直线方程课件经典

合集下载

直线的方程ppt课件

直线的方程ppt课件

y 2x3
(2)A(0,5),B(5,0) y 5 x 0 y x 5 05 50
(3)C(-4,-5),D(0,0)
y0 x0 5 0 4 0
y 5x 4
6
2.根据下列条件求直线方程
(1)在x轴上的截距为2,在y轴上的截距是3;
x
由截距式得:
y
1
23
整理得: 3x 2y 6 0
说明:
(1)这个方程是由直线上两点确定;
(2)当直线没斜率或斜率为0时,不能 用两点式来表示;
15
4.截距式: x y 1 ab
说明: (1)这一直线方程是由直线的纵截
距和横截距所确定; (2)截距式适用于纵,横截距都 存在且都不为0的直线;
16
课堂练习
<<教材>> P.41
练习1.2
书面作业
1
一.复习回顾 直线方程的点斜式和斜截式:
1.点斜式 y y1 k(x x1 ) 2.斜截式 y kx b
2
二、直线方程的两点式和截距式
提出问题
直线l经过P1(x1,y1),P2(x2,y2)(x1≠x2)两点, 求直线l的方程?
分析:直线l经过两点P1(x1,y1),P2(x2,y2)并且x1≠x2,
b0 0a
说明:
即: x y 1 ab
(1)这一直线方程是由直线的纵截距和横截 距所确定;叫直线方程的截距式.
(2)截距式适用于纵,横截距都存在且都不为0的 直线;
5
课堂练习:
1.求经过下列两点的直线的两点式方程,再化
斜截式方程.
(1)P(2,1),Q(0,-3)
y 1 x 2 3 1 0 2
▲ 式不▲能用点斜式表示,直线方程为x=x1

直线方程课件ppt

直线方程课件ppt
0。
解线性方程的步骤
首先将方程化为标准形式 ax + b = 0,然后根据 a 和 b 的值,使用 公式 x = -b/a(当 a≠0)或 x 无 解(当 a=0,b≠0)来求解。
线性方程的应用
线性方程是数学和实际生活中最基 础和最常用的方程之一,可用于解 决各种问题,如计算、建模等。
一次方程的解法
直线方程课件
目录
• 直线方程的基本概念 • 直线方程的解法 • 直线方程的应用 • 直线方程的拓展知识 • 练习题与答案
01 直线方程的基本概念
直线的定义
直线是由无数个点组成的几何图形, 这些点沿着同一直线排列,没有弯曲 或转折。
在平面几何中,直线是二维空间中最 基本的图形之一,具有方向和长度。
04 直线方程的拓展知识
直线的斜率与截距
斜率
直线在平面上的倾斜程度,表示 为直线方程 y = mx + b 中的 m 。
截距
直线与 y 轴交点的 y 坐标,表示 为直线方程 y = mx + b 中的 b 。
直线的点斜式和两点式
点斜式
通过直线上的一点和直线的斜率来表示直线方程,形式为 y - y1 = m(x - x1) 。
掌握高阶技能,如利用计算机软件进行辅助 解题等。
04
03
01
谢谢聆听
点斜式
y - y1 = m(x - x1),其中 (x1, y1)是直线上的一点, m是斜率。
两点式
y - y1 = (y2 - y1)/(x2 x1) * (x - x1),其中(x1, y1)和(x2, y2)是直线上的 两点。
02 直线方程的解法
线性方程的解法
线性方程的定义
线性方程是只包含一个变量的一 元方程,其一般形式为 ax + b =

