利润为w 元,w =(2500﹣2000)x+(2180﹣1800)(50﹣x )﹣ax =(120﹣a )x+19000,当a≥120时,w≤19000不合题意,当a <120时,120﹣a <0,当x =40时,w 取得最大值,∴20200≤40(120﹣a )+19000≤23000,解得,20≤a≤90,即a 的取值范围是20≤a≤90.【点睛】本题考查一次函数的应用、一元一次不等式的应用、分式方程的应用,解答本题的关键是明确题意,利用一次函数的性质解答,注意分式方程要检验.21.(1)当旅游人数小于46人时,选乙旅行社;人数为46人时,两家旅行社费用一样;人数大于46人时,选甲旅行社;(2)820.【解析】【分析】(1)设x 人参加旅游,用x 分别表示甲和乙旅行社的费用,两费用相等则列方程求出对应的人数,谁家费用较大列不等式求出对应的人数范围.(2)人数为48人则选甲旅行社花费少,把总费用求出后再减去学校补贴总额200×48元,得到总旅游费用,再除以48记得人均费用.【详解】解:(1)设参加旅游的人数为x人(30<x<60),甲旅行社费用为y1元,乙旅行社费用为y2元,得:y1=1200×30+1200×0.6(x-30)=720x+14400y2=1200×0.9(x-2)=1080x-2160当y1=y2时,720x+14400=1080x-2160解得:x=46当y1>y2时,720x+14400>1080x-2160解得:x<46当y1<y2时,720x+14400<1080x-2160解得:x>46答:当旅游人数小于46人时,选乙旅行社;人数为46人时,两家旅行社费用一样;人数大于46人时,选甲旅行社.(2)由(1)得,人数为48人时选甲旅行社费用更低.∴(720×48+14400-200×48)÷48=820(元)答:参加旅游的教师每人至少要花820元.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,是选择方案的常考题.22.(1)详见解析;(2).【解析】【分析】(1)根据切线长定理证明;(2)根据切线的性质得到∠PAC=90°,根据勾股定理求出AP,根据含30°的直角三角形的性质计算即可.【详解】(1)证明:∵PA、PB是⊙O的切线,∴∠APO=∠CPO;(2)解:∵PA是⊙O的切线,∴∠PAC=90°,∴AP=,在Rt△CAP中,∠C=30°,∴PC=2AP=.【点睛】本题考查的是切线的性质、直角三角形的性质,掌握切线长定理、勾股定理是解题的关键.23.(1);(2)x=﹣1.5.【解析】【分析】(1)根据0指数幂、特殊的三角函数值、绝对值及负整数指数幂即可解答.(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)原式=13221+-++=+(2)去分母得:x 2=x 2﹣2x ﹣3,移项合并得:﹣2x =3,解得:x =﹣1.5,经检验x =﹣1.5是原方程的解.【点睛】本题考查了0指数幂、特殊的三角函数值、绝对值、负整数指数幂及解分式方程,掌握各种运算的法则是关键,解分式方程必须检验.24.(Ⅰ);58APD ∠=︒;(Ⅱ)26APD ∠=︒.【解析】【分析】(Ⅰ)连接BD ,根据圆内接四边形的对角互补得出BAD 32∠=︒,再根据直径所对的圆周角是直角得出ADB 90∠=︒,从而求出ABD ∠,再根据同弧所对的圆角角相等即可得出APD ∠的度数.(Ⅱ)连接AD,根据等腰三角形的性质,可得ADO OAD 32∠∠==︒,再根据切线的性质和三角形即可得出APD ∠度数.【详解】解:(Ⅰ)连接BD ,∵四边形ABCD 是圆内接四边形,∴BCD BAD 180.∠∠+=︒∵BCD 148,∠=︒∴BAD 32.∠=︒又AB 是O 的直径,∴BDA 90.∠=︒∴BAD ABD 90,∠∠+=︒∴ABD 58.∠=︒∴APD ABD 58.∠∠==︒(Ⅱ)连接AD,由(Ⅰ)可知:BAD 32,∠=︒又OA OD =,可得ADO OAD 32,∠∠==︒∵DP 切O 于点A,∴OA PA ⊥,即PAO 90.∠=︒则PAD PAO OAD 122,∠∠∠=+=︒在APD 中,∵PAD ADO APD 180,∠∠∠++=︒∴APD 26∠=︒.【点睛】本题考查了圆内接四边形定理、圆周角定理、切线的性质等知识,熟练掌握相关的定理定义是解题的关键.25.(1)202(1)218(16)30(611)x x x y x +-=+<⎧=⎨⎩…剟;(2)在第11天进货并售出后,所获利润最大,且为每件最大利润为19.125元.【解析】【分析】(1)根据销售价格随时间的变化关系设y 与x 之间的函数关系为y =kx+b,由分段函数求出其值即可;(2)根据利润=售价﹣进价就可以表示出利润与时间之间的关系,由二次函数的性质就可以求出结论.【详解】解:(1)该种蔬菜销售价格y 与天数x 之间的函数关系式:y =()()()20212181630611x x x x ⎧+-=+≤≤⎪⎨≤≤⎪⎩; (2)设利润为W,则W =y ﹣z =()()()()()()()222211218812141688113081281861188x x x x x x x x x ⎧++--=+≤≤⎪⎪⎨⎪+--=-+≤≤⎪⎩为整数为整数, W =21148x +,对称轴是直线x =0,当x >0时,W 随x 的增大而增大, ∴当x =5时,W 最大=258+14=17.125(元) W =()218188x -+,对称轴是直线x =8,当x >8时,W 随x 的增大而增大,∴当x=11时,W最大=18×9+18=1918=19.125(元)综上可知:在第11天进货并售出后,所获利润最大且为每件19.125元.【点睛】本题主要考查了二次函数的应用,待定系数法求函数的解析式的运用,二次函数的最值的运用,解答时求出利润的解析式是关键.。

