材料逆向工程常用方法

合集下载

反向工程的详细介绍

反向工程的详细介绍

反向⼯程的详细介绍反向⼯程指通过技术⼿段对从公开渠道取得的产品进⾏拆卸、测绘、分析等⽽获得的有关技术信息。

反向⼯程在司法解释中被定义为,通过技术⼿段对从公开渠道取得的产品进⾏折卸、测绘、分析等⽽获得该产品的有关技术信息。

为避免该条款被滥⽤,司法解释同时规定:“当事⼈以不正当⼿段知悉了他⼈的商业秘密之后,⼜以反向⼯程为由主张获取⾏为合法的,不予⽀持。

”反向⼯程⼜称逆向⼯程。

从⼴义讲,逆向⼯程可分以下三类:(1)实物逆向:它是在已有产品实物的条件下,通过测绘和分折,从⽽再创造;其中包括功能逆向、性能逆向、⽅案、结构、材质等多⽅⾯的逆向。

实物逆向的对象可以是整机、零部件和组件。

(2)软件逆向:产品样本、技术⽂件、设计书、使⽤说明书、图纸、有关规范和标准、治理规范和质量保证⼿册等均称为技术软件。

软件逆向有三类:①既有实物,⼜有全套技术软件;②只有实物⽽⽆技术软件;③没有实物,仅有全套或部分技术软件。

(3)影像逆向:设计者既⽆产品实物,也⽆技术软件,仅有产品的图⽚、⼴告介绍或参观后的印象等,设计者要通过这些影像资料来构思、设计产品,该种逆向称为影像逆向。

⽬前,国内外有关逆向⼯程的研究主要集中在⼏何外形的逆向,即重建产品实物的CAD,称为“实物逆向⼯程”。

2逆向⼯程数据测量技术数据测量是通过特定的测量设备和测量⽅法获取产品表⾯离散点的⼏何坐标数据,将产品的⼏何外形数字化。

其测量原理是:将被测产品放置于三坐标测量机的测量空间内,可以获得被测产品上各个测量点的坐标位置,根据这些点的空间坐标值,经过计算机数据处理,拟合形成测量元素,如圆、球、圆柱、圆锥、曲⾯等,经过数学计算的⽅法得出其外形、位置公差及其它⼏何数据。

⾼效、⾼精度地获取产品的数字化信息是实现逆向⼯程的基础和关键。

现有的数据采集⽅法主要分为两⼤类:(1)接触式数据采集⽅法包括:使⽤基于⼒的击发原理的触发式数据采集和连续式扫描数据采集、磁场法、超声波法。

简述逆向工程中数据测量的方法及分类。

简述逆向工程中数据测量的方法及分类。

简述逆向工程中数据测量的方法及分类。

逆向工程是指通过对一个已有的产品或系统进行分析、逆向推导出其设计原理、结构和功能的过程。

在逆向工程过程中,数据测量是一项非常重要的工作,它是指通过对目标系统或产品进行各种测量手段和方法的运用,获取其关键性能参数、特征和数据信息的过程。

下面将对逆向工程中数据测量的方法和分类进行简要描述。

数据测量方法主要包括以下几种:1. 电子测量方法:电子测量是逆向工程中常用的一种测量方法,通过使用各种电子仪器和设备,如示波器、频谱分析仪、信号发生器等,对目标系统的电信号进行采集、分析和测量,从而获取相关的电性能指标和特征信息。

