高中数学必修一:第一章第2课时集合的表示试题及答案
2020-2021部编本高中数学 第一章 集合与函数的概念 1.1 集合 1.1.1 第二课时 集合的表示练习 新人教A版必修

第二课时集合的表示【选题明细表】知识点、方法题号列举法1,7,9描述法2,3,4,5,8,9集合表示法应用6,10,11,12,13,141.下列命题中正确的是( C )①0与{0}表示同一个集合②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}③方程(x-1)2(x-2)=0的所有解组成的集合可表示为{1,1,2}④集合{x|4<x<5}可以用列举法表示(A)只有①和④(B)只有②和③(C)只有② (D)只有②和④解析:①中“0”不能表示集合,而“{0}”可以表示集合.根据集合中元素的无序性可知②正确;根据集合的互异性可知③错误;④不能用列举法表示,原因是集合中有无数个元素,不能一一列举,故选C.2.(2018·张家口高一月考)设集合M={大于0小于1的有理数},N={小于1050的正整数},P={定圆C的内接三角形},Q={能被7整除的数},其中无限集是( B )(A)M,N,P (B)M,P,Q (C)N,P,Q (D)M,N,Q解析:集合M={大于0小于1的有理数},是无限集,N={小于1050的正整数},是有限集,P={定圆C 的内接三角形},是无限集,Q={能被7整除的数},是无限集.故选B.3.集合{1,3,5,7,9}用描述法表示应是( A )(A){x|x是不大于9的非负奇数}(B){x|x≤9,x∈N}(C){x|1≤x≤9,x∈N}(D){x|0≤x≤9,x∈Z}4.集合{(x,y)|y=2x-1}表示( D )(A)方程y=2x-1(B)点(x,y)(C)平面直角坐标系中的所有点组成的集合(D)函数y=2x-1图象上的所有点组成的集合5.已知集合M={x∈N|8-x∈N},则M中元素的个数是( B )(A)10 (B)9 (C)8 (D)无数个解析:当x=0时,8-x=8∈N;当x=1时,8-1=7∈N;依次类推当x=0,1,2,3,4,5,6,7,8都成立,所以M中元素的个数是9,故选B.6.下列集合中,不是方程(x-1)x(x+1)=0解集的集合是( D )(A){1,0,-1} (B){0,-1,1}(C){x|x(x+1)(x-1)=0} (D){(-1,0,1)}解析:{(-1,0,1)}表示是一个有序数组的集合,该集合只含一个元素,不是方程(x-1)x(x+1)=0的解集.7.已知集合A={(x,y)|x2=y+1,|x|<2,x∈Z},试用列举法表示集合A= .解析:因为集合A={(x,y)|x2=y+1,|x|<2,x∈Z},所以A={(-1,0),(0,-1),(1,0)}.答案:{(-1,0),(0,-1),(1,0)}8.-5∈{x|x2-ax-5=0},则集合{x|x2-4x-a=0}中所有元素之和为.解析:因为-5∈{x|x2-ax-5=0},所以52+5a-5=0,所以a=-4,所以集合{x|x2-4x-a=0}={x|x2-4x+4=0}={x|(x-2)2=0}={2}.答案:29.已知集合A={x∈Z|∈Z},(1)用列举法表示集合A;(2)求集合A的所有元素之和.解:(1)由∈Z,得3-x=±1,±2,±4.解得x=-1,1,2,4,5,7.又因为x∈Z,所以A={-1,1,2,4,5,7}.(2)由(1)得集合A中的所有元素之和为-1+1+2+4+5+7=18.10.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为( C )(A)5 (B)4 (C)3 (D)2解析:利用集合中元素的互异性确定集合.当x=-1,y=0时,z=x+y=-1;当x=1,y=0时,z=x+y=1;当x=-1,y=2时,z=x+y=1;当x=1,y=2时,z=x+y=3,由集合中元素的互异性可知集合{z|z=x+y,x∈A,y∈B}={-1,1,3},即元素个数为3.11.(2018·衡阳高一检测)已知集合A={2,0,1,4},B={k|k∈R,k2-2∈A,k-2∉A},则集合B中所有元素之和为( B )(A)2 (B)-2 (C)0 (D)解析:当k2-2=2⇒k=-2或k=2,又k-2∉A,所以k=-2,当k2-2=0⇒k=±,又k-2∉A,所以k=,k=-,当k2-2=1⇒k=,k=-,k-2∉A,所以k=,k=-,当k2-2=4⇒k=,k=-,k-2∉A,所以k=,k=-,所以B={-2,,-,-,,,-}.所以集合B中所有元素之和为-2.故选B.12.(2018·湖北宜昌一中高一月考)已知集合A={a-2,2a2+5a,10},若-3∈A,则a= . 解析:因为-3∈A,所以a-2=-3或2a2+5a=-3,当a-2=-3时,a=-1,此时2a2+5a=-3,与元素的互异性不符,所以a≠-1.当2a2+5a=-3时,即2a2+5a+3=0,解得a=-1或a=-.显然a=-1不合题意.当a=-时,a-2=-,满足互异性.综上,a=-.答案:-13.用适当的方法表示下列集合.(1)方程(x+1)(x-)2(x2-2)(x2+1)=0的有理根组成的集合A;(2)被3除余1的自然数组成的集合;(3)坐标平面内,不在第一、三象限的点的集合;(4)自然数的平方组成的集合.解:(1)列举法:由(x+1)(x-)2(x2-2)(x2+1)=0,得x=-1∈Q,x=∈Q,x=±∉Q.所以A={-1,}.(2)描述法:{x|x=3k+1,k∈N}.(3)描述法:坐标平面内在第一、三象限的点的特点是纵、横坐标同号,所以不在第一、三象限的点的集合可表示为{(x,y)|xy≤0,x∈R,y∈R}.(4)列举法:{0,12,22,32,…};也可用描述法:{x|x=n2,n∈N}.14.已知集合A={x∈R|ax2+2x+1=0},其中a∈R.(1)若1∈A,用列举法表示A;(2)若A中有且仅有一个元素,求a的值组成的集合B. 解:(1)因为1∈A,所以1是方程ax2+2x+1=0的根.所以a·12+2×1+1=0,即a=-3.所以方程为-3x2+2x+1=0.所以x1=1,x2=-,此时A={-,1}.(2)若a=0,则方程化为2x+1=0,x=-,A中仅有一个元素;若a≠0,A中仅有一个元素,当且仅当Δ=4-4a=0,即a=1,方程有两个相等的实根x1=x2=-1.所以所求集合B={0,1}.。
新教材高中数学.1集合的概念(第2课时)集合的表示应用案巩固提升新人教A版必修第一册