怎样用待定系数法求二次函数的解析式【重点!知识讲解与巩固练习】

怎样用待定系数法求二次函数的解析式【重点!知识讲解与巩固练习】

待定系数法求二次函数的解析式—知识讲解(提高)责编:康红梅【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0).2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中.要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】 类型一、用待定系数法求二次函数解析式1. 已知抛物线经过A ,B ,C 三点,当时,其图象如图1所示.求抛物线的解析式,写出顶点坐标.图1【答案与解析】设所求抛物线的解析式为().由图象可知A ,B ,C 的坐标分别为(0,2),(4,0),(5,-3).∴=++=++=-⎧⎨⎪⎩⎪c a b c a b c 216402553,,,解之,得抛物线的解析式为该抛物线的顶点坐标为.【总结升华】这道题的一个特点是题中没有直接给出所求抛物线经过的点的坐标,需要从图象中获取信息.已知图象上三个点时,通常应用二次函数的一般式列方程求解析式.要特别注意:如果这道题是求“图象所表示的函数解析式”,那就必须加上自变量的取值范围.2.(2016•丹阳市校级模拟)形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为.【思路点拨】形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,因此可设顶点式为y=﹣2(x﹣h)2+k,其中(h,k)为顶点坐标.将顶点坐标(0,﹣5)代入求出抛物线的关系式.【答案】y=﹣2x2﹣5.【解析】解:∵形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,设抛物线的关系式为y=﹣2(x﹣h)2+k,将顶点坐标是(0,﹣5)代入,y=﹣2(x﹣0)2﹣5,即y=﹣2x2﹣5.∴抛物线的关系式为y=﹣2x2﹣5.【总结升华】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.3. 已知抛物线的顶点坐标为(-1,4),与轴两交点间的距离为6,求此抛物线的函数关系式.【答案与解析】因为顶点坐标为(-1,4),所以对称轴为,又因为抛物线与轴两交点的距离为6,所以两交点的横坐标分别为:,, 则两交点的坐标为(,0)、(2,0);求函数的函数关系式可有两种方法: 解法(1):设抛物线的函数关系式为顶点式:(a ≠0),把(2,0)代入得, 所以抛物线的函数关系式为;解法(2):设抛物线的函数关系式为两点式:(4)y a x =+(x-2)(a ≠0),把(-1,4)代入得, 所以抛物线的函数关系式为:4(4)9y x =-+(x-2); 【总结升华】在求函数的解析式时,要根据题中所给条件选择合适的形式.举一反三:【高清课程名称:待定系数法求二次函数的解析式高清ID 号: 356565 关联的位置名称(播放点名称):例3-例4】【变式】(2014•永嘉县校级模拟)已知抛物线经过点(1,0),(﹣5,0),且顶点纵坐标为,这个二次函数的解析式 .【答案】y=﹣x 2﹣2x+ .提示:设抛物线的解析式为y=a (x+2)2+,将点(1,0)代入,得a (1+2)2+=0,解得a=﹣,即y=﹣(x+2)2+,∴所求二次函数解析式为y=﹣x2﹣2x+.类型二、用待定系数法解题4.(2015春•石家庄校级期中)已知二次函数的图象如图所示,根据图中的数据,(1)求二次函数的解析式;(2)设此二次函数的顶点为P,求△ABP的面积.【答案与解析】解:(1)由二次函数图象知,函数与x轴交于两点(﹣1,0),(3,0),设其解析式为:y=a(x+1)(x﹣3),又∵函数与y轴交于点(0,2),代入解析式得,a×(﹣3)=2,∴a=﹣,∴二次函数的解析式为:,即;(2)由函数图象知,函数的对称轴为:x=1,当x=1时,y=﹣×2×(﹣2)=,∴△ABP 的面积S===.【总结升华】此题主要考查二次函数图象的性质,对称轴及顶点坐标,另外巧妙设函数的解析式,从而来减少计算量.【答案与解析】(1)把A(2,0),B(0,-6)代入212y x bx c =-++ 得220,6,b c c -++=⎧⎨=-⎩ 解得4,6.b c =⎧⎨=-⎩∴ 这个二次函数的解析式为21462y x x =-+-. (2)∵ 该抛物线的对称轴为直线44122x =-=⎛⎫⨯- ⎪⎝⎭, ∴ 点C 的坐标为(4,0),∴ AC =OC-OA =4-2=2.∴ 1126622ABC S AC OB ==⨯⨯=g g △. 