中考数学圆的最值问题(含答案)之欧阳数创编

中考数学圆的最值问题(含答案)之欧阳数创编
中考数学圆的最值问题(含答案)之欧阳数创编

数学组卷圆的最值问题

时间:2021.03.02 创作:欧阳数

一.选择题(共7小题)

1.(2014春?兴化市月考)在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C为第一象限内一点,且AC=2,设tan∠BOC=m,则m的取值范围是()

A.m≥0B.C.D.

2.(2013?武汉模拟)如图∠BAC=60°,半径长1的⊙O

与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA 长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为()

A.3B.6C.D.

3.(2014?武汉模拟)如图,P为⊙O

内的一个定点,A为⊙O上的一个动

点,射线AP、AO分别与⊙O交于B、C

两点.若⊙O的半径长为3,OP=,则

弦BC的最大值为()

A.2B.3C.D.3

4.(2015?黄陂区校级模拟)如图,扇形AOD中,

∠AOD=90°,OA=6,点P为弧AD上任意一点(不与点A和

D重合),PQ⊥OD于Q,点I为△OPQ的内心,过O,I和D三点的圆的半径为r.则当点P

在弧AD上运动时,r的值满足()

A.0<r<3B.r=3C.3<r<3D.r=3

5.(2010?苏州)如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,

0),半径为1.若D是⊙C上的一个动点,线段DA与

y轴交于点E,则△ABE面积的最小值是()

A.2B.1C.D.

6.(2013?市中区模拟)如图,已知A、B两点的坐标

分别为(8,0)、(0,﹣6),⊙C的圆心坐标为(0,7),半径为5.若P是⊙C上的一个动点,线段PB与x轴交于点D,则△ABD面积的最大值是()

A.63B.31C.32D.30

7.(2013?枣庄)如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值

是()

A.90°B.60°C.45°D.30°

二.填空题(共12小题)

8.(2013?武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG

于点H.若正方形的边长为2,则线段DH长度的最小值是.

9.(2015?黄陂区校级模拟)如图,在Rt△ABC中,

∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是.

10.(2012?宁波)如图,△ABC中,∠BAC=60°,

∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD 为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF 长度的最小值为.

11.(2015?峨眉山市一模)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=10,OA与⊙O相交于点P,AB与⊙O 相切于点B,BP的延长线交直线l于点C.若⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,则半径r的取值范围是:.

12.(2013?长春模拟)如图,在△ABC中,∠C=90°,AC=12,BC=5,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则PQ长的最小值为.13.(2013?陕西)如图,AB是⊙O的一条弦,点C是⊙O 上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为.

14.(2013?咸宁)如图,在Rt△AOB中,OA=OB=3,⊙O 的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为.15.(2013?内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.

16.(2011?苏州校级一模)如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y轴相交于点B.则线段AB的最小值是.

17.(2015秋?江阴市校级期中)如图,⊙O与正方形ABCD的两边AB、AD相切,且DE与⊙O相切于E点.若正方形ABCD的周长为28,且DE=4,则sin∠ODE=.18.(2014春?兴化市校级月考)如图所示,已知A(1,y1),B(2,y2)为反比例函数y=图象上的两点,动点P (x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是.

19.(2015?泰兴市二模)如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l 的最大值是.

三.解答题(共5小题)

20.(2013?武汉模拟)如图,在边长为1的等边△OAB 中,以边AB为直径作⊙D,以O为圆心OA长为半径作圆O,C为半圆AB上不与A、B重合的一动点,射线AC交⊙O 于点E,BC=a,AC=b.

(1)求证:AE=b+a;

(2)求a+b的最大值;

(3)若m是关于x的方程:x2+ax=b2+ab的一个根,求m的取值范围.

21.(2014春?泰兴市校级期中)如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF.连接CF交BD于G,连接BE交AG于H.已知正方形ABCD的边长为4cm,解决下列问题:

(1)求证:BE⊥AG;

(2)求线段DH的长度的最小值.

22.已知:如图,AB是⊙O的直径,在AB的两侧有定点C 和动点P,AB=5,AC=3.点P在上运动(点P不与A,B 重合),CP交AB于点D,过点C作CP的垂线,与PB的延长线交于点Q.

(1)求∠P的正切值;

(2)当CP⊥AB时,求CD和CQ的长;

(3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.

23.(2013?日照)问题背景:

如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接AB′与直线l交于点C,则点C 即为所求.

(1)实践运用:

如图(b),已知,⊙O的直径CD为4,点A在⊙O上,

∠ACD=30°,B为弧AD的中点,P为直径CD上一动点,则BP+AP的最小值为.

(2)知识拓展:

如图(c),在Rt△ABC中,AB=10,∠BAC=45°,

∠BAC的平分线交BC于点D,E、F分别是线段AD

和AB上的动点,求BE+EF的最小值,并写出解答

过程.