第2课时 集合的表示[A 基础达标]1.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .一次函数y =2x -1图象上的所有点组成的集合解析:选D.本题中的集合是点集,其表示一次函数y =2x -1图象上的所有点组成的集合.故选D.2.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( ) A .{x |x 是小于18的正奇数} B .{x |x =4k +1,k ∈Z ,且k <5} C .{x |x =4t -3,t ∈N ,且t ≤5} D .{x |x =4s -3,s ∈N *,且s ≤5}解析:选D.A 中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B 中除给定集合中的元素外,还有-3,-7,-11,…;C 中t =0时,x =-3,不属于给定的集合;只有D 是正确的.故选D.3.已知集合{x |x 2+ax =0}={0,1},则实数a 的值为( ) A .-1 B .0 C .1D .2解析:选A.由题意,x 2+ax =0的解为0,1,利用根与系数的关系得0+1=-a ,所以a =-1.4.(2019·襄阳检测)已知集合A ={1,2,4},集合B =⎩⎨⎧⎭⎬⎫z ⎪⎪⎪z =xy,x ∈A ,y ∈A ,则集合B 中元素的个数为( )A .4B .5C .6D .7解析:选B.因为A ={1,2,4}.所以集合B =⎩⎨⎧⎭⎬⎫z ⎪⎪⎪z =xy ,x ∈A ,y ∈A=⎩⎨⎧⎭⎬⎫1,12,14,2,4,所以集合B 中元素的个数为5.5.下列说法中正确的是( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解组成的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .只有②和④解析:选C.①中“0”不能表示集合,而“{0}”可以表示集合,故①错误.根据集合中元素的无序性可知②正确;根据集合中元素的互异性可知③错误;④不能用列举法表示,原因是集合中有无数个元素,不能一一列举.6.用列举法表示集合A ={(x ,y )|x +y =3,x ∈N ,y ∈N *}为____________.解析:集合A 是由方程x +y =3的部分整数解组成的集合,由条件可知,当x =0时,y =3;当x =1时,y =2;当x =2时,y =1,故A ={(0,3),(1,2),(2,1)}.答案:{(0,3),(1,2),(2,1)}7.用列举法表示集合{x |x =(-1)n,n ∈N }=________. 解析:当n 为奇数时,(-1)n=-1; 当n 为偶数时,(-1)n=1,所以{x |x =(-1)n,n ∈N }={-1,1}. 答案:{-1,1}8.已知-5∈{x |x 2-ax -5=0},则集合{x |x 2-3x +a =0}用列举法表示为________. 解析:因为-5∈{x |x 2-ax -5=0}, 所以(-5)2+5a -5=0,解得a =-4. 解x 2-3x -4=0得,x =-1或x =4, 所以{x |x 2-3x +a =0}={-1,4}. 答案:{-1,4}9.用列举法表示下列集合. (1){x |x 2-2x -8=0}.(2){x |x 为不大于10的正偶数}. (3){a |1≤a <5,a ∈N }.(4)A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪169-x ∈N . (5){(x ,y )|x ∈{1,2},y ∈{1,2}}.解:(1){x |x 2-2x -8=0},用列举法表示为{-2,4}.(2){x |x 为不大于10的正偶数},用列举法表示为{2,4,6,8,10}.(3){a |1≤a <5,a ∈N },用列举法表示为{1,2,3,4}. (4)A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪169-x ∈N ,用列举法表示为{1,5,7,8}.(5){(x ,y )|x ∈{1,2},y ∈{1,2}},用列举法表示为{(1,1),(1,2),(2,1),(2,2)}.10.用描述法表示下列集合: (1){0,2,4,6,8}. (2){3,9,27,81,…}.(3)⎩⎨⎧⎭⎬⎫12,34,56,78,…. (4)被5除余2的所有整数的全体构成的集合. 解:(1){x ∈N |0≤x <10,且x 是偶数}. (2){x |x =3n,n ∈N *}.(3)⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2n -12n ,n ∈N *. (4){x |x =5n +2,n ∈Z }.[B 能力提升]11.若集合A ={x |kx 2+4x +4=0,x ∈R }只有一个元素,则实数k 的值为( ) A .0 B .1 C .0或1D .2解析:选C.集合A 中只有一个元素,即方程kx 2+4x +4=0只有一个根.当k =0时,方程为一元一次方程,只有一个根;当k ≠0时,方程为一元二次方程,若只有一根,则Δ=16-16k =0,即k =1.所以实数k 的值为0或1.12.设P 、Q 为两个实数集,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是( )A .9B .8C .7D .6解析:选B.因为0+1=1,0+2=2,0+6=6,2+1=3,2+2=4,2+6=8,5+1=6,5+2=7,5+6=11,所以P +Q ={1,2,3,4,6,7,8,11}.故选B.13.(2019·襄阳检测)设集合M ={x |x =2m +1,m ∈Z },P ={y |y =2m ,m ∈Z },若x 0∈M ,y 0∈P ,a =x 0+y 0,b =x 0y 0,则( )A .a ∈M ,b ∈PB .a ∈P ,b ∈MC .a ∈M ,b ∈MD .a ∈P ,b ∈P解析:选A.设x 0=2n +1,y 0=2k ,n ,k ∈Z ,则x 0+y 0=2n +1+2k =2(n +k )+1∈M ,x 0y 0=2k (2n +1)=2(2nk +k )∈P ,即a ∈M ,b ∈P ,故选A.。
部编版高中数学必修一第一章集合与常用逻辑用语带答案必考知识点归纳