【总结升华】求△ABC 的面积时,一般要将坐标轴上的边作为底边,另一点的纵(横)坐标的绝对值为高进行求解.(1)将A 、B 两点坐标分别代入解析式求出b ,c 的值.(2)先求出点C 的坐标再求出△ABC 的面积.举一反三:【高清课程名称:待定系数法求二次函数的解析式高清ID 号: 356565 关联的位置名称(播放点名称):例3-例4】【变式】已知二次函数图象的顶点是(12)-,,且过点302⎛⎫⎪⎝⎭,.(1)求二次函数的表达式;(2)求证:对任意实数m ,点2()M m m -,都不在这个二次函数的图象上.【答案】(1)23212+--=x x y ;(2)证明:若点2()M m m -,在此二次函数的图象上,则221(1)22m m -=-++.得2230m m -+=.△=41280-=-<,该方程无实根.所以原结论成立.待定系数法求二次函数的解析式—巩固练习(提高)【巩固练习】一、选择题1. 对于任何的实数t ,抛物线 y=x 2 + (2-t) x + t 总经过一个固定的点,这个点是 ( )A. (l, 3)B.(-l, 0)C.(-1, 3)D. (1, 0)2.如图所示为抛物线2y ax bx c =++的图象,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是( )A .1a b +=-B .1a b -=-C .2b a <D .0ac <3.(2016•东平县二模)如果抛物线y=x 2﹣6x+c ﹣2的顶点到x 轴的距离是3,那么c 的值等于( )A .8B .14C .8或14D .﹣8或﹣144.老师出示了小黑板上题后.小华说:过点(3,0);小彬说:过点(4,3);小明说:a =1,小颖说: 抛物线被x 轴截得的线段长为2,你认为四个人的说法中,正确的有( )A .1个B .2个C .3个D .4个5.(2015•高淳县一模)已知二次函数y=a (x ﹣h )2+k (a >0)的图象过点A (0,1)、B (8,2),则h 的值可以是( )已知抛物线23y ax bx =++ 与x 轴交于(1,0),试添加一个条件,使它的对称轴为直线x =2.A .3B . 4C . 5D . 66.如图所示,正方形ABCD 的边长为1,E 、F 、G 、H 分别为各边上的点,且AE =BF =CG =DH ,设小正方形EFGH 的面积为S ,AE 为x ,则S 关于x 的函数图象大致是( )二、填空题7.已知二次函数的图象经过原点及点11,24⎛⎫-- ⎪⎝⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为_ _______.8.已知二次函数对称轴为x =2,且在x 轴上截得的线段长为6,与y 轴交点为(0,-2),则此二次函数的解析式为 .9.(2016•长宁区一模)已知二次函数y=ax 2+bx ,阅读下面表格信息,由此可知y 与x 的函数关系式是 .x﹣1 1 y 0 2•河南一模)二次函数的图象如图所示,则其解析式为 .11.如图所示,已知二次函数2y x bx c =++的图象经过点(-1,0),(1,-2),该图象与x 轴的另一个交点为C ,则AC 长为________.第11题 第12题12.在如图所示的直角坐标系中,已知点A (1,0),B (0,-2),将线段AB 绕点A 按逆时针方向旋转90°至AC .(1)点C 的坐标为 ;(2)若抛物线2122y x ax =-++经过点C ,则抛物线的解析式为 . 三、解答题13.已知2y ax bx c =++(a ≠0)经过A(-3,2),B(1,2)两点,且抛物线顶点P 到AB 的距离为2,求此抛物线的解析式.14.(2015•大庆模拟)如图,抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上滑动到什么位置时,满足S △PAB =8,并求出此时P 点的坐标.15.已知,如图所示,抛物线2y ax bx c =++与x 轴相交于两点A(1,0),B(3,0),与y 轴相交于点C(0,3).(1)求抛物线的函数关系式; (2)若点7,2D m ⎛⎫ ⎪⎝⎭是抛物线2y ax bx c =++上的一点,请求出m 的值,并求出此时△ABD 的面积.【答案与解析】一、选择题1.【答案】A;【解析】把y=x2 + (2-t) x + t化为y=x2+2x+(1-x)t, 因为对于任何的实数t,抛物线y=x2 + (2-t) x + t总经过一个固定的点,所以与t的值无关,即1-x=0,x=1,代入y=x2+2x+(1-x)t,得y=3,过定点(1,3),故选A.2.【答案】B;【解析】由图知A(-1,0),C(0,1)代入2y ax bx c=++中得0,1,a b cc-+=⎧⎨=⎩∴a-b=-1.3.