概念结构力学
结构力学-超静定结构概念-讲解

Ⅲ
Ⅰ
C
条件:1,2,3 不交于一点
条件:A,B,C不交于一点
2. 瞬变体系:
①点与刚片
A B C
B点:可沿公切线发 生微小位移
②两个刚片
O Ⅱ 1 2 Ⅰ 3 1 Ⅱ 2 Ⅰ 3
Ⅱ相对I可绕O点 作微小转动
Ⅱ相对I可绕无限远 一点作微小转动
瞬变体:发生微小移动后,又变为几何不变体。
(瞬变体属几何可变,不允许出现在实际结构中。)
y B
’
AB
’
’ ’
Δy
A
A
Δ θ
Δx
B
Δy
x
x
Δx
点:两个自由度 ( x, y 可独立改变 )
刚片:三个自由度 ( x, y, q 可独立改变 )
自由度: 体系独立运动的数目(可能的运动方式)。 几何不变体:自由度 = 0 (一般工程结构) 几何可变体:自由度 > 0
2.约束
•链杆 (提供1个约束) A
3.结构力学研究对象:
由细长构件组成的体系——平面杆系结构。
4.结构力学研究内容:
研究结构体系,计算其各组成部分(构件)承 担的内力。
结构的组成规律和合理形式;计算简图的合理
选择。
•组成规律: 确保体系不发生相对运动。
•合理形式:有效利用材料。 •计算简图:方便计算,又能反映实际情况。
计算结构体系中各构件的内力、结构的变形,
①主动作用于结构的外力(自重、设备、人员、风、 雪等) 。
②使结构产生内力和变形的因素(温度、基础沉 陷、地震等) 。
在实际工程中荷载估计极为重要!
2.荷载分类: •按时间 恒载:长期不变(自重等)。 活载:在施工、使用时不断变化 (楼层荷载、雪、风等)。 •按位置 固定:恒载和大部分活载(自重、雪等) 。
结构力学导论认识结构力学的重要性和基本概念

结构力学导论认识结构力学的重要性和基本概念结构力学导论:认识结构力学的重要性和基本概念结构力学是土木工程学科中的重要组成部分,它研究物体在外力作用下的力学性能。
本文将介绍结构力学的重要性以及基本概念,帮助读者更好地理解和应用结构力学知识。
一、结构力学的重要性结构力学在土木工程中具有重要的地位和作用,其重要性主要体现在以下几个方面:1.1 保障结构的安全性结构力学研究物体在外力作用下的应力分布、变形特性等,通过力学分析可以得出结构的强度、稳定性等参数,进而评估和保障结构的安全性。
合理的结构设计和施工可以有效防止结构的倒塌、失稳等事故,保护人民的生命财产安全。
1.2 提高结构的经济性结构力学可以帮助工程师在设计和施工中合理分析力学特性,优化结构的材料使用和工程造价,提高结构的经济性。
通过合理的力学计算和参数优化,可以减少材料的浪费和成本的支出,提高工程项目的效益。
1.3 支撑工程技术的发展结构力学是土木工程学科的基础和核心,对工程技术的发展起到了支撑作用。
它不仅能够为设计者提供力学分析的方法和原理,指导工程实践,还能够不断推动土木工程技术的进步和创新。
二、基本概念介绍2.1 载荷载荷是指作用于结构上的外力,例如静载、动载、温度载荷等。
结构力学研究不同载荷下结构的力学响应和变形情况,以此评估结构的安全性和稳定性。
2.2 应力应力是指物体内部单位面积上的力,常用符号σ表示。
根据受力状态的不同,应力可分为正应力和剪应力。
正应力是垂直于截面的应力,剪应力则是平行于截面的应力。
2.3 变形变形是指物体由于外力作用而改变形状和尺寸的过程。
结构力学研究物体在载荷作用下的变形规律,通过变形分析可以了解结构的稳定性及其对载荷的响应情况。
2.4 弹性弹性是指物体恢复原状的能力。
结构力学研究物体在小应力下的弹性变形,根据物体的材料特性可以得到弹性模量等参数,多用于结构计算和设计中。
2.5 破坏结构在承受过大外力或应力时可能发生破坏,破坏包括弹性和塑性两种状态。
结构力学基础

结构力学基础一、引言结构力学是工程力学的分支之一,主要研究物体在外力作用下的变形和破坏行为。
通过学习结构力学,人们可以了解结构的受力分布、变形规律以及承载能力,从而合理设计和优化各种结构体系。
本文将介绍结构力学的基础概念、原理和应用,希望读者能够对结构力学有一个全面的了解。
二、受力分析受力分析是结构力学研究的基础,它通过分析结构体系内外力的大小、方向和作用点位置,确定结构的受力状态。
受力分析可以采用静力学的方法,即利用牛顿定律和平衡方程来进行计算。
在受力分析中,我们需要确定结构的支座条件、受力方向和受力大小,以及各个受力构件之间的相互作用。