(名师选题)部编版高中数学必修一第一章集合与常用逻辑用语带答案必考知识点归纳单选题1、已知集合A={x|x2−2x≤0},B={−1,0,3},则(∁R A)∩B=()A.∅B.{0,1}C.{−1,0,3}D.{−1,3}2、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)3、设命题p:∃x0∈R,x02+1=0,则命题p的否定为()A.∀x∉R,x2+1=0B.∀x∈R,x2+1≠0C.∃x0∉R,x02+1=0D.∃x0∈R,x02+1≠04、已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=()A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4}5、下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“∀x∈R,x2+1<0”是全称量词命题;③命题“∃x∈R,x2+2x+1≤0”的否定为“∀x∈R,x2+2x+1≤0”;④命题“a>b是ac2>bc2的必要条件”是真命题;A.0B.1C.2D.36、若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7、设a,b∈R,A={1,a},B={−1,−b},若A⊆B,则a−b=()A.−1B.−2C.2D.08、集合A={0,−1,a2},B={−2,a4}.若A∪B={−2,−1,0,4,16},则a=()A.±1B.±2C.±3D.±4多选题9、集合{1,3,5,7,9}用描述法可表示为()A.{x|x是不大于9的非负奇数}B.{x|x=2k+1,k∈N,且k≤4}C.{x|x≤9,x∈N∗}D.{x|0≤x≤9,x∈Z}10、已知P={x|x2−8x−20≤0},集合S={x|1−m≤x≤1+m}.若x∈P是x∈S的必要条件,则实数m 的取值可以是()A.−1B.1C.3D.511、已知关于x的方程x2+(m−3)x+m=0,则下列说法正确的是()A.当m=3时,方程的两个实数根之和为0B.方程无实数根的一个必要条件是m>1C.方程有两个正根的充要条件是0<m≤1D.方程有一个正根和一个负根的充要条件是m<0填空题12、已知集合A={y|y=x2−32x+1,x∈[34,2]},B={x|x+m2≥1}.若“x∈A”是“x∈B”的充分条件,则实数m的取值范围为________.13、能够说明“∀x∈N∗,2x≥x2”是假命题的一个x值为__________.部编版高中数学必修一第一章集合与常用逻辑用语带答案(二十五)参考答案1、答案:D分析:先由一元二次不等式的解法求得集合A,再由集合的补集和交集运算可求得答案.因为A={x|x2−2x≤0}={x|0≤x≤2},所以∁R A={x|x<0或x>2},又B={−1,0,3},所以(∁R A)∩B={−1,3},故选:D.2、答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|>3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D3、答案:B分析:根据存在命题的否定为全称命题可得结果.∵存在命题的否定为全称命题,∴命题p的否定为“∀x∈R,x2+1≠0”,故选:B4、答案:B分析:根据集合交集定义求解.P∩Q=(1,4)∩(2,3)=(2,3)故选:B小提示:本题考查交集概念,考查基本分析求解能力,属基础题.5、答案:C分析:根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案.对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“∀x ∈R ,x 2+1<0”是全称量词命题;故②正确;对于③:命题p:∃x ∈R ,x 2+2x +1≤0,则¬p:∀x ∈R ,x 2+2x +1>0,故③错误;对于④:ac 2>bc 2可以推出a >b ,所以a >b 是ac 2>bc 2的必要条件,故④正确;所以正确的命题为②④,故选:C6、答案:D分析:根据集合元素的互异性即可判断.由题可知,集合M ={a,b,c }中的元素是△ABC 的三边长,则a ≠b ≠c ,所以△ABC 一定不是等腰三角形.故选:D .7、答案:D分析:根据集合的包含关系,结合集合的性质求参数a 、b ,即可求a −b .由A ⊆B 知:A =B ,即{a =−1−b =1,得{a =−1b =−1, ∴a −b =0.故选:D.8、答案:B分析:根据并集运算,结合集合的元素种类数,求得a 的值.由A ∪B ={−2,−1,0,4,16}知,{a 2=4a 4=16,解得a =±2 故选:B9、答案:AB分析:利用描述法的定义逐一判断即可.对A ,{x |x 是不大于9的非负奇数}表示的集合是{1,3,5,7,9},故A 正确;对B ,{x |x =2k +1,k ∈N ,且k ≤4}表示的集合是{1,3,5,7,9},故B 正确;对C ,{x |x ≤9,x ∈N ∗ }表示的集合是{1,2,3,4,5,6,7,8,9},故C 错误;对D ,{x |0≤x ≤9,x ∈Z }表示的集合是{0,1,2,3,4,5,6,7,8,9},故D 错误.故选:AB.10、答案:ABC分析:解不等式得集合P ,将必要条件转化为集合之间的关系列出关于m 的不等式组,解得m 范围即可得结果. 由x 2−8x −20≤0,解得−2≤x ≤10,∴P =[−2,10],非空集合S ={x |1−m ≤x ≤1+m },又x ∈P 是x ∈S 的必要条件,所以S ⊆P ,当S =∅,即m <0时,满足题意;当S ≠∅,即m ≥0时,∴{−2≤1−m 1+m ≤10,解得0≤m ≤3, ∴m 的取值范围是(−∞,3],实数m 的取值可以是−1,1,3,故选:ABC.11、答案:BCD分析:方程没有实数根,所以选项A 错误;由题得m >1,m >1是1<m <9的必要条件,所以选项B 正确;由题得0<m ≤1,所以方程有两个正根的充要条件是0<m ≤1,所以选项C 正确;由题得m <0,所以方程有一个正根和一个负根的充要条件是m <0,所以选项D 正确.对于选项A ,方程为x 2+3=0,方程没有实数根,所以选项A 错误;对于选项B ,如果方程没有实数根,则Δ=(m −3)2−4m =m 2−10m +9<0,所以1<m <9,m >1是1<m <9的必要条件,所以选项B 正确;对于选项C ,如果方程有两个正根,则{Δ=m 2−10m +9≥0−(m −3)>0m >0,所以0<m ≤1,所以方程有两个正根的充要条件是0<m ≤1,所以选项C 正确;对于选项D ,如果方程有一个正根和一个负根,则{Δ=m 2−10m +9>0m <0 ,所以m <0,所以方程有一个正根和一个负根的充要条件是m <0,所以选项D 正确.故选:BCD小提示:方法点睛:判断充分条件必要条件,常用的方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件,灵活选择方法判断得解.12、答案:(−∞,−34]∪[34,+∞) 分析:求函数的值域求得集合A ,根据“x ∈A ”是“x ∈B ”的充分条件列不等式,由此求得m 的取值范围. 函数y =x 2−32x +1的对称轴为x =34,开口向上,所以函数y =x 2−32x +1在[34,2]上递增,当x =34时,y min =716;当x =2时,y max =2.所以A =[716,2].B ={x|x +m 2≥1}={x|x ≥1−m 2},由于“x ∈A ”是“x ∈B ”的充分条件,所以1−m 2≤716,m 2≥916,解得m ≤−34或m ≥34,所以m 的取值范围是(−∞,−34]∪[34,+∞).所以答案是:(−∞,−34]∪[34,+∞)13、答案:3分析:取x =3代入验证即可得到答案.因为x =3∈N ∗,而23<32,∴说明“∀x ∈N ∗,2x ≥x 2”是假命题.所以答案是:3小提示:本题考查命题与简易逻辑,属于基础题.。