【答案】C.【解析】根据题意=±3,解得c=8或14.故选C.4.【答案】C;【解析】小颖说的不对,其他人说的对.5.【答案】A;【解析】把A(0,1)、B(8,2)分别代入y=a(x﹣h)2+k(a>0)得,②﹣①得64a﹣16ah=1,解得a=>0,所以h<4.故选A.6.【答案】B;【解析】∵AB=BC=CD=DA=1,AE=BF=CG=DH=x,∴ AH =DG =CF =BE =1-x .∴ 1(1)2AEH BEF CFG DHG S S S S x x ====-△△△△,∴ 2114(1)2212S x x x x =-⨯-=-+,又0≤x ≤1,其图象应为开口向上,自变量从0到1之间的抛物线部分,故选B .二、填空题7.【答案】2y x x =+或21133y x x =-+;【解析】抛物线经过点(1,0)或(-1,0).8.【答案】 228255y x x =--;【解析】由对称轴x =2和抛物线在x 轴上截得的线段长为6,可知抛物线与x 轴的两个交点为(-1,0),(5,0),然后设交点式易求解.∵ 抛物线的对称轴为x =2,且在x 轴上截得线段长为6,∴ 抛物线与x 轴两交点为(-1,0),(5,0).设二次函数解析式为y =a(x+1)(x-5) (a ≠0).将点(0,2)代入上式得-2=a(0+1)(0-5),∴ 25a =.因此二次函数解析式为2(1)(5)5y x x =+-.即228255y x x =--.9.【答案】y=x 2+x .【解析】把x=﹣1,y=0和x=1,y=2代入y=ax 2+bx 得,解得a=1,b=1,所以y 与x 的函数关系式为y=x 2+x .10.【答案】 y=﹣x 2+2x+3;【解析】由图象可知,抛物线对称轴是直线x=1,与y 轴交于(0,3),与x 轴交于(﹣1,0)设解析式为y=ax 2+bx+c ,,解得.故答案为:y=﹣x 2+2x+3.11.【答案】3;【解析】由2y x bx c =++经过点(-1,0),(1,-2)可得10,12,b c b c -+=⎧⎨++=-⎩ ∴ 1,2,b c =-⎧⎨=-⎩ ∴ 22y x x =--. 其对称轴为12x =,由对称性可求C 点坐标为(2,0),∴ 2(1)3AC =--=.12.【答案】(1)(3,-1);(2)211222y x x =-++.【解析】(1)过点C 作CD ⊥x 轴,垂足为D ,在△ACD 和△BAO 中,由已知有∠CAD+∠BAO =90°,而∠ABO+∠BAO =90°,∴ ∠CAD =∠ABO ,又∵ ∠CDA =∠AOB =90°,且由已知有CA =AB ,∴ △ACD ≌△BAO ,∴ CD =OA =1,AD =BO =2,∴ 点C 的坐标为(3,-1);(2)∵ 抛物线2122y x ax =-++,经过点C(3,-1),∴ 2113322a -=-⨯++,解得12a =,∴ 抛物线的解析式为211222y x x =-++.三、解答题13.【答案与解析】∵ A(-3,2),B(1,2)的纵坐标相同,∴ 抛物线对称轴为x =-1.又∵ 顶点P 到AB 距离为2,∴ P(-l ,0)或P(-1,4).故可设抛物线解析式为2(1)y a x =+(a ≠0)或2(1)4y a x =++(a ≠0).将B(1,2)分别代人上式得12a =或12a =-.∴ 21(1)2y x =+或21(1)42y x =-++.14.【答案与解析】解:(1)∵抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,∴方程x 2+bx+c=0的两根为x=﹣1或x=3,∴﹣1+3=﹣b,﹣1×3=c,∴b=﹣2,c=﹣3,∴二次函数解析式是y=x2﹣2x﹣3.(2)∵y=﹣x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4).(3)设P的纵坐标为|y P|,∵S△PAB=8,∴AB•|y P|=8,∵AB=3+1=4,∴|y P|=4,∴y P=±4,把y P=4代入解析式得,4=x2﹣2x﹣3,解得,x=1±2,把y P=﹣4代入解析式得,﹣4=x2﹣2x﹣3,解得,x=1,∴点P在该抛物线上滑动到(1+2,4)或(1﹣2,4)或(1,﹣4)时,满足S△PAB=8.15.【答案与解析】(1)由已知得0,930,3,a b c a b c c ++=⎧⎪++=⎨⎪=⎩ 解之1,4,3.a b c =⎧⎪=-⎨⎪=⎩∴ 243y x x =-+. (2)∵ 7,2D m ⎛⎫ ⎪⎝⎭是抛物线243y x x =-+上的点,∴ 54m =, ∴ 1552244ABD S =⨯⨯=△.。