三、受力构件的内力分析在结构力学中,受力构件的内力是指构件内部的应力和应变。
内力分析是结构设计和分析的重要内容,它可以用来评估结构的承载能力和安全性。
常见的内力分析方法有力学平衡法和应力分析法。
力学平衡法通过平衡方程和受力构件的几何关系,确定构件上各点的内力大小和方向;应力分析法则通过应力和应变的关系,计算构件上各点的内力大小和分布情况。
内力分析可以帮助工程师了解结构的强度和刚度,并进行相应的优化设计。
四、变形分析变形分析是结构力学中的重要内容,它研究结构在受力作用下的变形规律和变形量。
变形分析可以通过应变能、位移方法和叠加法等不同的方法进行。
应变能方法利用材料的弹性势能和虚功原理来计算结构的变形位移;位移方法则直接利用位移方程来求解结构的变形规律;叠加法则将结构的变形分解为多个简单形式的叠加,通过求和得到整个结构的变形。
五、承载性能分析承载性能分析是结构力学的重要应用之一,它通过计算结构在极限状态下的承载能力,评估结构的安全性和可靠性。
在承载性能分析中,我们需要确定结构的强度指标、加载方式和荷载组合,采用极限平衡法、塑性极限分析法或有限元法等方法进行计算。
承载性能分析可以帮助工程师确定结构的安全工作状态和设计荷载,以确保结构在使用过程中具有足够的承载能力。
六、结构优化设计结构优化设计是结构力学的重要应用之一,它通过改变结构的形状、材料和构造,寻找最优的设计方案。
结构力学的名词解释

结构力学的名词解释结构力学是一门研究物体在受力作用下变形、应力分布和破坏形态的学科。
它应用于工程学、建筑学以及材料科学等领域,为设计和分析各种结构提供基础理论与方法。
在本文中,将对结构力学的一些重要概念进行解释。
1. 受力分析受力分析是结构力学的起点,它通过确定受力体系来研究物体在受力作用下的力学行为。
受力分析通常包括力的方向、大小和作用点等方面的确定,以及力的平衡和不平衡情况的分析。
受力分析可以通过数学模型、实验测试和计算机仿真等方法进行。
2. 变形与应变当物体受到外力作用时,会发生变形,即物体的形状、大小或位置发生改变。
变形可以分为弹性变形和塑性变形两种类型。
弹性变形是指物体在外力作用下,发生变形后能恢复到原始形态的现象;而塑性变形则是指物体在外力作用下,发生变形后无法完全恢复的现象。
应变则是衡量变形程度的物理量,表示单位长度或单位体积的变化量。
3. 应力与应力分析应力是指物体内部受到的力的效果,具体来说,是单位面积上的力的大小。
应力通常包括拉应力、压应力和剪应力三种类型。
拉应力是物体在被拉伸时的应力,压应力是物体在被压缩时的应力,而剪应力则是物体在受到切变力时的应力。
应力分析的目的是确定物体内部的应力状态,以便评估结构的稳定性和安全性。
4. 强度与刚度强度是指物体抵抗外力破坏的能力,可以分为压缩强度、拉伸强度和剪切强度等。
刚度则是衡量物体抵抗变形的性质,即物体对外力作用下的变形程度的抵抗能力。
强度和刚度是结构设计的重要考虑因素,旨在确保结构的安全性和稳定性。
5. 破坏形态破坏形态是指物体在受到过大的外力作用时,发生的结构破坏的现象。
根据物体材料和加载条件的不同,破坏形态可以分为拉断、压碎、断裂和屈服等。
破坏形态的分析有助于理解物体在极限条件下的行为,以及设计和改进结构的可靠性。
6. 力学模型与分析方法为了更好地研究和分析结构的力学行为,结构力学使用了多种力学模型和分析方法。
其中,有限元方法是一种常用的数值计算方法,通过将结构离散成许多小单元,利用数值计算的方式模拟和分析结构的应力和变形。
结构力学基础概念及原理

结构力学基础概念及原理结构力学是研究物体在受到外力作用下的变形和破坏行为的一门学科。
它是土木工程、航空航天工程和机械工程等领域中的重要基础学科,对于设计和分析各种结构的性能至关重要。
本文将介绍结构力学的基础概念和原理。
一、力的基本概念力是一种物理量,用来描述物体之间相互作用的现象。
常见的力包括重力、弹力、摩擦力等等。
力的大小用牛顿(N)作为单位,方向用箭头表示。
力的共轭现象是反作用力,即两个物体之间的相互作用力大小相等而方向相反。
二、结构的受力情况结构受到的力可以分为内力和外力。
外力是指作用在结构上的力,如重力、风力等。
内力是指结构内部的分子间力,如剪力、挠曲力等。
结构力学通过研究结构的受力情况,可以确定结构的稳定性和安全性。
三、结构的静力平衡条件结构处于静力平衡状态时,结构受力的合力和合力矩都等于零。