高中数学必修一集合与函数的概念知识点+练习题含答案解析(非常详细)

第一部分集合与函数的概念知识点整理第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/ B或B⊇/A(2).“包含”关系(2)—真子集如果集合BA⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B“元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高中数学 第一章 集合 第2课时 集合的表示方法练习 新人教B版必修1-新人教B版高一必修1数学试题

第2课时集合的表示方法课时目标1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.识记强化1.列举法表示集合把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法表示集合用集合所含元素的特征性质表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)X围,再画一条竖线,在竖线后写出这个集合中元素所具有的特征性质.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分)1.用列举法表示集合{x|x2-3x+2=0}为( )A.{(1,2)} B.{(2,1)}C.{1,2} D.{x2-3x+2=0}答案:C2.集合M={(x,y)|xy<0,x∈R,y∈R}是( )A.第一象限内的点集B.第三象限内的点集C.第四象限内的点集D.第二、四象限内的点集答案:D解析:∵xy<0.∴x与y异号,故点(x,y)在第二或第四象限,故选D.(2)D={(x,y)|y=-x2+5,x∈N,y∈N}.解:(1)∵y∈N,∴0≤-x2+5,∴x=0,1,2,故y=5,4,1,即C={5,4,1}.(2)x=0时y=5;x=1时y=4;x=2时y=1,∴D={(0,5),(1,4),(2,1)}.11.(13分)已知集合A={x|mx2-8x+16=0}只有一个元素,试某某数m的值.解:当m=0时,原方程变为-8x+16=0,解得x=2,此时集合A={2},满足题意;当m≠0时,要使一元二次方程mx2-8x+16=0有两个相等实根,需Δ=64-64m=0,解得m=1,此时方程的解为x1=x2=4,集合A={4},满足题意.综上所述,实数m的值为0或1.能力提升12.(5分)集合{x∈N*|x<5}的另一种表示法是( )A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}答案:B解析:集合{x∈N*|x<5}表示由所有小于5的正整数构成的集合,故选B.13.(15分)集合M中的元素为自然数,且满足若x∈M,则8-x∈M.试回答下列问题:(1)写出只有一个元素的集合M;(2)写出元素个数为2的所有的集合M;(3)满足题设条件的集合M共有多少个?解析:(1)M中只有一个元素,根据已知必须满足x=8-x,所以x=4.所以含一个元素的集合M={4}.(2)当M中只含两个元素时,其元素只能是x和8-x,所以元素个数为2的所有的集合M为{0,8},{1,7},{2,6},{3,5}.(3)满足条件的集合M是由集合{4},{0,8},{1,7},{2,6},{3,5}中的元素组成,它包括以下情况:①{4},{0,8},{1,7},{2,6},{3,5},共5个;②{4,0,8},{4,1,7},{4,2,6},{4,3,5},{0,8,1,7},{0,8,2,6},{0,8,3,5},{1,7,2,6},{1,7,3,5},{2,6,3,5},共10个;③{4,0,8,1,7},{4,0,8,2,6},{4,0,8,3,5},{4,1,7,2,6},{4,1,7,3,5},{4,2,6,3,5},{0,8,1,7,2,6},{0,8,1,7,3,5},{1,7,2,6,3,5},{0,8,2,6,3,5},共10个;④{4,0,8,1,7,2,6},{4,0,8,1,7,3,5},{4,0,8,2,6,3,5},{4,1,7,2,6,3,5},{0,8,1,7,2,6,3,5},共5个;⑤{4,0,8,1,7,2,6,3,5},共1个.于是满足题设条件的集合M共有5+10+10+5+1=31个.。
高一数学必修一第一章集合练习题(附答案和解释)

高一数学必修一第一章集合练习题(附答案和解释)一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N ={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为() A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x<7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=8>7,∴22∉{x|x<7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N*},用列举法表示C=________. 【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N*,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x +6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.。
最新人教版高中数学必修第一册第1章集合与常用逻辑用语1.1 第2课时 集合的表示
提示:能.{-1,0,1}.