26.1.5_用待定系数法求二次函数的解析式(新)

26.1.5_用待定系数法求二次函数的解析式(新)

课本14页
必做题:第9(2)、(4),10题.
用待定系数法求二次函数的解析式
例1 已知一个二次函数的图象过点(-1,10)、 (1,4)、(2,7)三点,求这个函数的解析式. 解: 设所求的二次函数为y=ax2+bx+c a-b+c=10 由已知得: a+b+c=4 4a+2b+c=7 解得: a=2, b=-3, c=5 因此,所求二次函数是: y=2x2-3x+5
26.1.5 用待定系数法求二次函数的解析式
回顾:用待定系数法求函数的解析式
已知一次函数经过点(1,3) 和(-2,-12) ,求 这个一次函数的解析式。 解:设这个一次函数的解析式为y=kx+b, 因为一次函数经过点(1,3) 和(-2,-12) , k+b=3 所以 -2k+b= -12 解得 k=5,b= -2 一次函数的解析式为y=5x-2.
用待定系数法求二次函数的解析式 求二次函数y=ax2+bx+c的解析式,关键是 求出待定系数a,b,c的值。 由已知条件(如二次函数图像上三个点的 坐标)列出关于a,b,c的三元一次方程组, 并求出a,b,c,就可以写出二次函数的解 析式。
用待定系数法求二次函数的解析式
例2 已知抛物线与x轴交于A(-1,0),B(1,0) 并经过点M(0,1),求抛物线的解析式. 解:设所求的二次函数的解析式为y=ax2+bx+c a-b+c=0 a+b+c=0 c=1 解得 a=-1, b=0, c=1 故所求的抛物线解析式为 y=-x2+1




1、一个二次函数,当自 变量 x 0 时,函数值 1 当 x 2 与 时, y 0 .求这个二次函数的解析 2 2 、一个二次函数的图象 ( 1,)三点,求这个二次函 9

26.1.5用待定系数法求二次函数解析式

26.1.5用待定系数法求二次函数解析式

4 、二次函数的交点式(两根式):y=a(x-x1)(x- x2),其中x1 ,x2 为两交点的横坐标 ,它有3个待定系数a、
x1 、x2 今天学习用待定系数法求二次函数的解析式
例1 已知一个二次函数的图象过点(-1,10)、(1,4)、
(2,7)三点,求这个函数的解析式 解:设所求的二次函数为 y=ax2+bx+c
2 练习1:(2007· 河北省)如图,已知二次函数 y ax 4x c 的图像经过点A和点B. (1)求该二次函数的表达式; (2)写出该抛物线的对称轴及顶点坐标; (3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两 点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离. 解:(1)将x=-1,y=-1;x=3,y=-9分别代
3 = (-m2-2m+3)+ 2 (-m) 2 3 2 9 9 3 3 2 63 = - m - m+ =- (m+ ) + 8 2 2 2 2 2
1 1 = BO•EF + 2 OC•EG 2 3
(m,-m² -2m+3 ) E G (0,3)
(-3,0) F
3 ∴当m=- 时,S四边形BOCE最大,且最大值 2 3 15 63 为 ,此时,点E坐标为(- , ). 2 4 8
一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标 即为方程ax2+bx+c=0的解x1 ,x2 ,所以,已知抛物线与x 轴的两个交点坐标为( x1 ,0), ( x2 ,0)时,二次函 数解析式y=ax2+bx+c又可以写为y=a(x- x1)(x- x2), 其中x1 ,x2 为两交点的横坐标。
(-1,0)
(1,0)
以M为圆心,MC为半径画弧,与对称轴有两交点;以C为圆心, MC为半径画弧,与对称轴有一个交点(MC为腰)。 作MC的垂直平分线与对称轴有一个交点(MC为底边)。 P (1,6)