2. 光学测量方法:光学测量是利用光学原理和设备对目标系统进行测量的方法。

例如,使用显微镜、激光测距仪、光谱仪等对目标系统进行观察、测量和分析,获取其光学性能参数和特征信息。

3. 机械测量方法:机械测量是通过使用各种机械设备和工具对目标系统进行测量的方法。

例如,使用卡尺、量规、测微计等对目标系统的尺寸、形状等进行测量,获取其几何参数和特征信息。

4. 热学测量方法:热学测量是利用热学原理和设备对目标系统进行测量的方法。

例如,使用热像仪、热电偶等对目标系统的温度分布、热传导等进行测量,获取其热学性能参数和特征信息。

5. 声学测量方法:声学测量是通过使用声学原理和设备对目标系统进行测量的方法。

例如,使用声级计、频谱分析仪等对目标系统的声音强度、频谱等进行测量,获取其声学性能参数和特征信息。

根据测量对象的不同,数据测量可以分为以下几类:1. 电气参数测量:电气参数测量主要是对目标系统的电性能参数进行测量,包括电压、电流、电阻、电感、电容等参数。

通过对这些参数的测量,可以了解目标系统的电路结构、电能转换效率、电磁兼容性等特征。

2. 几何参数测量:几何参数测量主要是对目标系统的尺寸、形状、位置等几何参数进行测量。

通过对这些参数的测量,可以了解目标系统的结构组成、装配方式、运动轨迹等特征。

逆向工程

逆向工程

逆向工程(Reverse Engineering)指将实物转变为CAD模型相关的数字化技术、几何模型重建技术和产品制造技术的总称,是将已有产品或者实物模型转换为工程设计模型和概念模型,并在此基础上对已有产品进行解剖、深化和再制造的过程。

产品实物的逆向设计过程首先通过对实物或者模型的测量扫描以获得实物或模型的数据信息,然后采用先进的CAD软件对所得数据进行前期处理,之后根据不同的产品和实物具体要求快速、准确地建立实体几何模型。

在工程分析地基础上进行快速原型制造、数控加工生产制造或计算机辅助分析等工作,实现从产品或模型-设计-产品的整个生产流程。

1 逆向工程中应用的曲面重构技术逆向工程有两个主要的研究内容:一是实物模型表面数据获取技术;二是曲面重构技术。

数据获取和整合技术的发展为处理复杂物理模型提供了可能。

曲面重构技术就是根据测量获取的点云数据来恢复原始曲面的几何模型,是逆向工程中的最重要的一步,也是逆向工程中CAD建模的关键技术之一。

曲面重构是逆向工程中的重点研究内容。

根据实物外形的数字化信息,可以将测量得到的数据点分成两类:有序点和无序点(散乱点),由不同的数据类型,形成了不同的模型重建技术。

目前较成熟的方法是通过重构外形曲面来实现实物重建。

常用的曲面模型有Bezier,B-Spline,NURBS和三角Beizer曲面。

在逆向工程的CAD建模中,曲面重构是最为重要和关键的一步。

重构曲面的品质和精度直接影响最终产品CAD模型的优劣。

通过处理测量数据,建立产品表面模型或实体模型的方法有很多,根据不同的应用对象和应用范围有不同的处理手段。

按曲面模型的表达形式分类,逆向工程中的曲面重构方法大致可分为”21:以B样条或NURBS曲面为基础的四边域曲面重构方法和以三角Bezier曲面为基础的三边域曲面重构方法。

基于B样条或NURBS曲面的四边域曲面重构方法适用于汽车、飞机、轮船等的曲面零件。

在目前的CAD/CAM系统中,大多采用B样条和NURBS曲面作为其内部统一的几何表达形式。

工业设计中的逆向工程技术

工业设计中的逆向工程技术

工业设计中的逆向工程技术随着工业技术水平及人们生活质量、教育水平、审美水平的提高,互联网的普及,普通消费者对产品的质量要求、品味也在不断地提高,人们已不仅仅满足于产品的基本功能,对产品的使用性能和外观的要求也逐年提高,这些因素决定着产品在市场上的销售曲线。

如何快速有效地适应市场的变化,设计出具有优美形态的产品,逆向工程技术的出现,无疑为工业设计注入了新的方法和技术支持。

一逆向工程及其应用概述传统的产品设计开发流程通常是从概念设计到工程图,再制造出产品,我们称之为正向工程(或正向设计),而产品的逆向工程是根据已有的实物(或零件或模型)生成工程图,再制造产品。

根据逆向对象的不同,逆向工程可分为实物逆向、软件逆向、影像逆向三个类别。

在工业设计领域中逆向工程的实际应用主要有以下几个方面:(1)新产品的设计开发,主要用于新产品的创新设计或改型设计;(2)已有产品的复制,再现原产品的设计意图;(3)损坏或磨损产品的还原;(4)复杂产品的特征断面设计提取;(5)数字化模型的检测,如可以检测产品的形变、焊接质量等以及进行模型的比较;(6)在美学与工程设计同等重要的领域,如交通工具设计领域,广泛采用真实比例的模型来评估产品的美学和工程是否适合批量生产,此时逆向工程起到了关键性的作用。