2.“大于-2且小于2的实数”组成的集合,能用列举法表示吗?为
什么?
提示:不能.因为大于-2且小于2的实数有无数多个,用列举法
是列举不完的,所以不能用列举法表示.
?
3.设x为“大于-2且小于2的实数”组成的集合的元素,x有何特
征?
提示:x∈R,且-2<x<2.
x= 或
x=-2,所求集合为
-,
.
(1)方程组
的解集;
+ =
(2)绝对值不大于 3 的所有实数组成的集合;
(3)反比例函数
y=-的自变量组成的集合;
(4)抛物线 y=x2-2x 与 x 轴的交点组成的集合.
?
=得
= -,
+ = ,
故该集合用列举法表示为{(4,-2)}.
(3)集合的代表元素是x,共同特征是x是三角形,故该集合用描
述法表示为{x|x是三角形}.
?
思 想 方 法
?
分类讨论思想在集合表示中的应用
【典例】 若集合A={x|kx2-8x+16=0}中只有一个元素,试求实
数k的值,并用列举法表示集合A.
审题视角:集合A中只有一个元素,说明关于x的方程kx28x+16=0只有一个或两个相等的实数根,此方程不确定为一元
怎样表示?
解:小于10的正偶数有2,4,6,8,用式子表示为x=2k,1≤k<5,且
k∈Z,所求集合用描述法表示为{x|x=2k,1≤k<5,且k∈Z}.
2.把本例(3)换成在平面直角坐标系中,第一、第三象限的点
组成的集合,如何求解?
新人教A版高中数学【必修1】 1.1.1集合的表示第2课时课时作业练习含答案解析
第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A.{2,3} B.{(2,3)}C.{x=2,y=3} D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A6.方程组的解集不可表示为()A.B.C.{1,2} D.{(1,2)}二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号)①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是()A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时集合的表示知识梳理1.一一列举 2.描述法 {x |x <10} {x ∈Z |x =2k ,k ∈Z }作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}.]2.D [集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧x =2,y =3. 所以答案为{(2,3)}.]4.B [方程x 2-2x +1=0可化简为(x -1)2=0,∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}.]5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}.8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集.9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1,∴解集为{0,-1};②{x |x =2n +1,且x <1 000,n ∈N };③{x |x >8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下: 集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3,所以B ={y |y ≥3}.集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P 是抛物线y =x 2+3上的点}.12.C [由集合的含义知{x |x =1}={y |(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]13.A [M ={x |x =2k +14,k ∈Z },N ={x |x =k +24,k ∈Z },∵2k +1(k ∈Z )是一个奇数,k +2(k ∈Z )是一个整数,∴x 0∈M 时,一定有x 0∈N ,故选A.]。
高中数学必修第1册配套课后练习题含答案解析 1.1.1集合的概念与表示
1.1.1集合的概念与表示一、单选题1.设集合{}1,2M =,则下列集合中与集合M 相等的是()A .{}1B .{}2C .{}2,1D .{}1,2,32.若1{0,}a ∈,则实数a =()A .1-B .0C .1D .0或13.已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为()A .9B .10C .12D .134.给出下列关系,其中正确的个数为()①0N ∈Q ⊄;③{}0=∅;④(),R =-∞+∞A .1B .0C .2D .35.下列集合中,结果是空集的是()A .{x ∈R |x 2-1=0}B .{x |x >6或x <1}C .{(x ,y )|x 2+y 2=0}D .{x |x >6且x <1}6.定义集合运算:{},,A B z z xy x A y B *==∈∈,设{1,2}A =,{1,2,3}B =,则集合A B *的所有元素之和为()A .16B .18C .14D .87.下面说法中正确的是().A .集合N +中最小的数是0B .若N a +-∉,则N a +∈C .若N a +∈,N b +∈,则a b +的最小值是2D .244x x +=的解集组成的集合是{}2x =.8.下列四组对象能构成集合的是()A .某班所有高个子学生B .某校足球队的同学C .一切很大的书D .著名的艺术家9.不等式2332x x +>+的解集表示正确的是()A . x 1>B . x 1<C .{}1x x >D .{}|1x x <A .1B .-1C .1或-1D .1或12二、填空题11.6,5A xx x *⎧⎫=∈∈⎨⎬-⎩⎭N Z ∣,则A =________.12.关于x 的不等式3ax >,当0a <时的解集为_________________________.13.已知集合M ={﹣2,3x 2+3x ﹣4,x 2+x ﹣4},若2∈M ,则满足条件的实数x 组成的集合为_________.14.