九年级下册数学教案用待定系数法求二次函数的解析式

九年级下册数学教案用待定系数法求二次函数的解析式
难点:根据不同的条件选择恰当的解析式,从而用待定系数法求函数解析式。
考点

措施
函数解析式的确定是解决函数问题的纽带,是中考的关键,题型比较多变。
措施:选好方法,计算准确。




环节
教学内容与师生活动
设计意图和
关注的学生
一、
课堂引入
二、合作学习,探索新知
三、知识应用

、拓广应用
六、课堂小结
七、
知识评价
(-1, 0)三点,求这个函数的解析式.
解:设这个函数的解析式为:y=ax2+bx+c(a≠0)
∵二次函数的图象过点(0,-3)(4,5)(-1, 0)
∴16a+4b-3=5
c=-3
a-b-3=0解得a= 1 ,b= -2 ,c= -3
∴所求二次函数为y=x2-2x-3
例2已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析式.
设计有梯度、多角度的练习题,巩固课堂所学,加深对本节主要内容的理解。




用待定系数法求二次函数的解析式常要使学生具有转化的思想、方程的思想,具有准确的解方程(组)的能力,而学生解三元方程组的能力不够准确,要注意这方面的教学。
2.已知二次函数的图象的顶点坐标为(-2,-3),且图像过点(-3,-2),求这个二次
已知一个二次函数的图象过点(0,-3)(4,5)
对称轴为直线x=1,求这个函数的解析式.
归纳:
用待定系数法求ax2+bx+c.
2.已知抛物线顶点坐标及一点,设顶点式y=a(x-h)2+k.
解析式为____________________.
4.抛物线的形状、开口方向都与抛物线y=- x2相同,顶点在(1,-2),则抛物线的解析式为________________________________.

用待定系数法求二次函数的解析式(刘老师)

26.1.5用待定系数法求二次函数的解析式【教学目标】1.利用类比法探索待定系数法解二次函数的具体步骤,总结待定系数法求二次函数解析式的类型.2.经历待定系数法求二次函数解析式的探究过程,体会数学建模的思想;经历总结交流待定系数法的类型,培养学生的合作意识.3. 通过探索和总结,让学生体会到学习数学的乐趣,从而提高学生学习数学的兴趣,并获得成功感.【重点、难点】探索待定系数法解二次函数的具体步骤;会用系数法求二次函数解析式【教学过程】一、激学导思:1.完成下列各题(1)已知正比例函数经过点(2,6),求正比例函数解析式?(2)已知一次函数经过点(0,4)(7,10),求一次函数的解析式?2.请你观察正比例函数y=kx和一次函数y=kx+b的解析式,找出解析式中的系数,结合做过的题目,思考:(1)如果要确定正比例函数和一次函数解析式,分别需要几个点,列几个方程,为什么?正比例函数:一个系数,一个一元一次方程,要一个点的坐标。

一次函数:两个系数,两个二元一次方程(即一个二元一次方程组),要两个点的坐标。

(2)是否可以可用类似的方法求二次函数的解析式?怎么求?二、探究释疑探究1.我们学习了几种形式的二次函数解析式,分别写出来,想它们分别有几个未知数?根据我们上面的结论思考,需要几个点才能求出解析式?学生思考:二次函数:三个系数,需要三个一次方程(即一个三元一次方程组),需要三个点的坐标。

探究2.问题:如果一个二次函数的图像经过(-1,10)、(1,4)、(2,7)三点, 能求出这个二次函数的解析式吗?怎么求?解:设所求的二次函数为c bx ax y ++=2由已知条件,函数图像经过点(-1,10)、(1,4)、(2,7),所以将三点的坐 标带入二次函数解析式,得到 关于a 、b 、c 的三元一次方程组⎪⎩⎪⎨⎧=++=++=+-724410c b a c b a c b a 解这个方程组。