24.(2012?苏州)如图,已知半径为2的⊙O与直

线l相切于点A,点P是直径AB左侧半圆上的动

点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4).

(1)当x=时,求弦PA、PB的长度;

(2)当x为何值时,PD?CD的值最大?最大值是多少?25、如图,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是

AB的中点,点E在AB边上运动(点E不与点A重

A

F

合),过A、D、E三点作⊙O,⊙O交AC于另一点F,在此运动变化的过程中,线段EF长度的最小值为.

26、如图,线段AB=4,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于

△CDE,则⊙O半径的最小值为( ).

A.4

B.23

C.32

D.2

27、如图,已知直角△AOB中,直角顶点O在半径为1

的圆心上,斜边与圆相切,延长AO,BO分别与圆交于

C,D.试求四边形ABCD面积的最小值.

初中数学组卷圆的最值问题

参考答案与试题解析

一.选择题(共7小题)

1.(2014春?兴化市月考)在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C为第一象限内一点,且AC=2,设tan∠BOC=m,则m的取值范围是()

A.m≥0B.C.D.

【考点】直线与圆的位置关系;坐标与图形性质;锐角三角函数的定义.

【分析】C在以A为圆心,以2为半径的圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,根据勾股定理求出此时的OC,求出∠BOC=∠CAO,根据解直角三角形求出此时的值,根据tan∠BOC的增减性,即可求出答案.

【解答】解:C在以A为圆心,以2为半径作圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,

AC=2,OA=3,由勾股定理得:OC=,

∵∠BOA=∠ACO=90°,

∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,

∴∠BOC=∠OAC,

tan∠BOC=tan∠OAC==,

随着C的移动,∠BOC越来越大,

∵C在第一象限,

∴C不到x轴点,

即∠BOC<90°,

∴tan∠BOC≥,

故选B.

【点评】本题考查了解直角三角形,勾股定理,切线的性质等知识点的应用,能确定∠BOC的变化范围是解此题的关键,题型比较好,但是有一定的难度.

2.(2013?武汉模拟)如图∠BAC=60°,半径长1的⊙O 与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA 长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为()

A.3B.6C.D.

【考点】切线的性质.

【专题】计算题.

【分析】连接AO并延长,与圆O交于P点,当AF垂直于ED时,线段DE长最大,设圆O与AB相切于点M,连接OM,PD,由对称性得到AF为角平分线,得到∠FAD为30度,根据切线的性质得到OM垂直于AD,在直角三角形AOM 中,利用30度角所对的直角边等于斜边的一半求出AO的长,由AO+OP求出AP的长,即为圆P的半径,由三角形AED为等边三角形,得到DP为角平分线,在直角三角形PFD中,利用30度所对的直角边等于斜边的一半求出PF 的长,再利用勾股定理求出FD的长,由DE=2FD求出DE的长,即为DE的最大值.

【解答】解:连接AO并延长,与ED交于F点,与圆O交于P点,此时线段ED最大,

连接OM,PD,可得F为ED的中点,

∵∠BAC=60°,AE=AD,

∴△AED为等边三角形,

∴AF为角平分线,即∠FAD=30°,

在Rt△AOM中,OM=1,∠OAM=30°,

∴OA=2,

∴PD=PA=AO+OP=3,

在Rt△PDF中,∠FDP=30°,PD=3,

∴PF=,

根据勾股定理得:FD==,

则DE=2FD=3.

故选D

【点评】此题考查了切线的性质,等边三角形的判定与性质,勾股定理,含30度直角三角形的性质,熟练掌握切线的性质是解本题的关键.

3.(2014?武汉模拟)如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()

A.2B.3C.D.3

【考点】垂径定理;三角形中位线定理.

【分析】当OP⊥AB时,弦BC最长,根据三角形相似可以确定答案.

【解答】解:当OP⊥AC时,弦BC最长,

又∵AC是直径,

∴∠CBA=90°,所以△APO∽△ABC,

∴,

又∵OP=,

∴BC=2.

故答案选A.

【点评】本题考查了直径所对的圆周角是900这一性质的应用,以及如何取线段最值问题的做法,用好三角形相似是解答本题的关键.

4.(2015?黄陂区校级模拟)如图,扇形AOD中,

∠AOD=90°,OA=6,点P为弧AD上任意一点(不与点A和D重合),PQ⊥OD于Q,点I为△OPQ的内心,过O,I和D三点的圆的半径为r.则当点P

在弧AD上运动时,r的值满足()

A.0<r<3B.r=3C.3<r<3D.r=3

【考点】三角形的内切圆与内心.