《直线方程的五种形式省公开课获奖课件说课比赛一等奖课件

《直线方程的五种形式省公开课获奖课件说课比赛一等奖课件

1、设A、B是x轴上旳两点,点P旳横坐标为2,且
│PA│=│PB│,若直线PA旳方程为x-y+1=0,则直线
PB旳方程是—
x+y-5=0
2、求过点A(5,2)且在两坐标轴上截距互为相反数 旳直线方程
3、已知直线L: x y 1
m 4m
1)若直线旳斜率是2,求m旳值
2)若直线l与两坐标轴旳正半轴围成三角形旳 面积最大,求此直线旳方程
y0 x0 5 0 4 0
y 5x 4
措施小结已知两点坐标,求直线方程旳措施:
y=kx+b(k<0,b<0
课堂练习
(1)若直线 x=1 的倾斜角为 ,则
A.等于 0
B.等于 4
C.等于 2
D.不存在
(2)如右图,直线 l1 , l2 , l3 的斜率分别为 k1, k2 , k3 ,则
A. k1 k2 k3
B. k3 k1 k2
C. k3 k2 k1
D. k1 k3 k2
(x1≠x2, y1≠y2 ),求经过这两点旳直线方程?
k y2 y1 x2 x1
代入y y0 k(x x0 )得
y
P1(x1,l y1)【注意y】 当y1 直yx线22 没xy斜11 (率x 或x1斜) 率为0时,
P2(x2,y2)
不能用两点式来表达;
x
两点式:y y1 y2 y1
(2) 斜率是-2,在y轴上旳截距是4;
答案: y -2x 4
2.两点式:已知直线 l 经过点p1(x1, y1)和p2 (x2 y2 ) (x1≠x2)求直线 l旳方程.
y y1 x x1 y2 y1 x2 x1 这个方程是由直线上两点拟定旳,叫做 直线方程旳两点式。

直线的一般式方程--ppt课件精选全文完整版

直线的一般式方程--ppt课件精选全文完整版

x y 1 ab
bx ay (ab) 0
上述四式都可以写成直线方程的一般形式:
Ax+By+C=0, A、B不同pp时t课件为0.
2
ppt课件
3
Ax By C 0
问:所有的直线都可以用二元一次方程表示?
①当B≠0时 方程可化为 y A x C
BB
这是直线的斜截式方程,它表示斜率是
A1 B1 C1 A2 B2 C2
(B1 0, B2 0, )
l1与l2重合
A1 B1 C1 A2 B2 C2
A1 B1 A2 B2
l1与l2平行 l1与l2相交
(2)当l1 l2时,上述方程系数有何联系?
2
.l1
l ppt课件 2
A1A2
B1B2
014
练习1:已知直线l1:x+(a+1)y-2+a=0和 l2:2ax+4y+16=0,若l1//l2,求a的值.
o
x
ppt课件
7
二、二元一次方程的系数对直线的位置的影响: 在方程Ax+By+C=0中,A,B,C为何值时, 方程表示的直线: (1)平行于x轴;(2)平行于y轴;(3)与x轴重合;
y
l
(3) A=0 , B≠0 ,C=0
o
x
ppt课件
8
二、二元一次方程的系数对直线的位置的影响:
在方程Ax+By+C=0中,A,B,C为何值时,
a=1
练习2:已知直线l1:x-ay-1=0和 l2:a2x+y+2=0,若l1⊥l2,求a的值.
a=1或a=0
ppt课件
15

人教A版必修1高一数学42直线的方程【课件】

人教A版必修1高一数学42直线的方程【课件】
D
图1
图2
A.0.75 B.0.8 C.0.85 D.0.9
【解析】如图,连接,延长与轴交于点,则.因为 , ,成公差为0.1的等差数列,所以, ,所以,, ,即,,.又 ,所以 ,所以
,所以,解得 ,故选D.
直线方程的求解

教材知识萃取
直线方程的五种形式
名称
方程
说明
适用条件
斜截式
是直线的斜率; 是直线在 轴上的截距.
【解析】 由(1)的解法一可得,当且仅当 ,即时,取得最小值,为9,此时直线的方程为 .
(3)当取得最小值时,直线 的方程为_____________.
【解析】 解法一 由(1)的解法一可得 ,当且仅当,即时,取得最小值,为8.此时直线的方程为 .解法二 由(1)的解法二知,, ,所以 ,当且仅当,即时,取得最小值,为8,此时直线的方程为 .
易错提醒截距之和为0时,易直接将直线方程设为截距式(截距互为相反数),从而忽视直线过原点(直线斜率为0)的情况.
4.[人A选必一P67习题2.2第9题变式]瑞士数学家欧拉在《三角形的几何学》一书中提出:三角形的外心、重心、垂心在同一条直线上.这条直线被称为“欧拉线”.已知的顶点,,,则 的欧拉线方程为( )
直线的方程
目录

直线的倾斜角与斜率

直线方程的求解
直线的倾斜角与斜率

教材知识萃取
直线的倾斜角
直线的斜率
定义
定义:当直线 与 轴相交时,我们以 轴为基准, 轴正向与直线 ①______的方向之间所成的角 叫做直线 的倾斜角.
(1)定义式:把一条直线的倾斜角 的正切值叫做这条直线的斜率,斜率通常用小写字母 表示,即③_________.(2)坐标式: .如果直线经过两点 , ,其斜率公式为④_____________.