得a=2、b=-3、c=5所以二次函数是5322+-=x x y三、运用巩固课堂练习:一个二次函数,当自变量x=0时,函数值y=1,当x=-2与21时,y=0.求这个二次函数的解析式。

用待定系数法求二次函数的解析式(新人教版)课件

$ax_3^2+bx_3+c=y_3$
设立待定系数并建立方程组
• 同样,若已知抛物线的对称轴为直线$x=h$,则可设立如 下方程组
设立待定系数并建立方程组
$-frac{b}{2a}=h$
$y=ax^2+bx+c$
解方程组求得待定系数
解方程组求得$a, b, c$的值。
解方程组的方法有多种,如代入消元法、加减消元法等。
提高解决问题能力
在学习过程中,学生将学会如何根据问题条件设立未知数 、建立方程组,从而提高解决实际问题的能力。
为后续课程做准备
本节课所介绍的待定系数法将在后续课程中得到广泛应用 ,如求解二次方程、二次曲线等,因此本节课的学习将为 后续课程打下基础。
THANKS
感谢观看
用待定系数法求二 次函数的解析式(新 人教版)
目录
• 引言 • 二次函数的基本概念 • 待定系数法介绍 • 用待定系数法求二次函数的解析式 • 实例分析 • 课程总结与展望
01
CATALOGUE
引言
课程背景
01
二次函数是初中数学的重要内容 ,是中考的重点和难点之一。
02
通过学习待定系数法求二次函数 的解析式,学生可以更好地理解 二次函数的性质和图像,提高解 决实际问题的能力。
实际应用举例
通过具体的例题演示如何使用待定系数法求解二次函数解析式,包括如何设立未知数、建 立方程组以及求解过程。
课程对未来的影响和意义
深化对二次函数的理解
通过本节课的学习,学生对二次函数的理解将更加深入, 能够掌握其解析式的求解方法,为后续学习打下基础。
培养数学思维能力
待定系数法是一种重要的数学思维方法,通过本节课的学 习,学生将培养出灵活运用数学思维解决问题的能力。

人教版数学九年级上册26.1.5《用待定系数法求二次函数的解析式》说课稿

人教版数学九年级上册26.1.5《用待定系数法求二次函数的解析式》说课稿一. 教材分析《人教版数学九年级上册》第26.1.5节《用待定系数法求二次函数的解析式》是本册教材的重要内容之一。

这部分内容是在学生已经掌握了二次函数的一般形式和图象的基础上进行讲解的,旨在让学生通过待定系数法求解二次函数的解析式,从而更好地理解和掌握二次函数的知识。

本节教材主要分为两个部分,第一部分是待定系数法的引入和解释,第二部分是待定系数法在求解二次函数解析式中的应用。

在第一部分中,教材通过例题和练习题让学生理解待定系数法的概念和原理;在第二部分中,教材通过例题和练习题让学生掌握待定系数法在求解二次函数解析式中的应用。

二. 学情分析在九年级的学生中,大部分学生已经掌握了二次函数的一般形式和图象,但是对于待定系数法的理解和应用还有待提高。

因此,在教学过程中,我需要注重引导学生理解和掌握待定系数法的概念和原理,并通过例题和练习题让学生熟悉和掌握待定系数法在求解二次函数解析式中的应用。

三. 说教学目标本节课的教学目标是让学生理解和掌握待定系数法的概念和原理,能够运用待定系数法求解二次函数的解析式,并能够通过练习题进行巩固和提高。

四. 说教学重难点本节课的教学重难点是待定系数法的理解和应用。

在教学过程中,我需要注重引导学生理解和掌握待定系数法的概念和原理,并通过例题和练习题让学生熟悉和掌握待定系数法在求解二次函数解析式中的应用。

五. 说教学方法与手段在教学过程中,我将采用讲授法和练习法相结合的教学方法。

首先,我会通过讲解和示例让学生理解和掌握待定系数法的概念和原理;然后,我会通过布置练习题让学生熟悉和掌握待定系数法在求解二次函数解析式中的应用。

此外,我还会利用多媒体教学手段,如PPT和动画等,来帮助学生更好地理解和掌握知识。

六. 说教学过程1.引入:通过复习二次函数的一般形式和图象,引导学生思考如何求解二次函数的解析式。

2.讲解:讲解待定系数法的概念和原理,并通过示例让学生理解待定系数法在求解二次函数解析式中的应用。

用待定系数法求二次函数表达式的三种形式


总结归纳
用待定系数法求二次函数的解析式常用二种形式:
1.已知抛物线过三点,三对有序实数对选一般式 y=ax²+bx+c.
2.已知抛物线顶点坐标及另一点,已知对称轴和最