逆向工程也称为反求工程、反向工程、三坐标点测绘、三坐标的造型、抄数等。

它是由已有产品或实物模型通过关键设备精准测绘,认真剖析其设计意图并构建其CAD模型,从而较快地实施产品设计方案的先进技术手段。

二逆向工程实施的硬件条件和软件条件1.逆向工程硬件条件在应用逆向工程技术设计时,需将设计对象(模型或零件)进行三维数据的采集。

因此,硬件检测设备是逆向工程的核心硬件。

目前的测量技术常用的有坐标测量法、激光线结构光扫描、层切图像法、投影光栅法。

常见的物体三维几何形状的测量方法分为接触式测量与非接触式两大类。

接触式是传统的测量方式,测量过程中探头与模型表面接触,其典型代表为机械三坐标测量仪(CMM)。

反求工程设计

反求工程设计

案例3 转炉
反求工程设计
• 1957年日本从奥地利引进顶吹氧气转炉,通过使用进行 多项技术改造,并在此基础上研制出新型转炉,作为专利 向英、美、意等发达国家出口。6年后日本转炉炼钢率竟 居世界之首。
一 概论
反求工程设计
• 反求工程:在现代社会中,科技成果的应用已成为推动生产 力发展的重要手段。把别国的科技成果加以引进、消化、吸 收、改进提高,再进行创新设计,进而发展自己的新技术, 是发展民族经济的捷径,称这一过程为反求工程(reverse engineering) 。
反求工程设计
反求工程设计程序
反求工程设计
反求设计与传统设计
反求工程设计
• 传统设计: how to do? • 反求设计: why have they make it in this way?
传统设计过程是一个主动的创造性活动. 而反求设计过程则是一种高起点的、先 被动后主动的创造性活动。
反求与仿制
反求工程设计
(10)工艺分析 许多引进设备的关键技术主要是先进的工 艺决窍,国外某些工厂视先进工艺为生命线,严格保密。 因而对加工、装配工艺的分析,对加工—精度及精度分配 的反求,是重要而又细致的工作。如硬度大于350HBS的 硬齿面齿轮用螺旋槽砂轮磨削,既能保证高精度,又能达 到高效率;而直径较大的硕齿颁齿轮,在没有大磨削设备 的分件下,可以通过研合达到精度要求。
反求工程设计
实物(硬件)的反求设计 分类 技术资料(技术资料)的反求设计 反求工程的研究内容 (1)探索原产品的设计思想 (2)探索原产品的原理方案设计 (3)研究产品的结构设计 (4)对产品的零、部件进行测绘 (5)对产品的零件公差与配合公差进行分析 (6)对产品中零件的材料进行分析 (7)对产品的工作性能进行分析 (8)对产品的造型进行分析 (9)对产品的维护与管理进行分析

逆向工程名词解释

逆向工程名词解释

逆向工程名词解释1. 什么是逆向工程?逆向工程(Reverse Engineering)是指通过对已有产品、系统或软件的分析和研究,以了解其设计和实现方式的过程。