2.2.3直线的一般式方程(教学课件(人教版))

2.2.3直线的一般式方程(教学课件(人教版))

解(1)若方程不能表示直线,则 m2+5m+6=0 且 m2+3m=0.
解方程组
m 2+5m+6=0,得 m 2+3m=0,
m=-3
(2)由已知 m2m2-2+mm≠-0,3=-(m2-m),解由得已m知=-24mm12- .+1m=-2m3≠2+ 0,m-3,
例4(一般式下直线的平行与垂直问题)
BB
当B=0时, A≠0, 方程Ax+By+C=0可变形为 x C . A
由上可知, 关于x,y的二元一次方程Ax+By+C=0都表示一条直线.
综上可知, 在平面直角坐标系中, 任何关于x, y的二元一次方程Ax+By +C=0都表 示一条直线.
我们把关于x, y的二元一次方程Ax+By+C=0 (其中A, B不同时为0)叫做直线的 一般式方程, 简称一般式. 探究 在方程Ax+By +C=0中, A,B,C为何值时, 方程表示的直线:
两点式
过点P1(x1,y1), P2(x2,y2) (其中x1 ≠ x2, y1 ≠ y2)
直线方程 y y0 k( x x0 )
y kx b y y1 x x1 y2 y1 x2 x1
应用范围
不含与x轴垂
直的直线
不含与x轴垂
直的直线
不含与x, y轴
垂直的直线
截距式
过点P1(a,0), P2(0,b) (其中a≠0, b≠0)
已知A(2,2)和直线l:3x+4y-20=0.求: (1)过点A和直线l平行的直线方程;(2)过点A 和直线l垂直的直线方程.
解 (1)将与直线 l 平行的方程设为 3x+4y+C1=0,
又过点 A(2,2),所以 3×2+4×2+C1=0,所以 C1=-14.

《直线方程》课件

《直线方程》课件
方程
截距式方程
截距式方程的定义:y=a+bx 截距式方程的性质:a是截距,b是斜率 截距式方程的应用:解决实际问题,如求直线的斜率和截距 截距式方程的局限性:不适用于斜率不存在的情况
直线方程的应用
解析几何中的直线方程
直线方程的表示方法:点斜 式、斜截式、两点式等
直线方程的应用:求解直线 的斜率、截距、长度等
斜截式方程的局限性:当k=0时,斜截式方程变为y=b,表示一条平行于x 轴的直线,此时斜率k不存在,无法用斜截式方程表示。
点斜式方程
定义:点斜式方 程是直线方程的 一种形式,表示 直线的斜率和经 过的定点
形式:y-y1=k(xx1),其中(x1,y1) 为直线经过的定 点,k为直线的斜 率
特点:点斜式方 程可以表示任意 一条直线,但需 要知道直线经过 的定点和斜率
代数:直线方程是代数的一个重 要概念,可以用代数方法求解
解析几何:直线方程是解析几何 中的一个重要工具,可以用来描 述和解决几何问题
添加标题
添加标题
添加标题
添加标题
几何:直线方程与几何中的直线、 平面、空间等概念密切相关
微积分:直线方程在微积分中也 有应用,如求极限、积分等
THANK YOU
汇报人:
计算
确定直线方程的未知数个数, 确保求解方法正确
求解完成后,注意检查结果 是否满足直线方程的定义和
性质,确保求解正确
直线方程的性质和特点
直线方程的性质
直线方程的斜率:表示直线的倾 斜程度
直线方程的斜率与截距的关系: 斜率与截距共同决定了直线的位 置和方向
添加标题
添加标题
添加标题
添加标题
直线方程的截距:表示直线与y轴 的交点

直线的方程ppt课件

直线的方程ppt课件
问题一
1.在平面内,需要知道哪几个条件,才能确定直线的位置。
2.画出经过点A(-1,3),斜率为-2的直线。
y
A(-1,3) .
.
O
x
3.在直角坐标系内, 点的代数形式是
坐标