【分析】连OI,PI,DI,由△OPH的内心为I,可得到

∠PIO=180°﹣∠IPO﹣∠IOP=180°﹣(∠HOP+∠OPH)=135°,并且易证△OPI≌△ODI,得到

∠DIO=∠PIO=135°,所以点I在以OD为弦,并且所对的圆周角为135°的一段劣弧上;过D、I、O三点作⊙O′,如图,连O′D,O′O,在优弧AO取点P′,连P′D,

P′O,可得∠DP′O=180°﹣135°=45°,得

∠DO′O=90°,O′O=3.

【解答】解:如图,连OI,PI,DI,

∵△OPH的内心为I,

∴∠IOP=∠IOD,∠IPO=∠IPH,

∴∠PIO=180°﹣∠IPO﹣∠IOP=180°﹣

(∠HOP+∠OPH),

而PH⊥OD,即∠PHO=90°,

∴∠PIO=180°﹣(∠HOP+∠OPH)=180°﹣(180°﹣90°)=135°,

在△OPI和△ODI中,

∴△OPI≌△ODI(SAS),

∴∠DIO=∠PIO=135°,

所以点I在以OD为弦,并且所对的圆周角为135°的一段劣弧上;

过D、I、O三点作⊙O′,如图,连O′D,O′O,

在优弧DO取点P′,连P′D,P′O,

∵∠DIO=135°,

∴∠DP′O=180°﹣135°=45°,

∴∠DO′O=90°,而OD=6,

∴OO′=DO′=3,

∴r的值为3.

故选:D.

【点评】本题考查的是三角形的内切圆与内心,根据题意作出辅助线,构造出全等三角形是解答此题的关键.5.(2010?苏州)如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()

A.2B.1C.D.

【考点】切线的性质;坐标与图形性质;三角形的面积;相似三角形的判定与性质.

【专题】压轴题;动点型.

【分析】由于OA的长为定值,若△ABE的面积最小,则BE 的长最短,此时AD与⊙O相切;可连接CD,在Rt△ADC 中,由勾股定理求得AD的长,即可得到△ADC的面积;易证得△AEO∽△ACD,根据相似三角形的面积比等于相似比的平方,可求出△AOE的面积,进而可得出△AOB和△AOE 的面积差,由此得解.

【解答】解:若△ABE的面积最小,则AD与⊙C相切,连接CD,则CD⊥AD;

Rt△ACD中,CD=1,AC=OC+OA=3;

由勾股定理,得:AD=2;

∴S△ACD=AD?CD=;

易证得△AOE∽△ADC,

∴=()2=()2=,

即S△AOE=S△ADC=;

∴S△ABE=S△AOB﹣S△AOE=×2×2﹣=2﹣;

另解:利用相似三角形的对应边的比相等更简单!

故选:C.

【点评】此题主要考查了切线的性质、相似三角形的性质、三角形面积的求法等知识;能够正确的判断出△BE面积最小时AD与⊙C的位置关系是解答此题的关键.6.(2013?市中区模拟)如图,已知A、B两点的坐标分别为(8,0)、(0,﹣6),⊙C的圆心坐标为(0,7),半径为5.若P是⊙C上的一个动点,线段PB与x轴交于点D,则△ABD面积的最大值是()

A.63B.31C.32D.30

【考点】一次函数综合题.

【分析】当直线BP与圆相切时,△ABD的面积最大,易证△OBD∽△PBC,根据相似三角形的对应边的比相等即可求得OD的长,则AD的长度可以求得,最后利用三角形的面积公式即可求解.

【解答】解:当直线BP与圆相切时,△ABD的面积最大.连接PC,则∠CPB=90°,

在直角△BCP中,BP===12.

∵∠CPB=90°.

∴∠DOB=∠CPB=90°

又∵∠DBP=∠CBP,

∴△OBD∽△PBC,

∴===,

∴OD=PC=.

∴AD=OD+OA=+8=,

∴S△ABD=AD?OB=××6=31.

故选B.

【点评】本题考查了切线的性质,以及相似三角形的判定与性质,理解△ADB的面积最大的条件是关键.7.(2013?枣庄)如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是()

A.90°B.60°C.45°D.30°

【考点】切线的性质;含30度角的直角三角形.

【分析】当AP与⊙O相切时,∠OAP有最大值,连结OP,根据切线的性质得OP⊥AP,由OB=AB得OA=2OP,然后根据

含30度的直角三角形三边的关系即可得到此时∠OAP的度数.

【解答】解:当AP与⊙O相切时,∠OAP有最大值,连结OP,如图,

则OP⊥AP,

∵OB=AB,

∴OA=2OP,

∴∠PAO=30°.

故选D.

【点评】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了含30度的直角三角形三边的关系.二.填空题(共12小题)

8.(2013?武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG 于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1 .

【考点】正方形的性质.

【专题】压轴题.

【分析】根据正方形的性质可得AB=AD=CD,

∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明

△ABE和△DCF全等,根据全等三角形对应角相等可得

∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等

三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.