它可以帮助人们理解已有产品的内部结构、算法、功能和特性,并可以根据这些信息进行修改、优化或重新设计。

2. 逆向工程的主要目的逆向工程主要有以下几个目的:2.1 理解和学习通过逆向工程,可以深入了解已有产品或系统的设计原理和实现细节。

这对于学习新技术、研究新领域或理解其他人的创作是非常有帮助的。

2.2 修改和优化逆向工程可以帮助我们修改已有产品或系统的功能、性能或界面,以满足自己或他人的需求。

通过分析源代码、反汇编代码或者使用调试器等工具,我们可以找到需要修改的地方,并进行相应的改动。

2.3 兼容性和互操作性在软件开发中,逆向工程可以用于实现兼容性和互操作性。

通过分析其他软件或文件格式的结构和协议,我们可以编写兼容或者互操作的代码,使得不同的软件能够相互通信和协作。

2.4 安全和漏洞分析逆向工程在安全领域也有重要的应用。

通过逆向工程,我们可以发现软件或系统中的漏洞和安全问题,并提供相应的解决方案。

逆向工程还可以帮助我们分析恶意软件或病毒的行为和特征,以便更好地进行防范和应对。

3. 逆向工程的方法与技术逆向工程使用了多种方法和技术来实现其目的。

下面是一些常用的逆向工程方法和技术:3.1 静态分析静态分析是指在不运行程序的情况下,通过对程序代码、二进制文件或者其他相关文件进行分析,来获取程序行为和功能的信息。

静态分析常用的工具包括反汇编器、反编译器、静态代码分析器等。

3.2 动态分析动态分析是指在运行程序时,通过监控、跟踪和记录程序执行过程中产生的数据和信息,来获取程序行为和功能的信息。

动态分析常用的工具包括调试器、动态代码插桩工具等。

3.3 反编译反编译是指将已编译的二进制文件转换回源代码的过程。

通过反编译,我们可以获取程序的高级语言表示,从而更好地理解和分析程序的行为和功能。

逆向工程关键技术

逆向工程关键技术

1。

3逆向工程中的关键技术1、3。

1 数据采集技术目前,用来采集物体表面数据的测量设备和方法多种多样,其原理也各不相同。

测量方法的选用是逆向工程中一个特别重要的问题。

不同的测量方式,不但决定了测量本身的精度、速度和经济性,还造成测量数据类型及后续处理方式的不同。

依照测量探头是否和零件表面接触,逆向工程中物体表面数字化三维数据的采集方法基本上能够分为接触式(Contact)和非接触式(Non—contact)两种。

接触式包括三坐标测量机(Coordinate MeasuringMachining,CMM)和关节臂测量机;而非接触式主要有基于光学的激光三角法、激光测距法、结构光法、图像分析法以及基于声波、磁学的方法等。

这些方法都有各自的特点和应用范围,具体选用何种测量方法和数据处理技术应依照被测物体的形体特征和应用目的来决定、目前,还没有找到一种完全使用于工业设计逆向测量方法、各种数据采集方法分类如图1、3所示、在接触式测量方法中,CMM是应用最为广泛的一种测量设备;CMM通常是基于力-变形原理,通过接触式探头沿样件表面移动并与表面接触时发生变形,检测出接触点的三维坐标,按采样方式又可分为单点触发式和连续扫描式两种。

CMM 对被测物体的材质和色泽没有特别要求,可达到特别高的测量精度(±0、5μm),对物体边界和特征点的测量相对精确,关于没有复杂内部型腔、特征几何尺寸多、只有少量特征曲面的规则零件反求特别有效、主要缺点是效率低,测量过程过分依赖于测量者的经验,特别是关于几何模型未知的复杂产品,难以确定最优的采样策略与路径、图1、3 逆向工程数据采集方法分类随着电子技术、计算机技术的发展,CMM也由往常的机械式发展为目前的计算机数字控制(CNC)型的高级时期、目前,智能化是CMM发展的方向。