根据静力平衡条件,可以解析和计算结构受力情况,进而设计结构的合适尺寸和材料。
四、梁的受力分析梁是一种常见的结构元件,用来支撑和传递荷载。
在结构力学中,通过对梁的受力分析来研究梁的强度和刚度。
梁的受力分析方法包括受力图法、弹性线条法和工程力学方法等。
五、杆的受力分析杆是另一种常见的结构元件,通常用来承受拉力或压力。
在结构力学中,通过对杆的受力分析来研究杆的稳定性和强度。
杆的受力分析方法包括受力图法、截面法和位移法等。
六、结构的变形与刚度结构在受到外力作用时会发生变形,变形可以分为弹性变形和塑性变形两种情况。
弹性变形是指结构受力后恢复原状的变形,而塑性变形是指结构受力后无法恢复原状的变形。
结构的刚度可以用来描述结构对力的响应程度,刚度越大,结构变形越小。
七、结构的破坏与强度结构在承受超过其承载能力的荷载时会发生破坏。
结构力学研究结构的破坏机理和破坏模式,以确定结构的强度和安全性。
常见的结构破坏模式包括拉断、压碎、剪切和弯曲等。
结构力学基础概念及原理的理解对于工程设计和结构分析至关重要。
本文介绍了结构力学的基础概念和原理,包括力的基本概念、结构的受力情况、结构的静力平衡条件、梁和杆的受力分析、结构的变形与刚度以及结构的破坏与强度。
结构力学主要知识点归纳

结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。
通常包括以下几个方面:A、杆件的简化:常以其轴线代表B、支座和节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点。
C、体系简化:常简化为集中荷载及线分布荷载D、体系简化:将空间结果简化为平面结构2、结构分类:A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。
B、按内力是否静定划分:①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。
②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。
二、平面体系的机动分析1、体系种类A、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。
B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。
常具体划分为常变体系和瞬变体系。
2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目。
3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系。
②一个单铰为两个联系。
4、计算自由度:)2(3r h m W +-=,m 为刚片数,h 为单铰束,r 为链杆数。
A 、W>0,表明缺少足够联系,结构为几何可变;B 、W=0,没有多余联系;C 、W<0,有多余联系,是否为几何不变仍不确定。
5、几何不变体系的基本组成规则:A 、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。
B 、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。
C 、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且没有多余联系。
结构力学基础概念
结构力学基本概念第一章绪论1、建筑物和工程设施中承受..称为工程结构,简称为结构。
....的部分..、传递荷载....而起骨架作用从几何角度来看,结构可分为三类,分别为:杆件结构、板壳结构、实体结构。
2、结构力学中所有的计算方法都应考虑以下三方面条件:①力系的平衡条件或运动条件。
②变形的几何连续条件。
③应力与变形间的物理条件(或称为本构方程)。
3、结点分为:铰结点、刚结点。
铰结点:可以传递力,但不能传递力矩。
刚结点:既可以传递力,也可以传递力矩。
4、支座按其受力特质分为:滚轴支座、铰支座、定向支座、固定支座。
5、在结构计算中,为了简化,对组成各杆件的材料一般都假设为:连续的、均匀的、各向同性的、完全弹性或弹塑性的。
6、荷载是主动..作用于结构的外力。
狭义荷载:结构的自重、加于结构的水压力和土压力。
广义荷载:温度变化、基础沉降、材料收缩。