定义{(,,),,}A B C x y z x A y B z C ⨯⨯=∈∈∈∣.已知{1,2}A =,{3,4}B =,{5}C =,用列举法表示A B C ⨯⨯=________.三、解答题15.若a ,b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭.求:(1)+a b ;(2)20222019a b +.16.已知集合{}2|320A x R ax x =∈-+=,其中a 为常数,且a R ∈.①若A 是空集,求a 的范围;②若A 中只有一个元素,求a 的值;③若A 中至多只有一个元素,求a 的范围.参考答案1.C 【分析】根据集合相等的定义判断选项.【详解】两个集合的元素相同,两个集合相等,集合{}1,2M =中有2个元素,分别是1和2,所以与集合M 相等的集合是{}2,1.故选:C 2.C 【分析】根据集合的确定性,互异性,即可求得答案.【详解】因为1{0,}a ∈,根据集合性质可得:1a =.故选:C 3.D 【分析】利用列举法列举出集合A 中所有的元素,即可得解.【详解】由题意可知,集合A 中的元素有:()2,0-、()1,1--、()1,0-、()1,1-、()0,2-、()0,1-、()0,0、()0,1、()0,2、()1,1-、()1,0、()1,1、()2,0,共13个.故选:D.4.C 【分析】根据元素与集合的关系,逐一分析①②③④,即可得答案.【详解】对于①:0为自然数,所以0N ∈,故①正确;Q ,故②错误;对于③:{}0含有元素0,不是空集,故③错误;对于④:R 为实数集,所以④正确;故选:C 5.D 【分析】分析是否有元素在各选项的集合中,再作出判断.【详解】A 选项:21{|10}x R x ±∈∈-=,不是空集;B 选项:7∃∈{x |x >6或x <1},不是空集;C 选项:(0,0)∈{(x ,y )|x 2+y 2=0},不是空集;D 选项:不存在既大于6又小于1的数,即:{x |x >6且x <1}=∅.故选:D 6.A 【分析】由题设,列举法写出集合A B *,根据所得集合,加总所有元素即可.【详解】由题设知:{1,2,3,4,6}A B *=,∴所有元素之和1234616++++=.故选:A.7.C 【分析】根据正整数集的含义即可判断A ,B ,C 的正误,根据集合中列举法即可判断D 选项的正误.【详解】A 选项,N +是正整数集,最小的正整数是1,A 错,B 选项,当0a =时,N a +-∉,且N a +∉,B 错,C 选项,若N a +∈,则a 的最小值是1,若N b +∈,则b 的最小值也是1,当a 和b 都取最小值时,a b +取最小值2,C 对,D 选项,由244x x +=的解集是{}2,D 错.故选:C .8.B【分析】根据集合的定义,逐项判定,即可求解.【详解】根据集合的定义,可得:对于A 中,某班所有高个子学生,其中元素不确定,不能构成集合;对于B 中,某校足球队的同学,满足集合的定义,能构成集合;对于C 中,一切很大的书,其中元素不确定,不能构成集合;对于D 中,著名的艺术家,其中元素不确定,不能构成集合.故选:B.9.D 【分析】解不等式2332x x +>+得1x <,进而根据描述法表示集合即可.【详解】解不等式2332x x +>+得1x <,故解集可表示为:{} |1x x <.故选:D 10.D 【分析】根据属于的定义,结合代入法和集合元互异性进行求解即可.【详解】因为1A ∈,所以21a =或21a =,当21a =时,解得1a =或1a =-,当1a =时,此时集合{}1,2,2A =-,符合集合元互异性,当1a =-时,22a =-,不符合集合元互异性,当2=1a 时,12a =,此时1,2,14A ⎧⎫=-⎨⎬⎩⎭,符合集合元互异性,所以a 等于1或12,故选:D 11.{1,2,3,4}-【分析】由题意可知5x -为6的正约数,根据x ∈Z 即可求解.【详解】6,5A x x x *⎧⎫=∈∈⎨⎬-⎩⎭N Z ∣,可知5x -为6的正约数,又x ∈Z ,可得1,2,3,4x =-,所以A ={1,2,3,4}-.故答案为:{1,2,3,4}-12.3x x a ⎧⎫<⎨⎬⎩⎭【分析】当0a <时,解不等式3ax >即可得解.【详解】当0a <时,解不等式3ax >,解得3x a <,即原不等式的解集为3x x a ⎧⎫<⎨⎬⎩⎭.故答案为:3x x a ⎧⎫<⎨⎩⎭.13.{﹣3,2}【分析】由2∈M ,可得22334242x x x x ⎧+-=⎨+-≠⎩,或22334242x x x x ⎧+-≠⎨+-=⎩,求出x 的值,然后利用集中元素的互异性验证即可【详解】解:∵2∈M ;∴22334242x x x x ⎧+-=⎨+-≠⎩,或22334242x x x x ⎧+-≠⎨+-=⎩,解得:x =1,﹣2,或2,﹣3;x =﹣2,1时不满足集合的互异性;∴实数x 组成的集合为{﹣3,2}.故答案为:{﹣3,2}.14.{(1,3,5),(1,4,5),(2,3,5),(2,4,5)}.【分析】根据定义,运用列举法可得答案.【详解】因为{1,2}A =,{3,4}B =,{5}C =,所以A B C ⨯⨯={(1,3,5),(1,4,5),(2,3,5),(2,4,5)},故答案为:{(1,3,5),(1,4,5),(2,3,5),(2,4,5)}.15.(1)0;(2)2;【分析】(1)根据{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭可得出0a b +=,(2)由(1)得=-a b ,即1ba=-,根据元素的互异性可得1a =-,1b =,代入20222019a b +计算即可.【详解】(1)根据元素的互异性,得0a b +=或0a =,若0a =,则ba无意义,故0a b +=;(2)由(1)得=-a b ,即1ba =-,据元素的互异性可得:1b a a ==-,1b =,∴()2022202220192019112a b +=-+=.【点睛】本题考查集合中元素的互异性,属于基础题.16.①98a >;②0a =或98a =;③0a =或98a ≥.【分析】①只需方程2320ax x -+=无解即可;②当0a =成立,当0a ≠时,只需0∆=;③由题意可知0a =时成立,当0a ≠时,只需0∆≤即可.【详解】①若A 是空集,则方程2320ax x -+=无解,此时980a ∆=-<,即98a >,②若A 中只有一个元素,则方程2320ax x -+=有且只有一个实根,当0a =时方程为一元一次方程,满足条件当0a ≠,此时980a ∆=-=,解得:98a =.∴0a =或98a =;③若A 中至多只有一个元素,则A 为空集,或有且只有一个元素由①②得满足条件的a 的取值范围是:0a =或98a ≥.【点睛】本题考查根据集合中元素的个数求参,考查方程根的个数问题,较简单.。