直线方向的代数形式是 斜率 。
问题二
若直线l经过点A(-1,3),斜率为-2,点P(x,y)在直线l上运动,那么 点P的坐标x和y之间满足什么关系?
例2: 已知直线l 斜率为k,与y轴的交点是P(0,b),求直线l的方程。
解:由直线的点斜式方程,得 y b k(x 0) 即为 y kx b .
其中,b为直线与y轴交点的纵坐标。 我们称b为直线l 在y轴上的截距。
方程 y kx b 由直线l的斜率和它在y轴上的截距确定 。 所以,这个方程 y kx b 就也叫做直线的斜截式方程。
答 不能。从代数式的表达意义上讲“两点式”
方程使用的前提是x“1 x2 y且1 y2 ”。
它不能表示倾斜角90为 0和 的直线,即
当直线与x轴,y轴不平行时,可以用两点式 表示。
例1:
已知一直线经过两点 A(a, 0), B(0,b). 其中 Байду номын сангаас b 0
求这条直线的方程。
解:由直线的两点式方程,得 y0 xa b0 0a
填空
1.直线y=2x-4的斜率是 2 ,在y轴上的截距是 - 4 。
2.直线2x+y-4=0的斜率是 - 2 ,在y轴上的截距是 4 。
3.直线3x+2y=0的斜率是
3 2
,在y轴上的截距是 0

判断
1.直线的点斜式方程 y y1 k(x x1) 可以表示直角坐标系 中的任何一条直线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线方程课件经典刚加入工作的教师需要准备好上课所需的教案课件,又轮到编写教案课件的阶段了。

遵循教案进行授课有助于提升教学效果,那么如何制作出优秀的教案课件呢?本文将研究与“直线方程课件”有关的话题,欢迎读后分享给您的朋友!直线方程课件(篇1)老师们同学们大家好,今天我说课的内容是《直线的点斜式方程》,下面我将从教学内容、教法分析、教学目标、教学重难点和教学流程五个方面进行阐述。

一、教材分析:教材内容,《直线的点斜式方程》选自苏教版数学必修二,其主要内容是直线的点斜式方程和斜截式方程。

在本节课的学习中,学生们将迈出探究解析几何学知识的第一步,在“数”和“形”之间建立联系。

这为后续学习直线与直线的位置关系等内容,提供了重要的思想方法。

学情分析高一学生具有一定直观感知能力,也具备一次函数和直线的斜率等知识储备,但还没有尝试过用代数方法解决几何问题,同时分析论证的能力有待提高,因此在概念的推导过程中可能会比较困难。

二、教学方法:其次,关于教学方法,新课标的基本理念之一是倡导积极主动、勇于交流的学习方式,因此是本节主要课采用“设问-探索-归纳-定论”的探究式教学,结合分组讨论的环节,营造“教师为主导,学生为主体”的乐学课堂。

三、教学目标:根据教学内容,本节课的教学目标分为三个维度:在知识与技能方面:能叙述直线点斜式方程与斜截式方程的概念,能运用点斜式方程和斜截式方程解决问题;在过程与方法方面:体会直线方程与一次函数之间的关系,培养数形结合、转化化归的数学思想。

在情感、态度和价值观方面:通过独立思考与分组讨论,培养探究意识及合作精神,激发努力思考、获得新知的学习热情。

四、教学重难点:由于本节课是首次学习直线方程的表示方法,因此把直线的点斜式方程与斜截式方程的概念设置为教学重点。

同时,直线点斜式方程和斜截式方程的推导过程超出了学生对代数和几何知识的原有认知水平,因此教学难点便设定为直线的点斜式方程与斜截式方程的推导。

五、教学过程:接下来我再来详细介绍一下本节课的教学过程。

1、以旧带新,设问激疑:第一个环节是以旧带新,设问激疑。

在回顾之前学习的直线的斜率知识后,我将提出这样一个问题:已知一条直线的斜率及直线上一个点的坐标能否确定直线方程?通过这一问题,激发起学们生独立思考的积极性。

2、探究问题,获得新知:第二个环节是探究问题,获得新知。

我在ppt上展示2组直线方程及其图象,并提出几个问题,如图中直线的斜率是什么?图中定点的坐标是什么?如何用已知的斜率和坐标来表示直线?这一过程中,通过问题链来引导学生用已知点的坐标表示直线斜率,再将所得的关系式转化为直线方程,完成对直线点斜式方程的推导。