x1, x2
选顶点式y=a(x-h)²+k
x1
课后练习
1.抛物线y=ax²+bx+c过(-3,0),(1,0)两点,与y 轴的交点为(0,4)过(-3,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式
2a
4a
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
当x b 时,最大值为 4ac b2
2a
4a
待定系数法求二次函数表达式常见 的二种形式 :
一般式 • 1.
:y=ax²+bx+c (a,b,c为常数,且a≠0)
• 2.顶点式:y=a(x-h)²+k
减小
当x=h时,. 最大值为k.
2019/9/24
二次函数y=ax2+bx+c(a≠0)的图象和性质
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
抛物线 顶点坐标
对称轴 位置
y=ax2+bx+c(a>0)


b 2a
,
4ac 4a
b2

直线x b
8.已知二次函数y=ax²+bx+c的图象过点Ax1 (-1,0), 且经过直线y=2x-4与坐标轴的两交点,求这个二 次函数的表达式。
课后练习
9﹡二次函数在x=-2时,y有最小值为-3,且它的图 图象与x轴的两个交点的横坐标的积为3,求此函 数的解析式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.(宁夏·中考)把抛物线y=-x2向左平移1个单位,
然后向上平移3个单位,则平移后抛物线的解析式是( B )
A. y ( x 1) 2 3 C. y ( x 1) 3
2
B. y ( x 1) 2 3 D. y ( x 1) 2 3
3.(莆田·中考)某同学用描点法画
一个人如果看到什么都是本分,那就没有感激; 如果看到情分更多,那就会有一种珍重之心. ——佚名
y=ax2+bx+c(a≠0)的图象时,列出如下表格:
x 0 1 2 2 3 4
y
3
0
0
3
经检查,发现只有一处数据计算错误,请你写出这 个二次函数的解析式 y=x24x+3 .
你学到哪些二次函数解析式的求法? (1)已知图象上三点的坐标或给定x与y的三对对应值, 通常选择一般式. (2)已知图象的顶点坐标,对称轴和最值,通常选择顶点式. (3)已知图象与x轴的交点坐标,通常选择交点式. 确定二次函数的解析式时,应该根据条件的特点, 恰当地选用一种函数表达方式.
【例题】
【例1】已知一个二次函数的图象过(-1,10),(1, 4),(2,7)三点,求这个函数的解析式.
解析:设所求的二次函数为y=ax2+bx+c,
a-b+c=10, 由条件得: a+b+c=4, 4a+2b+c=7, 解方程组得: a=2, b=-3, y=2x2-3x+5.
c=5.
因此,所求二次函数的解析式是:
a b c 0, 9a 3b c 0, 解之 得 c 1.
1 a , 3 2 b , 3 c 1.
y
A
C
O
B
x
∴所求抛物线的解析式为 y
1 2 2 x x 1. 3 3
1.(衢州·中考)下列四个函数图象中,当x>0时, y随x的增大而增大的是( C )
y 【例2】已知抛物线的顶点为
-1
(-1,-3),与y轴交点为
(0,-5),求抛物线的解析式. 解析:设所求的二次函数为y=a(x+1)2-3 由点( 0,-5 )在抛物线上得: a-3=-5, 得a=-2, 故所求的抛物线解析式为y=-2(x+1)2-3.
o
-3
x
【规律方法】1.求二次函数y=ax2+bx+c的解析式,关键是 求出待定系数a, b, c的值,由已知条件(如二次函数图象
上三个点的坐标)列出关于a, b, c的方程组,并求出a, b,
c,就可以写出二次函数的解析式. 2.当给出的坐标或点中有顶点,可设顶点式y=a(x-h)2+k, 将h,k换为顶点坐标,再将另一点的坐标代入即可求出a的 值.
【跟踪训练】
(西安·中考)如图,在平面直角坐标系中,抛物线经过
A(-1,0),B(3,0),C(0,-1)三点. 求该抛物线的解析式. 解析:设该抛物线的解析式为y=ax2+bx+c, 根据题意,得
﹡26.1.5 用待定系数法求系数法确定二次函数的解析式. 2.会求简单的实际问题中的二次函数解析式.
二次函数解析式有哪几种表达方式? 一般式:y=ax2+bx+c 顶点式:y=a(x-h)2+k 交点式:y=a(x-x1)(x-x2) 如何求二次函数的解析式? 已知二次函数图象上两个点的坐标,可用待定系数法 求其解析式
相关文档
最新文档