高中数学 第一章 集合与常用逻辑用语 1.1.2 第2课时 集合的表示精品练习(含解析)新人教A版必
第2课时集合的表示第2课时 集合的表示必备知识基础练1.解析:(1)因为15的正约数为1,3,5,15, 所以所求集合可表示为{1,3,5,15}. (2)因为不大于10的正偶数有2,4,6,8,10, 所以所求集合可表示为{2,4,6,8,10}.(3)解方程组⎩⎪⎨⎪⎧2x +y +6=0,x -y +3=0,得⎩⎪⎨⎪⎧x =-3,y =0.所以所求集合可表示为{(-3,0)}.2.解析:(1)被5整除的数可用式子x =5n ,n ∈Z 表示,所以所有被5整除的数的集合可表示为{x |x =5n ,n ∈Z }.(2)由6x 2-5x +1=0解得x =12或x =13,所以方程6x 2-5x +1=0的实数解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =12或x =13. (3)直线y =x 上除去原点,即x ≠0,所以直线y =x 上去掉原点的点的集合为{(x ,y )|y =x ,且x ≠0}.3.解析:选项A 中应是xy <0;选项B 的本意是想用描述法表示,但不符合描述法的规X 格式,缺少了竖线和竖线前面的代表元素x ;选项C 的“{ }”与“全体”意思重复.答案:D4.解析:∵x ∈Z 且86-x ∈N ,∴1≤6-x ≤8,-2≤x ≤5.当x =-2时,1∈N ;当x =-1时,87∉N ;当x =0时,43∉N ;当x =1时,85∉N ;当x =2时,2∈N ;当x =3时,83∉N ;当x=4时,4∈N ;当x =5时,8∈N .综上可知A ={-2,2,4,5}.答案:{-2,2,4,5}5.解析:当t =-2时,x =4;当t =2时,x =4;当t =3时,x =9; 当t =4时,x =16;∴B ={4,9,16}. 答案:{4,9,16}6.解析:∵-2∈A ,∴-2k +2>0,得k <1. 答案:k <1关键能力综合练1.解析:∵x 2-2x +1=0,即(x -1)2=0,∴x =1,选B. 答案:B2.解析:先求出方程组的解⎩⎪⎨⎪⎧x =2,y =1,再写成集合的形式.注意集合的元素是有序实数对(2,1),故选C.答案:C3.解析:由于集合中的元素具有无序性,故{3,2}={2,3}. 答案:B4.解析:若x =2,则x -1=1<2,所以2∈M ;若x =-2,则x -1=-3<2,所以-2∈M .故选A.答案:A5.解析:∵3=31,观察集合中的元素,不难发现,若令分母为n ,则分子为2n +1,且n ∈N *,∴集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2n +1n ,n ∈N *. 答案:D6.解析:①当a =0时,原方程为16-8x =0. ∴x =2,此时A ={2};②当a ≠0时,由集合A 中只有一个元素, ∴方程ax 2-8x +16=0有两个相等实根, 则Δ=64-64a =0,即a =1. 从而x 1=x 2=4,∴集合A ={4}. 综上所述,实数a 的值为0或1.故选D. 答案:D7.解析:由题知,a ∈A ,a ∈B ,所以a 是方程组⎩⎪⎨⎪⎧y =2x +1,y =x +3的解,解得⎩⎪⎨⎪⎧x =2,y =5,即a 为(2,5).答案:(2,5)8.解析:∵x ∈A ,∴当x =-1时,y =|x |=1; 当x =0时,y =|x |=0;当x =1时,y =|x |=1. ∴B ={0,1}. 答案:{0,1}9.解析:由于2的倒数12不在集合A 中,故集合A 不是可倒数集.若一个元素a ∈A ,则1a ∈A .若集合中有三个元素,故必有一个元素a =1a ,即a =±1,故可取的集合有⎩⎨⎧⎭⎬⎫1,2,12,⎩⎨⎧⎭⎬⎫-1,3,13等.答案:不是⎩⎨⎧⎭⎬⎫1,2,12 10.解析:(1)由x 2(x +1)=0,得x =-1或x =0,所以该集合可表示为{-1,0}.故该集合为有限集.(2)平面直角坐标系中,不在第一、三象限内的点组成的集合可表示为{(x ,y )|xy ≤0,x ∈R ,y ∈R }.故该集合为无限集.(3)自然数的平方组成的集合用列举法可表示为{0,12,22,32,…},用描述法可表示为{x |x =n 2,n ∈N }.故该集合为无限集.学科素养升级练1.解析:由题意易知集合A 表示奇数集,集合B 表示偶数集.又由x 1,x 2∈A ,x 3∈B ,则x 1,x 2是奇数,x 3是偶数.对于A ,两个奇数的积为奇数,即x 1x 2∈A ,故A 正确;对于B ,一奇一偶两个数的积为偶数,即x 2x 3∈B ,故B 正确;对于C ,两个奇数的和为偶数,即x 1+x 2∈B ,故C 正确;对于D ,两个奇数与一个偶数的和为偶数,即x 1+x 2+x 3∈B ,故D 错误.答案:ABC2.解析:对于①,在平面直角坐标系中,第一象限内的点的横、纵坐标均大于0,且集合中的代表元素为点(x ,y ),所以①正确;对于②,方程x -2+|y +2|=0的解为⎩⎪⎨⎪⎧x =2,y =-2,解集为{(2,-2)}或⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ x =2y =-2, 所以②不正确;对于③,因为集合{y |y =x 2-1,x ∈R }等于集合{y |y ≥-1},集合{y |y =x -1,x ∈R }等于R ,故这两个集合不相等,所以③正确.答案:①③3.解析:集合A 是方程x 2+ax +1=0的解构成的集合.(1)当a =2时,x 2+2x +1=0,即(x +1)2=0,x =-1,所以A ={-1}.(2)A 中只有一个元素,即方程x 2+ax +1=0有两个相等实根,由Δ=a 2-4=0,得a =±2.所以a =±2时,集合A 中只有一个元素.(3)A 中有两个元素,即方程x 2+ax +1=0有两个不相等的实根,由Δ=a 2-4>0,得a <-2或a >2.所以a <-2或a >2时,集合A 中有两个元素.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 集合的表示