类比相同方法也完成对直线斜截式方程的推导,突破本节课的教学难点。

3、分组讨论,内化提高:第三个环节是分组讨论,内化提高。

我将给出几组针对新知识的细节,具有启发性的问题,如坐标轴所在的直线方程是什么?是否所有的直线都具有点斜式方程?通过分组讨论的环节,培养了学生们的探究意识和合作精神,从而达到了情感与态度的教学直线方程课件(篇2)我本节课说课的内容是直线的点斜式和斜截式方程。

新课标指出,学生是教学的主体。

教师要以学生活动为主线。

在原有知识的基础上,构建新的知识体系。

我将以此为基础从教材地位和内容分析,教学目标分析,重点和难点分析,教法和学法分析,教学过程分析这几个方面加以说明。

一、教材地位和内容分析直线方程初步体现了解析几何的实质——用代数的知识来研究几何问题。

直线作为最常见的几何图形,在生产实践和生活应用中都有着广泛的应用。

直线的方程是是解析几何的基础知识,对后续圆、直线和圆的位置关系、圆锥曲线等内容的学习,无论从知识上还是方法上都有着积极的作用。

二、教学目标分析1、识记直线的点斜式和斜截式方程,了解其推导过程2、会根据已知条件熟练求出直线的方程3、培养学生主动探究知识、合作交流的意识三、重点与难点分析重点:会根据已知条件熟练求出直线的方程难点:直线点斜式方程的推导四、教法与学法分析1、教法分析遵循“教师的主导作用和学生的主体地位相统一的教学规律”,本节课通过教师点拨,启发学生自主探究来达到对知识的发现和接受。

2、学法分析本节课所面对的是职高二年级的学生,这个年龄段的学生思维活跃,求知欲强,但思维习惯还有待教师引导。

本节课从学生原有的知识和能力出发,教师将带领学生创设疑问,通过合作交流,共同探索,寻求解决问题的方法。

五、教学过程分析根据新课标的理念,我把整个的教学过程分为几个阶段:1、温故知新上课前复习特殊角的正切值以及斜率的求法,为研究新课打下基础。

2、创设情境直线是点的集合,求直线方程实际上就是求直线上点的坐标所满足的一个等量关系。

因此在教学中我把探究的过程变成一个问题来进行。

问题:已知一直线过一定点,且斜率为k,则直线是唯一确定的,也就是可求的,怎样求直线L的方程?3、探求新知学生带着问题预习,分组讨论,合作交流,共同研究出直线的点斜式方程。

教师巡视指导答疑。

在此基础上,找学生在黑板上讲解其推导过程,师生共同点评。

注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。

为以后学习曲线与方程打好基础。

教学中让学生感觉到这一点就可以。

不必做过多解释。

教师点明:上述方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式方程.4、深入探究问题1:X轴所在直线方程是什么?与X轴平行的直线方程是什么?通过这个问题让学生注意点斜式的特殊情况。

问题2:Y轴所在直线方程是什么?与Y轴平行的直线方程是什么?通过这个问题让学生注意点斜式直线方程的使用范围:即在斜率存在的情况下才可以使用。

问题3:如果直线L的斜率为K,且与Y轴的交点坐标为(0 ,b),求直线L的方程。

通过这个问题引出直线的斜截式方程。

教师说明:我们把直线L与Y轴交点(0 ,b)的纵坐标b叫做直线L在Y轴上的截距。

这个方程是由直线的斜率K与它在Y轴上的截距b 确定,所以叫做直线的斜截式方程。

注:(1)截距可取任意实数,它不同于距离。

(2)斜截式方程中的K和b有明显的几何意义。

(3)斜截式方程的使用范围和斜截式一样。

5、应用举例求下列直线方程:(1)直线经过点P(1,2),倾斜角为(2)直线经过点、学生相互讨论,自主完成。

教师深入学生中,了解其思路,纠正其错误,并规范书写过程。

6、反馈练习P53:3、4,B组27、课堂小结让学生谈谈本节课都学习了哪些内容8、布置作业必做题:A组2(2)、4选做题:B组1直线方程课件(篇3)1、教学目标(1)知识目标:通过师生互动教学,培养学生自编自练自查能力,提高学生应用数学的意识,使学生掌握求直线方程的方法,进行综合能力训练;使学生学会如何根据题目的已知条件恰当选择直线方程形式求解问题。