【解答】解:在正方形ABCD中,AB=AD=CD,

∠BAD=∠CDA,∠ADG=∠CDG,

在△ABE和△DCF中,

∴△ABE≌△DCF(SAS),

∴∠1=∠2,

在△ADG和△CDG中,

∴△ADG≌△CDG(SAS),

∴∠2=∠3,

∴∠1=∠3,

∵∠BAH+∠3=∠BAD=90°,

∴∠1+∠BAH=90°,

∴∠AHB=180°﹣90°=90°,

取AB的中点O,连接OH、OD,

则OH=AO=AB=1,

在Rt△AOD中,OD===,

根据三角形的三边关系,OH+DH>OD,

∴当O、D、H三点共线时,DH的长度最小,

最小值=OD﹣OH=﹣1.

(解法二:可以理解为点H是在Rt△AHB,AB直径的半圆上运动当O、H、D三点共线时,DH长度最小)

故答案为:﹣1.

【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出DH最小时点H的位置是解题关键,也是本题的难点.

9.(2015?黄陂区校级模拟)如图,在Rt△ABC中,

∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是<CM<.

【考点】轨迹.

【分析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在△CEM中根据三边关系即可求解.【解答】解:作AB的中点E,连接EM、CE.

在直角△ABC中,AB===5,

∵E是直角△ABC斜边AB上的中点,

∴CE=AB=.

∵M是BD的中点,E是AB的中点,

∴ME=AD=1.

∴在△CEM中,﹣1<CM<+1,即<CM<.

故答案是:<CM.

【点评】本题考查了轨迹,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答.

10.(2012?宁波)如图,△ABC中,∠BAC=60°,

∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD 为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF 长度的最小值为.

【考点】垂径定理;圆周角定理;解直角三角形.

【专题】压轴题.

【分析】由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,此时线段

EF=2EH=20E?sin∠EOH=20E?sin60°,因此当半径OE最短时,EF最短,连接OE,OF,过O点作OH⊥EF,垂足为H,在Rt△ADB中,解直角三角形求直径AD,由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,在Rt△EOH中,解直角三角形求EH,由垂径定理可知EF=2EH.

【解答】解:由垂线段的性质可知,当AD为△ABC的边BC 上的高时,直径AD最短,

如图,连接OE,OF,过O点作OH⊥EF,垂足为H,

∵在Rt△ADB中,∠ABC=45°,AB=2,

∴AD=BD=2,即此时圆的直径为2,

由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,

∴在Rt△EOH中,EH=OE?sin∠EOH=1×=,

由垂径定理可知EF=2EH=.

故答案为:.

【点评】本题考查了垂径定理,圆周角定理,解直角三角形的综合运用.关键是根据运动变化,找出满足条件的最小圆,再解直角三角形.

11.(2015?峨眉山市一模)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=10,OA与⊙O相交于点P,AB与⊙O 相切于点B,BP的延长线交直线l于点C.若⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,则半径r的取值范围是:2≤r<10 .

【考点】直线与圆的位置关系.

【分析】首先证明AB=AC,再根据已知得出Q在AC的垂直平分线上,作出线段AC的垂直平分线MN,作OE⊥MN,求出OE<r,求出r范围即可.

【解答】解:连接OB.如图1,

∵AB切⊙O于B,OA⊥AC,

∴∠OBA=∠OAC=90°,

2021年中考数学总复习:专题52 中考数学最值问题(解析版)

2021年中考数学总复习:专题52 中考数学最值问题 在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。 一、解决几何最值问题的要领 (1)两点之间线段最短; (2)直线外一点与直线上所有点的连线段中,垂线段最短; (3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。 二、解决代数最值问题的方法要领 1.二次函数的最值公式 二次函数y ax bx c =++2 (a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a =-2时,y 有最小值。y ac b a min =-442; ②若a <0当x b a =-2时,y 有最大值。y ac b a max =-442。 2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。 3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得?≥0,进而求出y 的取值范围,并由此得出y 的最值。 4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。 5. 利用非负数的性质.在实数范围内,显然有a b k k 22 ++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。 6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。 7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