题号 1 2 3 4 5 6 7 8 9 10 11 得分 答案
一、选择题(本大题共7小题,每小题5分,共35分)
1.集合⎩
⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪-1<x <112的另一种表示方法是( )
A .{0,1,2,3,4}
B .{1,2,3,4}
C .{0,1,2,3,4,5}
D .{1,2,3,4,5}
2.集合A ={x |x <5,x ∈N +},用列举法表示集合A 正确的是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5} D .{1,2,3,4,5} 3.由大于-3且小于11的偶数组成的集合是( )
A .{x|-3<x<11,x ∈Q }
B .{x |-3<x <11,x ∈R }
C .{x |-3<x <11,x =2k ,k ∈N }
D .{x |-3<x <11,x =2k ,k ∈Z } 4.大于4的所有奇数构成的集合可用描述法表示为( ) A .{x |x =2k -1,k ∈N } B .{x |x =2k -1,k ∈N ,k ≥2} C .{x |x =2k +1,k ∈N } D .{x |x =2k +1,k ∈N ,k ≥2}
5.已知集合A ={1,2,3},B ={1,2},C ={(x ,y )|x ∈A ,y ∈B },则集合C 中元素的个数是( )
A .4
B .6
C .8
D .10
6.方程组⎩⎪⎨⎪⎧x +y =3,
x -y =-1的解集不可表示为( )
A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨
⎪⎧x +y =3,x -y =-1 B.⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧
x =1,y =2 C .{1,2} D .{(1,2)}
7.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k 2+14,k ∈Z ,N =⎩⎨⎧⎭
⎬⎫x ⎪⎪⎪x =k 4+1
2,k ∈Z ,若x 0∈M ,则x 0与N 的
关系是( )
A .x 0∈N
B .x 0∉N
C .x 0∈N 或x 0∉N
D .不能确定
二、填空题(本大题共4小题,每小题5分,共20分)
8.下列各组中的两个集合M 和N ,表示同一集合的是________.(填序号) ①M ={π},N ={3.141 59}; ②M ={2,3},N ={(2,3)}; ③M ={x |-1<x ≤1,x ∈N },N ={1}; ④M ={1,3,π},N ={π,1,|-3|}.
9.下列集合中,不同于另外三个集合的是________. ①{x |x =1};②{y |(y -1)2
=0};③{x =1};④{1}.
10.用列举法表示集合A =⎩⎨⎧⎭
⎬⎫x ⎪⎪⎪x ∈Z ,86-x ∈N =________.
11.下列各组集合中,满足P =Q 的有________.(填序号) ①P ={(1,2)},Q ={(2,1)}; ②P ={1,2,3},Q ={3,1,2};
③P ={(x ,y )|y =x -1,x ∈R },Q ={y |y =x -1,x ∈R }. 三、解答题(本大题共2小题,共25分)
12.(12分)设集合A ={x |x =2k ,k ∈Z },B ={x |x =2k +1,k ∈Z },若a ∈A ,b ∈B ,试判断a +b 与集合A ,B 的关系.
13.13.(13分)含有三个实数的集合可表示为⎩
⎨⎧⎭
⎬⎫a ,b a
,1,也可表示为{a 2
,a +b ,0},
求a
2015
+b
2016
的值.
答案:第2课时 集合的表示
1.C [解析] 集合⎩
⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪-1<x <112是由-1到112之间的整数组成的,所以,选项C 正
确.
2.B [解析] 本题考查常用集合的符号,N + 表示正整数,故选项B 正确.
3.D [解析] {x |x =2k ,k ∈Z }表示所有偶数组成的集合.由-3<x <11及x =2k ,k ∈Z ,可限定集合中的元素.
4.D [解析] 选项D 中的集合是大于4的所有奇数.
5.B [解析] 集合C 中元素是(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),共6个元素.
6.C [解析] 选项A ,B 是描述法表示集合,选项D 是列举法表示集合,选项C 是错的.故选C.
7.A [解析] M =x ⎪
⎪⎪
x =
2k +14,k ∈Z ,N =x ⎪
⎪⎪x =k +2
4,k ∈Z ,因为2k +1(k ∈Z )是一个奇数,k +2(k ∈Z )是一个整数,所以x 0∈M 时,一定有x 0∈N ,故选A.
8.④ [解析] ④中的两个集合的元素一样,所以答案为④.
9.③ [解析] 由集合的含义知{x |x =1}={y |(y -1)2
=0}={1},而集合{x =1}表示由方程x =1组成的集合,所以答案为③.
10.{5,4,2,-2} [解析] 因为x ∈Z ,8
6-x ∈N ,所以6-x =1,2,4,8.此时x =
5,4,2,-2,即A ={5,4,2,-2}.
11.② [解析] ①中P ,Q 表示的是不同的两点坐标; ②中P =Q ;③中P 表示的是点集,Q 表示的是数集.
12.解:a ∈A ,则a =2k 1(k 1∈Z );b ∈B ,则b =2k 2+1(k 2∈Z ), 所以a +b =2(k 1+k 2)+1.
又k 1+k 2为整数,2(k 1+k 2)为偶数, 故2(k 1+k 2)+1必为奇数, 所以a +b ∈B 且a +b ∉A .
13.解:由⎩
⎨⎧
⎭
⎬⎫
a ,
b a
,1可得a ≠0,a ≠1(否则不满足集合中元素的互异性).
所以⎩⎪⎨
⎪⎧a =a +b ,
1=a 2
,b a =0
或⎩⎪⎨⎪⎧a =a 2,
1=a +b ,b
a
=0,解得⎩⎪⎨⎪⎧a =-1,
b =0,
所以a
2015
+b
2016
=(-1)2015
=-1.。