智能测量机的研究是利用计算机内的知识库与决策库确定测量策略,其关键技术包括零件位置的自动识别技术、测量决策智能化和测量路径规划、CAD/CAM集成技术等。

正规逆向工程常用解决方案

正规逆向工程常用解决方案

正规逆向工程常用解决方案正规逆向工程是一种将已有的产品进行逆向分析和研究,以获得产品设计和技术信息的过程。

它可以帮助企业节省开发成本,提高产品质量,了解竞争对手的产品技术,并且可以为企业提供法律保护。

逆向工程可以应用于多个领域,包括软件、硬件、产品设计等。

在这篇文章中,我们将探讨正规逆向工程的常用解决方案。

1. 软件逆向工程软件逆向工程是将已有的软件进行逆向分析和研究,获取软件设计、算法和业务逻辑等信息的过程。

它可以适用于多个领域,包括信息安全、软件开发、产品研发等。

软件逆向工程的常用解决方案包括:(1)反汇编和反编译:通过将已有的二进制文件转换为可读的汇编代码或者高级语言代码,来了解软件的实现原理和算法逻辑。

(2)调试分析:通过在调试器中调试软件,可以了解软件的运行逻辑和数据流,从而获得软件的设计和实现信息。

(3)静态分析:通过对软件进行静态代码分析,可以了解软件的结构和逻辑,发现潜在的安全漏洞和性能问题。

(4)动态分析:通过对软件进行动态代码分析,可以了解软件的行为和交互过程,从而发现潜在的安全问题和性能瓶颈。

2. 硬件逆向工程硬件逆向工程是将已有的硬件进行逆向分析和研究,获取硬件设计、电路原理和技术规格等信息的过程。

它可以适用于多个领域,包括电子产品设计、电路板分析、芯片解密等。

硬件逆向工程的常用解决方案包括:(1)电路分析:通过对电路板进行分析,可以了解电路的设计和连接结构,发现电路的功能和特性。

(2)芯片解密:通过对芯片进行解密和分析,可以了解芯片的内部结构和逻辑设计,获得芯片的设计资料和技术规格。

(3)原理图反绘:通过对电路板进行反绘,可以获取电路的原理图和连接关系,为电路设计和维修提供参考。

(4)信号采集和分析:通过对硬件进行信号采集和分析,可以了解硬件的信号特性和传输方式,为硬件设计和故障诊断提供支持。

3. 产品设计逆向工程产品设计逆向工程是将已有的产品进行逆向分析和研究,获取产品的设计图纸、材料规格和制造工艺等信息的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料逆向工程常用方法
材料逆向工程是通过分析和研究已有材料的结构和性能,以便重建或模拟原始材料的过程。

以下是关于材料逆向工程常用的10种方法,并对每种方法进行详细描述。

1. 光谱分析:光谱分析是利用材料的吸收、发射或散射光的频率和强度信息,来推断和分析材料的组成和结构。

常用的光谱分析方法包括红外光谱、紫外可见光谱和拉曼光谱。

2. X射线衍射:X射线衍射可以确定材料的晶体结构和晶粒大小。

通过测量X射线与材料之间的衍射图案,可以推断出材料的晶体结构和晶体取向。

3. 扫描电子显微镜(SEM):SEM是一种高分辨率的成像技术,能够观察和分析材料的表面形貌和微观结构。

SEM可以提供有关材料的表面形貌、颗粒分布和纹理信息。

4. 透射电子显微镜(TEM):TEM是一种高分辨率的成像技术,能够观察和分析材料的内部结构和晶体缺陷。

TEM通过将电子束透射材料并测量透射电子的衍射图案,可以得到材料的高分辨率图像和晶体结构信息。

5. 原子力显微镜(AFM):AFM是一种表面形貌测量和成像技术,可以获得材料的原子级别的表面拓扑和力学性质信息。

AFM可以通过探针与材料之间的相互作用来测量表面形貌,包括原子的高度和间距。

6. 傅里叶变换红外光谱(FTIR):FTIR是一种光谱分析技术,可以测量材料对红外光的吸收和散射。

通过分析红外光的谱图,可以确定材料的化学组成和分子结构。

7. 热分析技术:热分析技术包括差示扫描量热分析(DSC)和热重分析(TGA),可以确定材料的热性质和热稳定性。

DSC可以测量材料在加热或冷却过程中的热量变化,而TGA 可以测量材料在升温或失重过程中的质量变化。

8. 质谱技术:质谱技术可以提供关于材料的分子结构和化学组成的信息。

通过将材料中的分子离子化,并通过质谱仪测量离子的质量和相对丰度,可以确定材料的分子式和结构。

9. 声波测量技术:声波测量技术可以确定材料的声学性质,包括声速、声阻抗和声波频率响应。

通过测量声波的传播速度和反射特性,可以推断材料的密度、弹性模量和声学吸收特性。

10. 磁性测量技术:磁性测量技术可以确定材料的磁性质和磁结构。

通过测量材料在不同磁场下的磁化曲线和磁滞回线,可以推断材料的磁化机制和磁性相互作用。

相关文档
最新文档