中考数学专题复习最值问题

两点之间线段最短关系密切.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法. 类型1 利用“垂线段最短”求最短路径问题 如图所示,AB 是一条河流,要铺设管道将河水引到C ,D 两个用水点,现有两种铺设管道的方案.方案一:分别过C ,D 作AB 的垂线,垂足分别为E ,F ,沿CE ,DF 铺设管道;方案二:连接CD 交AB 于点P ,沿PC 、PD 铺设管道.问:这两种铺设管道的方案中哪一种更节省材料,为什么? 【思路点拨】 方案一管道长为CE +DF ,方案二管道长为PC +PD ,利用垂线段最短即可比较出大小. 本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点. 1.如下左图,点A 的坐标为(-1,0),点B(a ,a),当线段AB 最短时,点B 的坐标为( ) A .(0,0) B .(22,-22) C .(-22,-22) D .(-12,-12 ) 2.在直角坐标系中,点P 落在直线x -2y +6=0上,O 为坐标原点,则|OP|的最小值为( ) A.352 B .3 5 C.655 D.10 3.如上中图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A(13,0),直线y =kx -3k +4与⊙O 交于B 、C 两点,则弦BC 的长的最小值为________. 4.如上右图,平原上有A ,B ,C ,D 四个村庄,为解决缺水问题,政府准备投资修建一个蓄水池. (1)不考虑其他因素,请你画图确定蓄水池H 点的位置,使它到四个村庄距离之和最小; (2)计划把河水引入蓄水池H 中,怎样开渠最短并说明根据. 类型2 利用“两点之间线段最短”求最短路径问题 (1)如图1,直线同侧有两点A ,B ,在直线MN 上求一点C ,使它到A 、B 之和最小;(保留作图痕迹不写作法) (2)知识拓展:如图2,点P 在∠AOB 内部,试在OA 、OB 上分别找出两点E 、F ,使△PEF 周长最短;(保留作图痕迹不写作法) (3)解决问题:①如图3,在五边形ABCDE 中,在BC ,DE 上分别找一点M ,N ,使得△AMN 周长最小;(保留作图痕迹不写作法)

中考数学几何中的最值问题综合测试卷(含答案)

中考数学几何中的最值问题综合测试卷 一、单选题(共7道,每道10分) 1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底5cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿5cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离 为()cm A. B.15 C. D.12 答案:B 试题难度:三颗星知识点:勾股定理、圆柱展开图、轴对称的性质 2.如图,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最 小值为() A.3 B.4 C.5 D.6 答案:C 试题难度:三颗星知识点:轴对称的性质、矩形的性质 3.如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,点M,N分别是AD和

AB上的动点,则BM+MN的最小值为( ) A. B. C.6 D.3 答案:A 试题难度:三颗星知识点:轴对称的性质 4.如图,当四边形PABN的周长最小时,a=(). A. B. C. D. 答案:C 试题难度:三颗星知识点:轴对称的性质 5.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上

运动,当线段AP与线段BP之差达到最大时,点P的坐标是( ) A. B.(1,0) C. D. 答案:D 试题难度:三颗星知识点:轴对称——线段之差(绝对值)最大 6.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为边AB上一动点,且PE⊥AC于点 E,PF⊥BC于点F,则线段EF长度的最小值是() A. B. C. D. 答案:C 试题难度:三颗星知识点:垂线段最短 7.如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,

中考数学要点难点分析整理复习总结

初一上册 有理数、整式的加减、一元一次方程、图形的初步认识。 (1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。 考察内容:复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。 (2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。 考察内容: ①整式的概念和简单的运算,主要是同类项的概念和化简求值 ②完全平方公式,平方差公式的几何意义 ③利用提公因式发和公式法分解因式。 (3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。 考察内容: ①方程及方程解的概念 ②根据题意列一元一次方程 ③解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。 (4)几何:角和线段,为下册学三角形打基础 初一下册

相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。 (1)相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择题形式出现。分值为3-4分,难易度为易。 考察内容: ①平行线的性质(公理) ②平行线的判别方法 ③构造平行线,利用平行线的性质解决问题。 (2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。 考察主要内容: ①考察平面直角坐标系内点的坐标特征 ②函数自变量的取值范围和球函数的值 ③考察结合图像对简单实际问题中的函数关系进行分析。 (3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。 考察内容:①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题。 (4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。 主要考察内容: ①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。 ②列不等式(组)解决经济问题,调配问题等,主要以解答题为主。 ③留意不等式(组)和函数图像的结合问题。

中考复习数学几何最值问题

几何最值问题 一、垂线段最短 1、已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距 离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是() 2、如图,在RT三角形ABC中,∠ABC=90°,∠C=30°,点D是BC上的动点,将线段AD绕点A 顺时针旋转60°至AD,连接BD,若AB=2cm,则BD’的最小值为__________ 3、如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1B1C1.点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,线段EP1长度的最小值与最大值分别是. 4\如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是▲.

5、如图,点C 是线段AB 上的一点,且AB= ,分别以AC,BC 为底作等腰ΔAEC 和等腰ΔBCF, 且∠AEC=∠BFC=120°,点P 为EF 的中点,求线段PC 长度的最小值。 6、已知菱形ABCD 的对角线AC 和BD 交于点O ,?=∠120BAD ,4=AB ,E 为OB 上的一个动点,将AE 绕点A 逆时针旋转60°,得AF ,则点F 到O 的最短距离为 . 7、如图,已知∠MON=30°,B 为OM 上一点,BA ⊥ON ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90°得CE ,连结BE ,若AB=4,则BE 的最小值为__________ 8、 如图,在△ABC 中,∠A=75°,∠C=45°,BC=4,点M 是AC 边上的动点,点M 关于直线AB 、BC 的对称点分别为P 、Q ,则线段PQ 长的取值范围是______.