7、根据荷载作用时间的久暂,可以分为:恒载、活载。
根据荷载作用的性质,可以分为:静力荷载、动力荷载。
第二章结构的几何构造分析1、在几何构造分析中,不考虑这种由于材料的应变所产生的变形..................。
2、杆件体系可分为两类:几何不变体系------在不考虑材料应变的条件下,体系的位置和形状是不能改变的。
几何可变体系------在不考虑材料应变的条件下,体系的位置和形状是可以改变的。
3、自由度:一个体系自由度的个数..。
.......的个数...可以独立改变的坐标......,等于这个体系运动时一点在平面内有两个自由度(横纵坐标)。
一个刚片在平面内有三个自由度(横纵坐标及转角)。
4、凡是自由度..都是几何可变....体系。
.....的体系...的个数大于零5、一个支杆(链杆)相当于一个约束。
可以减少一个自由度.......。
一个单.铰(只连接两个刚片的铰)相当于两个约束。
可以减少两个自由度.......。
一个单.刚结(刚性结合)相当于三个约束,可以减少三个自由度.......。
结构力学名词解释
结构力学名词解释结构力学是力学的一个分支,主要研究刚体和物体的运动、变形、应力和应变等力学问题。
1. 刚体:刚体是指物体所有点之间的相对位置在运动或作用力下不发生改变的物体。
刚体不会发生形变,其运动可以用平动和转动两种方式描述。
2. 运动学:运动学研究物体的运动状态,主要研究物体的位移、速度和加速度等。
运动学分为平动运动和转动运动两大类。
3. 平动运动:物体的所有点在同一时间内沿着相同方向移动,并且移动的距离相等。
平动运动可以用质心的位置、速度和加速度来描述。
4. 转动运动:物体的某一点围绕某个轴进行旋转运动。
转动运动可以用角度、角速度和角加速度来描述。
5. 力:力是促使物体发生运动或变形的物理量,用矢量表示。
力的单位是牛顿(N),它等于1千克质量在1秒钟内获得的加速度。
6. 应力:应力是物体内部受到的单位面积力的大小,用矢量表示。
常用的应力有压应力和剪应力。
7. 压应力:压应力是垂直于物体表面的作用力对单位面积的大小。
压应力可以导致物体的压缩变形。
8. 剪应力:剪应力是平行于物体表面的作用力对单位面积的大小。
剪应力可以导致物体的剪切变形。
9. 应变:应变是物体在受到外力作用下发生形变的程度,用无量纲的比例表示。
常用的应变有线性应变和切变应变。
10. 线性应变:线性应变是物体的长度与原始长度之差与原始长度的比值。
线性应变可以用来描述物体的拉伸或压缩变形。
11. 切变应变:切变应变是物体内部某一点沿切面上的平均切线方向的位移与该点到切面的距离的比值。
切变应变可以用来描述物体的剪切变形。
12. 应力-应变关系:应力-应变关系描述了物体在外力作用下产生应变的规律。
材料的应力-应变关系可以通过实验得到,常用的应力-应变关系包括线弹性、非线弹性和塑性等。
以上是结构力学中的一些重要名称和概念的解释,结构力学在实际工程中具有重要的应用价值,能够帮助工程师分析和设计各种结构的力学性能。
《结构力学》知识点归纳梳理
《结构力学》知识点归纳梳理《结构力学》是土木工程、建筑工程等专业的重要基础课程之一,它主要研究物体受力作用下的力学性质及其运动规律。
结构力学的知识对于设计和分析各种工程结构具有重要意义。
以下是对《结构力学》中的一些重要知识点进行归纳梳理。
1.静力学基本原理:(1)牛顿第一定律与质点的平衡条件;(2)牛顿第二定律与质点运动方程;(3)牛顿第三定律与作用力对;(4)力的合成与分解。
2.力和力矩的概念和计算:(1)力的点表示和力的向量运算;(2)力矩的点表示和力矩的向量运算;(3)力的矢量和点表示的转换。
3.等效静力系统:(1)强心轴的概念和计算;(2)悬臂梁的等效静力;(3)等效力和等效力矩。
4.支持反力分析:(1)节点平衡法计算支持反力;(2)静力平衡方程计算支持反力。
5.算术运算法:(1)类似向量的加法和减法;(2)类似向量的数量积和向量积。
6.静力平衡条件:(1)法向力平衡条件;(2)切向力平衡条件;(3)力矩平衡条件。
7.杆件受力分析:(1)内力的概念和分类;(2)弹性力的性质和计算方法;(3)强度力的性质和计算方法。
8.杆件内力的作图法:(1)内力的几何关系;(2)内力图的作图方法。
9.杆件内力的计算方法:(1)等效系统的概念和计算方法;(2)推力与拉力的分析与计算。
