安徽师范大学《891高等代数》考研专业课真题试卷
安徽大学数学科学学院高等代数历年考研真题硕士研究生专业课考试试题

2010年安徽大学数学科学学院高等代 数考研真题
2012年安徽大学高等代数考研真题
2008年安徽大学数学科学学院612高等代数考研真题
2009年安徽大学数学科学学院高等代数考研真题
2010年安徽大学数学科学学院高等代数考研真题
2012年安徽大学高等代数考研真题
一、设
为一分块矩阵,其中
记 全1矩阵.(20分)
(1)计算A的秩与行列式;
(2)计算A的特征值;
(3)计算P为一数域, 是 中次数大于0 的多项式,证明: 是不
可约的当且仅当对任意的
,若
,则必有
或
.(20分)
三、设 为一个n阶方阵,且 与 具有相同的秩,证明: 与 同解.(20分)
(1)若 是A的特征值,则对应于 的特征子空间 是B的不变子空 间.
(2)存在一组基,使A、B在这组基下矩阵为对角矩阵.(30分)
七、设实二次型 为正定的?当t取何值时,
,问t取何值时, 为半正定的?(20分)
四、设V是有理数域Q上的线性空间, 是V上一个线性变换,设
,证明:如果 的多项式 直和.(20分)
,则V是 的核与值域的
五、设A是3阶实对称矩阵,各行元素之后为2,向量
,
是 的解,求矩阵A,并求正交矩阵Q和对角矩阵D,使得
.(20分)
六、设V是复数域上n维向量空间,A、B为V上可对角化的线性变换, 且AB=BA,证明:
目 录
2003年安徽大学数学科学学院高等代 数考研真题
2004年安徽大学数学科学学院326高等 代数考研真题
2005年安徽大学数学科学学院328高等 代数考研真题
2006年安徽大学数学科学学院321高等 代数考研真题
2024年西安工程大学数学分析、高等代数考研真题(含部分解答)

2024年全国硕士研究生招生考试业务课试题一、计算题(1-6每题10分,7-8每题15分,共90分).220231lim .(1)x x x x e e x e →---- 2.20232023202320241lim(12).n n n→∞+++3.3x .4.设,a b为常数且20 1.xx a →>=求a 和b . 5.求函数(,,)22f x y z x y z =-+在约束条件2221x y z ++=下的最值。
6.判断2222(2)d (2)d x xy y x x xy y y +-+--的原函数是否存在,说明理由。
若存在,求出它的一个原函数。
7.作适当变换,计算d d y x yDex y +⎰⎰,这里{(,)1,0,0}D x y x y x y =+≤≥≥∣. 8.计算2d (1)SSx y ++⎰⎰,其中S 为平面1x y z ++=在第一卦限部分。
二、证明题(9-11每题10分,12-13每题15分,共60分)9.设数列{}n a满足111,1).n a a n +==≥证明数列{}n a 收敛,并求lim .n n a →∞10.利用函数的凹凸性证明不等式ln ln ()ln(0,0).2x yx x y y x y x y ++≥+>> 11.求证:当0y >时,21sin d 1xy e x x y +∞-=+⎰. 12.设函数()f x 定义在区间I 上。
试证()f x 在I 上一致连续的充要条件为:对任何数列{}{},,n n x y I ⊂若lim()0,n n n x y →∞-=则[]lim ()()0.n n n f x f y →∞-= 13.设211(),[1,1]ln(1)n n f x x x n n ∞==∈-+∑.求证: 1)()f x 在[1,1]-上连续; 2)()f x 在1x =-处可导。
2024年全国硕士研究生招生考试业务课试题-高代 一、填空题(每题6分,共30分)1.设3阶实矩阵22332,,3A B αβγγγγ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭其中23,,,αβγγ均为3维行向量,且||18,||2A B ==,则||A B -=2.设λ是A 的特征值,则1P AP -的特征值是。
考研高等代数真题答案

考研高等代数真题答案一、选择题1. 根据线性空间的定义,下列哪个选项不是线性空间的子空间?- A. 所有零向量组成的集合- B. 线性空间中的非零向量集合- C. 线性空间中的任意向量集合- D. 线性空间中满足特定线性组合的向量集合答案:B2. 矩阵A的特征值是λ1, λ2, ..., λn,矩阵B的特征值是μ1,μ2, ..., μn。
若AB=BA,那么矩阵A+B的特征值是什么?- A. λ1+μ1, λ2+μ2, ..., λn+μn- B. λ1*μ1, λ2*μ2, ..., λn*μn- C. λ1+μ1, λ1+μ2, ..., λn+μn(无规律)- D. 不能确定答案:A二、填空题1. 若线性变换T: V → W,其中V和W是有限维向量空间,且dim(V) = n,dim(T(V)) = r,则T的核的维数是_________。
答案:n-r2. 设A是一个3×3的矩阵,且|A| = 2,矩阵A的特征多项式为f(λ)= (λ-1)^2(λ-3),则矩阵A的迹是_________。
答案:4三、解答题1. 证明:若矩阵A可逆,则A的伴随矩阵A*的行列式等于|A|^(n-1),其中n是A的阶数。
证明:设矩阵A是一个n×n的可逆矩阵,其伴随矩阵记为A*。
根据伴随矩阵的定义,我们有:A * A* = |A| * I,其中I是单位矩阵。
两边同时乘以A的逆矩阵A^(-1),得到:A^(-1) * A * A* = |A| * A^(-1) * I,即 A* = |A|^(n-1) * A^(-1)。
由此可知,A*的行列式是|A|^(n-1)。
2. 解线性方程组:x + 2y + 3z = 14x + 5y + 6z = 27x + 8y + 9z = 3解:首先写出增广矩阵:[1 2 3 | 1][4 5 6 | 2][7 8 9 | 3]通过初等行变换,将增广矩阵化为行最简形式:[1 0 -1 | -1][0 1 3 | 4][0 0 0 | 0]根据行最简形式,我们可以得到y = 4 - 3z,x = 1 + z。
各大学高等代数考研真题