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

初中数学最值问题典型例题(含解答分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为时,求正方形的边长。 A B A'′P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

2019年中考数学最值问题专题卷(含答案)

2019年中考数学最值问题专题卷(含答案) 一、单选题 1.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B' 的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是() A. 4 B. 3 C. 2 D. 1 2.如图,点A(a,3),B(b,1)都在双曲线y= 上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为() A. B. C. D. 3.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为() A. B. 2 C. 2 D. 二、填空题 4.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为________ . 5.如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________. 6.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为________.

7.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是________ 三、综合题 8.如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD,BE(如图①),点O为其交点. (1)探求AO到OD的数量关系,并说明理由; (2)如图②,若P,N分别为BE,BC上的动点. (Ⅰ)当PN+PD的长度取得最小值时,求BP的长度; (Ⅱ)如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值= .

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

中考数学题型及方法总结

初中数学中的固定题型及惯性思维 一、角平分线的考点 1.定义 2.性质(垂直于角的两边) 3.对称性(垂直于角 平分线,构造全等,得到中点) 二、中点的三个考点 1.斜边中线(直角与中点) 2.三线合一(等腰与中点) 3.中位线(两个中点) 附注:中点常见作辅助线方法:过其中一个端点作另一个端点所在直线的平行线交延长线与一点。如果其中一个端点所在直线有多条,要结合题目已知条件进行判断,一般以已知线段长度的为主。 三、等腰三角形的考点 1.等角对等边 2.等边对等角 3.三线合一 四、全等三角形 1.五个全等三角形的判定定理 2.对应边对应角相等 五、轴对称图形 1.角的对称性(性质) 2.线段的对称性(性质) 3.等腰三角形的对称性(三线合一) 附注:对称轴是直线,轴对称图形既可以是一个图形本身,比如等腰三角形是轴对称图形,也可以说两个图形关于某条直线呈轴对称图形。 六、勾股定理 1.勾股定理的公式 2.勾股定理的逆定理(可以用来证明直角或者一个三角形是直角三角形) 附注:利用图形证明勾股定理一般都是利用部分面积之和等于整体面积,另外记住几组常见的勾股数,3,4,5;6,8,10; 5,12,13; 7,24,25 七、平面直角坐标系 1.平面直角坐标系是用来确定点及图像的位置的 2.坐标轴及象限的划分

附注:如果题目说不经过第二象限,应该有两种情况,一是经过一三四象限,二是经过一三象限,做此类题目不要思维定势。 八、二次根式 1.二次根式的非负性 2.同类二次根式 3.最简二次根式 4.二次根式的比较大小 5.二次根式的加减乘除 附注:如果题目的计算结果包含根式,一定要习惯性地判断是否是最简二次根式,切记因为细节问题失分;另外代数式有意义也要注意开方数大于等于0,千万不要漏掉等号。 九、一元二次方程 1.定义(二次项系数不为0) 2.四种解法(优先考虑因式分解法,主要是十字相乘) 3.一元二次方程根的个数的判别式 4.一元二次方程根与系数的关系,即韦达定理 附注:只要一个题目是求解有关一元二次方程的根的代数式的值的题目,只有两种方法,代入法与韦达定理,如果满足韦达定理的形式就用韦达定理,除此之外,一律使用代入法。 十、二次函数 1.定义(最高次为2,二次项系数不为0) 2.二次函数的图像(开口、与X轴的交点、对称轴、顶点坐标、与Y轴的交点位置) 3.二次函数的增减性 4.二次函数的动点问题 附注:初中阶段所有函数的知识点都比较少,更多的是知识点的迁移变化与综合应用。 十一、分式方程 1.分式方程的定义(有可能考选择题) 2.分式方程的解的情况 3.已知分式方程的解的情况,求未知实数的取值范围 附注:1.增根是分式方程无解的特殊情况 2.如果告诉分式方程的解为负数,解出X之后,一方面x<0,另外千万不要忘记x不能等于增根,这个是比较容易出错的一个点。 十二、圆 1.相关定义,比如直径、圆心、弦、切线、弧、圆周角、圆心角等等 2.切线长定理 3.垂径定理 直径:直径所对圆周角是90度