(2)能力目标:培养学生在分析问题和解决问题中运用数形结思想的能力;培学生在分析问题和解决问题中运用转化思想的能力;(3)德育目标:引导、激发学生积极参与教学,使学生在获得成功的同时,培养学生爱学、乐学情感。

通过对数学客观规律的揭示,培养学生透过现象看本质的能力;培养学生辩证唯物主义世界观和方法论。

2、重点:求直线方程的基本方法。

3、难点:使学生学会如何根据题目的已知条件恰当选择直线方程形式求解问题。

4、教具:多媒体辅助教学设备。

5、教学方法:问题情境教学法;启发式教学法;反思式教学法。

6、教学步骤:(一)课前展示课题与相关知识(二)由三点坐标联想、发散自编习题并解答。

已知:点A、B、C的坐标分别为(3,4)、(6,0)、(-5,-2)。

可联想到:(1)三角形三边所在直线的方程、三个内角(2)三角形三边中线、高所在直线的方程(3)三角形三个内角的角平分线所在方程。

(4)变题1:已知三角形的两个顶点坐标、一条角平分线的方程,求:第三个顶点的坐标与相关直线方程(5)变题2:已知三角形一个顶点及两条角平分线所在直线方程,求相关量(6)变题3:已知三角形一个顶点及两条中线所在直线方程,求相关量(7)变题4:已知三角形两个顶点及一条中线方程,求相关量(8)变题5:已知三角形一个顶点及两条高所在直线方程(9)变题6:已知三角形两个顶点及一条高所在直线方程,(10)变题7:已知三角形两个顶点坐标及垂心坐标,(11)变题8:已知三角形两个顶点坐标及重心坐标,(12)变题9:已知三角形两个顶点坐标及内心坐标························(三)课堂小结、作业布置7、直线方程教法设计的几点说明:本节是“直线综合复习”第一节课,重点是与学生共同研究求解直线方程的一般方法,在师生的双向交流中,让学生自己考查自己,从而了解学生对知识的理解与掌握程度,灵活调整教学进度,以期达到最佳教学效果。

旧知的回顾通过“屏保”让学生提前预览,这样节约了课堂教学时间,从而提高课堂教学效益。

“以学生主体性发展作为教学改革的起点和依据,对原有传统教育中不合理的行为和思维方式进行改革,真正实现教育观念上的转变,实现人的发展的社会化和个性化”是当代教学论的研究主题。

本节课,学生在执教者的指导下积极主动的参与学习,从兴趣与学习的内在需求上下工夫,克服学生原有的知识经验、认知结构、情感、意志、性格等制约,发挥学生的自主性与创造性,在已知三点坐标的.前提下,通过执教者的启发与引导,让学生采用猜想、类比、联想等思维方法,运用数形结合、参数、化归等数学思想,适时使用发散思维、逆向思维,通过自编自练自查,力争培养学生的应用数学的意识、提高学生的综合能力。

这样,以知识为媒介,以人为中心、以学生素质获得充分、自由、全面地发展原则组织教学。

从发展的角度来看,让学生经历数学知识的发现过程,体验学习过程中的各种感受,比获得知识本身更重要。

学生在由三点坐标联系所学知识考查自己时通常会遇到一定的困难,只有让学生处于“愤悱”状态中,通过引导、讨论,获得所需知识或解决了问题时,然后进行必要的发散、逆向思维训练,才能对学生的思维、能力的发展起推进作用。

因此,要让学生在游泳中学会游泳,在创造中学会创造。

“教育要面向现代化”已基本形成共识,现代教育技术应用于数学教学正逐渐变成现实。

而在数学教学中,使用媒体有效的标志是:“有利于学生的主动参与,有利于揭示教学内容的实质,有利于课堂交流的高效实现,有利于学生思维和技能的训练”。

本节课在媒体的选择上,主要运用“几何画板”通过图形对称、旋转变化进行直观教学,联系点线、线线关系解决问题;将“旧知复习”制成“屏幕保护”,在课前、课中展示,既能起温故知新作用,又为课堂教学的深入提供必要的理论保证。

相关文档
最新文档