各大学高等代数考研真题高等代数是数学中的一门重要学科,它在各个领域都有广泛的应用。
对于数学专业的学生来说,高等代数是一个重要的考试科目。
而对于那些准备考研的学生来说,高等代数更是必考的科目之一。
在考研中,高等代数的考试题目往往涉及到各个领域的知识,考察学生对于高等代数的理解和应用能力。
下面我们就来看一些高等代数考研真题。
首先,我们来看一道典型的高等代数考研题目。
题目如下:设V是数域K上的n维线性空间,f是V到V的线性变换。
如果对于任意的v∈V,存在非零多项式g(t),使得g(f)(v)=0,则f一定有特征值。
对于这道题目,我们需要运用到高等代数中的一些基本概念和定理。
首先,我们需要知道什么是特征值和特征多项式。
特征值是指线性变换在某个向量上的作用结果与该向量平行的现象,而特征多项式则是用来求解特征值的一种方法。
在这道题目中,我们需要运用到特征多项式的性质,通过特征多项式来证明f一定有特征值。
接下来,我们来看一道关于线性空间的题目。
题目如下:设V是数域K上的线性空间,f是V到V的线性变换。
如果对于任意的v∈V,存在正整数m,使得f^m(v)=0,则f一定有特征值。
这道题目考察了线性变换的零化幂的概念。
零化幂是指对于线性变换f,存在一个正整数m,使得f^m(v)=0。
而这道题目要求我们证明,如果对于任意的v∈V,存在正整数m,使得f^m(v)=0,则f一定有特征值。
这个题目的证明过程比较复杂,需要运用到线性变换的一些性质和定理,以及线性空间的相关知识。
最后,我们来看一道关于矩阵的题目。
题目如下:设A是n阶方阵,如果存在非零矩阵B,使得AB=0,则A一定不可逆。
这道题目考察了矩阵的可逆性和零子式的概念。
可逆矩阵是指存在逆矩阵的矩阵,而零子式是指矩阵中的某个子矩阵的行列式为0。
这道题目要求我们证明,如果存在非零矩阵B,使得AB=0,则A一定不可逆。
证明过程中,我们需要运用到矩阵的一些性质和定理,以及矩阵的相关知识。
高等代数考研试题及答案

高等代数考研试题及答案一、选择题(每题3分,共30分)1. 下列矩阵中,哪个不是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [1, -1; 2, 2]2. 设线性变换 \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) 由矩阵 \( A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \) 给出,那么 \( T(1, 2, 3) \) 的结果是:A. (3, 5, 3)B. (5, 3, 3)C. (1, 2, 3)D. (2, 3, 1)3. 多项式 \( p(x) = x^3 - 6x^2 + 11x - 6 \) 的根的个数是:A. 1B. 2C. 3D. 44. 设 \( V \) 是所有 \( n \) 次多项式的向量空间,\( T: V\rightarrow V \) 是一个线性变换,且 \( T(p(x)) = p'(x) \)。
如果 \( T \) 的特征值为 \( k \),那么 \( k \) 等于:A. 0B. 1C. -1D. \( n \)5. 下列哪个命题是正确的?A. 每个线性映射都可以用一个矩阵来表示。
B. 矩阵的乘积总是可交换的。
C. 两个相似矩阵必定是同阶矩阵。
D. 行列式的值总是正数或零。
6. 设 \( A \) 是一个 \( n \) 阶方阵,如果 \( A \) 的所有特征值的和等于 \( 0 \),那么 \( A \) 必定是:A. 正交矩阵B. 对角矩阵C. 零矩阵D. 反对称矩阵7. 如果一个 \( n \) 阶方阵 \( A \) 的所有元素都等于 \( 1 \),那么 \( A^n \) 的迹(trace)是:A. \( n \)B. \( n^n \)C. \( n! \)D. \( 0 \)8. 对于任意 \( n \) 阶方阵 \( A \),下列哪个选项是正确的?A. \( \det(A^2) = (\det A)^2 \)B. \( \det(A^T) = \det A \)C. \( \det(A + I) = \det A + 1 \)D. \( \det(A) = \det(A^T) \)9. 设 \( V \) 是一个向量空间,\( T: V \rightarrow V \) 是一个线性变换,如果 \( T \) 的一个特征向量 \( v \) 满足 \( T(v) = \lambda v \),那么 \( T \) 的逆变换 \( T^{-1} \)(如果存在)将 \( v \) 映射到:A. \( \lambda^{-1} v \)B. \( \frac{1}{\lambda} v \)C. \( v \)D. \( v + \lambda v \)10. 下列哪个矩阵是正交矩阵?A. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)B. \( \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \)D. \( \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \)二、填空题(每题4分,共20分)11. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( \det A \) 等于 _______。