2020中考数学专题汇编 几何最值 含解析

几何最值 一、选择题 1.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC ﹦1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A . 2 +1 B . 2 +1 2 C .2 2 +1 D .2 2 —1 2 {答案} B {解析}本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点C 为坐标平面内一点,BC ﹦1,所以点C 在以点B 为圆心、1长为半径的圆上,在x 轴上取OA ′=OA=2,当A ′、B 、C 三点共线时,A ′C 最大,则A ′C=2 2 +1,所以OM 的最大值为 2 +1 2 ,因此本题选B . 2.(2020·无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =1 2, 有下列结论: ①CP 与QD 可能相等; ②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31316; ④四边形PCDQ 周长的最小值为3+37 2. 其中,正确结论的序号为( ) A .①④ B .②④ C .①③ D .②③ {答案} D {解析}设AQ =x ,则BP =5 2 —x ①如图1,当点P 与B 重合时,此时QD 为最大,过点Q 作QE ⊥AC ,∵AQ =52,∴AE =54,QE =53 4,∴DE = 34,∴此时QD =212,即0≤QD ≤212;而33 2≤CP ≤3,两个范围没有交集,即不可能相等;①错误 ②若△AQD ∽△BCP ,则AD BP =AQ BC ,代入得2x 2—5x +3=0,解得x 1=1,x 2=3 2,∴都存在,∴②正确; ③如图2,过点D 作DE ⊥AB ,过点P 作PF ⊥BC ,S 四边形PCDQ =S △ABC —S △AQD —S △BPC = 34×32-12?x ?34-1 2 ×3 × D Q P C B A

中考数学动点问题最值基本题型汇总

中考数学动点问题最值基本题型汇总 一、最值类型 1.饮马型:即将军饮马型,通常为两条线段之和的最值问题,利用对称性质将其中一条线段进行转换,再利用两点之间线段最短(或三角形三边关系)得到结果。 2.小垂型:即小垂回家型,通常为一条线段的最值问题,即动点的轨迹为直线,利用垂线段最短的性质得到结果。 3.穿心型:即一箭穿心型,通常为一条线段的最值问题,即动点的轨迹为圆或弧,利用点与圆的位置关系得到结果。 4.转换型:即一加半型,通常为一条线段与另一条线段一半的和的最值问题,即将那半条线段利用三角形中位线或30°的对边等知识进行转换,再利用饮马或小垂或穿心。 5.三边型:即三角形三边关系关系型,通常利用两边之和大于第三边、两边之差小于第三边求其最大(小)值。 6.结合型:即以上类型的综合运用,大多为饮马+小垂、小垂+穿心、饮马+穿心饮马+转换等 ※二、分类例析 一、饮马型 例1:如图,在正方形ABCD中,点E在CD上,CE=3, DE=1, 点P在AC上,则PE+PD 的最小值是_____ . 解析:如图 例2:如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为____.

解析:如下图 二、小垂型 例3:如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最小值为_________. 解析:如下图 三、穿心型 例4:如图,在边长为4的菱形ABCD中,∠ABC=120°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN翻折得到△A′MN,连接A’C,则A’C长度的最小值是____. 解析:如下图

2017-中考数学-压轴专题-最值问题系列(一)

专题最值问题—— 1(几何模型) 一、归于几何模型,这类模型又分为以下情况: 1. 归于“两点之间的连线中,线段最短”。 凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。 2.归于“三角形两边之差小于第三边”。 凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。 3.利用轴对称知识(结合平移)。 4. 应用“点到直线的距离,垂线段最短。”性质。 5. 定圆中的所有弦中,直径最长;以及直线与圆相切的临界位置等等。 二、基础知识模型 (一)“将军饮马”问题 1.如图1,将军骑马从A出发,先到河边a喝水,再回驻地B,问将军怎样走路程最短? 2.如图,一位将军骑马从驻地M出发,先牵马去草地OA吃草,再牵马去河边OB喝水,最后回到驻地M,问:这位将军怎样走路程最短? 图1 图2 3. 如图,A为马厩,B为帐篷,将军某一天要从马厩牵马,先到草地一处牧马,再到河边饮马,然后回到帐篷,请你帮助确定这一天的最短路线。

(二)“造桥选址”问题(选自人教版七年级下册) 1. 如图1,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河两岸1l、l2平行,桥MN 与河岸垂直) 练习: 1. 如图,在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点, 连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值). 1题图2题图 2.已知点A是半圆上的一个三等分点,点B是弧AN的中点,点P是半径ON上的动点, 若⊙O的半径长为1,则AP+BP的最小值为__________. 3.如图3,已知点A的坐标为(-4,8),点B的坐标为(2,2),请在x轴上找到一点P,使PA+PB最小,并求出此时P点的坐标和PA+PB的最小值。

精彩初中几何最值问题全总结

一、基本图形 余不赘述,下面仅举一例证明: [定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO, AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定。 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

中考数学压轴题突破:几何最值问题大全

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡 不归、阿波罗尼斯圆等) 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。 例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上

中考数学专题复习及练习:最值(二)

2020中考数学复习微专题:最值(“胡不归”问题) 突破与提升策略 【故事介绍】 从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”) 而如果先沿着驿道AC 先走一段,再走砂石地,会不会更早些到家? 【模型建立】 如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1

即求BC +kAC 的最小值. 【问题解决】 构造射线AD 使得sin ∠DAN =k ,CH /AC =k ,CH =kAC . 将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小. 【模型总结】 在求形如“P A +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“P A +kPB ”型问题转化为“P A +PC ”型. 而这里的PB 必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB 的等线段. M M

1.如图,△ABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一 个动点,则CD + 的最小值是_______. 【分析】本题关键在于处理 ”,考虑tan A =2,△ABE 三边之比为1:2 sin ∠,故作DH ⊥AB 交AB 于H 点,则DH =. 问题转化为CD +DH 最小值,故C 、D 、H 共线时值最小,此 时 CD DH CH BE +===. 【小结】本题简单在于题目已经将BA 线作出来,只需分析角度的三角函数值,作出垂线DH ,即可解决问题,若稍作改变,将图形改造如下: 则需自行构造α,如下图,这一步正是解决“胡不归”问题关键所在. A B C D E H E D C B A A B C D E H E D C B

第11讲阿氏圆最值模型(解析版) 2020年中考数学几何模型能力提升篇(全国通用)

中考数学几何模型11:阿氏圆最值模型 名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题. 【模型来源】 “阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”. B P O

【模型建立】 如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=2 5 OB, 连接PA、PB,则当“PA+2 5 PB”的值最小时,P 点的位置如何确定? 解决办法:如图2,在线段OB 上截取OC使OC=2 5 R,则可说明△BPO与△PCO相似,则有 2 5 PB=PC。 故本题求“PA+2 5 PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、 P、C 三点共线时,“PA+PC”值最小。 【技巧总结】 计算PA k PB +g的最小值时,利用两边成比例且夹角相等构造母子型相似三角形 问题:在圆上找一点P使得PA k PB +g的值最小,解决步骤具体如下: 1.如图,将系数不为1的线段两端点与圆心相连即OP,OB

2. 计算出这两条线段的长度比 OP k OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB =g 4. 则=PA k PB PA PC AC ++≥g ,当A 、P 、C 三点共线时可得最小值 典题探究 启迪思维 探究重点 例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12 PA PB +的最小值为__________. E A B C D P 【分析】这个问题最大的难点在于转化12 PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,

2020年中考数学专题最值例练题目(有答案)

关于圆的最值问题练习以及解答 1.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点. (1)在点P 的运动过程中,线段CD 长度的取值范围为 ; (2)在点P 的运动过程中,线段AD 长度的最大值为 . 解答: (1)是AB ⊙O 的直径, 90 ACB 60309090 ABC A P A , 都是弧BC 所对的圆周角 60 A P 在Rt 中,PCD CD=CP 3 42 CP 3432 CP (2) 中,PCD 30,90CPD PCD 点D 在已CB 为弦的圆⊙O ′(红弧线上)运动 当A,O ′,D 三点共线时AD 最长 连接CO ′,BO ′ CO ′B 是等边三角形 在直角ABC 中, 90 ACB AB=4, ∠ABC=30° 3230 ? COS AB BC BO ′=DO ′=BC=32 D O C B A

∠ABC=30°,∠CBO ′=60° ∠ABO ′=90°′ 72)32(42222 BO AB AO A,O ′,D 三点共线时AD 最长 AD 最长为3272 2.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 . 解答:作AB 的中点E ,连接CE,EM,AD 在直角ABC 中, 90 ACB AC=4,BC=3 522 BC AC AB E 是AB 的中点 5.221 AB CE M 是DB 的中点 EM 是ADM 的中位线 12 1 AD EM EM CE CM CEM EM -CE 中, 在点D 运动过程中,点A,D,B 三点共线时,CM 取得最小或最大值 EM CE CM EM -CE 15.215.2 CM J 即5.35.1 CM A M D

中考数学复习方法技巧九大专题:中考数学复习方法技巧专题九:最值法解析

方法技巧专题九 最值法解析 探究平面内最短路径的原理主要有以下两种:一是“垂线段最短”,二是“两点之间,线段最短”.立体图形上的最短路径问题需借助平面展开图转化为平面问题.求平面内折线的最短路径通常用轴对称变换、平移变换或旋转变换等转化为两点之间的线段. 一、立体图形最值问题: 【例题】我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是 25 尺. 【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出. 【解答】解:如图,一条直角边(即枯木的高)长20尺, 另一条直角边长5×3=15(尺), 因此葛藤长为=25(尺). 故答案为:25. 【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解. 【同步训练】

如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是 25 . 考点:平面展开-最短路径问题. 分析:先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答. 解答:解:如图所示, ∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3, ∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长. 设蚂蚁沿台阶面爬行到B点最短路程为x, 由勾股定理得:x2=202+[(2+3)×3]2=252, 解得:x=25. 故答案为25. 点评:本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答. 二、三角形内最值问题: 【例题】(2016·广西百色·3分)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是( )

相关文档
最新文档