10.刚性梁的受力分析:(1)刚性梁的受力模式;(2)刚性梁的截面受力分析;(3)刚性梁的等效荷载。
11.弯矩与剪力的计算方法:(1)弯矩和剪力的表达式;(2)弯矩和剪力的计算方法。
12.杆件的弯曲:(1)弯曲梁的受力分析;(2)弯曲梁的弯曲方程。
13.弹性曲线:(1)弹性曲线的概念和性质;(2)弹性曲线的计算方法。
14.梁的挠度:(1)梁的挠度方程;(2)梁的挠度计算方法。
15.梁的受力:(1)梁受力分析的应用;(2)梁的横向剪切力。
以上是对《结构力学》中的一些重要知识点的归纳和梳理。
通过学习和掌握这些知识点,可以帮助我们更好地理解结构力学的基本原理,从而能够进行工程结构的设计和分析。
结构力学与力的分解
目的:简化力的分 析,将复杂的问题 分解为简单的部分。
步骤:选择两个相 互垂直的方向作为 坐标轴,将力分解 为沿坐标轴的分力。
应用:在解决实际 工程问题时,常用 于分析力的作用点 和方向。
定义:将力分解为沿两个斜交 坐标轴的分量
目的:分析力的作用效果和方 向
步骤:选择适当的坐标轴,将 力投影到坐标轴上,得到两个 分量
力的分解在结构力学中的实践应用,不仅需要扎实的理论基础知识,还需要丰富的实践经验和 对结构的深入理解,这样才能更好地发挥其作用。
结构力学的发展 推动了力的分解 理论的完善
力的分解理论在 结构力学中的应 用促进了结构分 析的精确性
结构力学与力的 分解的相互融合 提高了工程设计 的可靠性和安全 性
力的分解理论在 结构力学中的不 断深化为复杂结 构分析提供了有 力支持
桥梁结构:利用结构力学分析桥梁的受力情况,确保安全性和稳定性。
建筑结构:通过结构力学优化建筑设计,提高建筑物的抗震、抗风等能力。
机械零件:在机械零件设计中,利用结构力学分析零件的强度和刚度,确保满足使用要求。 航空航天:在航空航天领域,结构力学为飞行器和卫星的结构设计提供理论支持,确保安全 可靠。
维护加固:对既 有建筑进行力的 分解,找出结构 缺陷,进行加固 或维护,提高建 筑的使用寿命和
安全性
力的分解在机械设计中的作用是实现力的合理传递和平衡,提高机械系统的稳定性和可靠性。
在机械设计中,通过力的分解可以将复杂的力量分析转化为简单的线性分析,简化设计过程。
力的分解可以帮助设计师更好地理解机械系统的运动规律和受力情况,从而优化设计方案。
力的单位:国际 单位是牛顿(N), 国内常用的单位 是千克力(kgf), 工程上常用的单 位是公斤力 (kgf)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理论上,支座的水平反力与梁刚度有关。 当梁刚度变化下,如果你计算出两个不同的VA,请不要慌张。
概念结构力学
梁柱刚度比例---2倍
概念结构力学
梁柱刚度比例---10倍
概念结构力学
梁柱刚度比例---2000倍
概念结构力学
梁的刚度增加, 更有利于水平荷载传递到强壮支座上。
看! VA减小了!
概念结构力学
概念结构力学
概念结构力学
超静定结构使内力分布相对均匀
概念结构力学
静定结构和超静定结构比较:
超静定结构弯矩传播距离远
概念结构力学
静定结构的最大弯矩为pa, 但超静定绝对小于pa.
差别在于:超静定结构受力点,不可以自由转动。
pa
概念结构力学
< pa
最大轴力小于p
有了我才 有大家的 共同富裕
轴力为p
对于1绞;如果上榀框架不存在,应该在
2a/3处,
但是,上榀框架存在,使右边加强,0点
应该左移;
但是,左移不能过梁中点。要解释这点
十分困难。我们尝试一下:
概念结构力学
概念结构力学
对于1绞;如果上榀框架不存在,应该在
2a/3处;
只需要考虑上榀作用,分为两个剪力与两
个弯矩; 两个剪力的作用效果,与底层框架受剪效 果完全一样,说明2a/3处0点弯矩的概念 得到加强。
1
LINE STRESS STEP=1 SUB =1 TIME=1 M6 M12 MIN =-3.587 ELEM=320 MAX =3.68 ELEM=281
Y Z X
概念结构力学
有理由相信这样的计算结果是可靠的,除了具体参数要再核实外。
加斜撑? 还是加强上下弦?
条件是材料用量 基本一致。
概念结构力学
概念1:
它基本上就是一个简支梁! 均布荷载下的简支梁! 所有关于梁的知识,不会改变!
概念结构力学
比如:
下弦杆全部受拉,且跨中最大; 上弦杆全部受压,且跨中最大。
概念结构力学
概念2:
这是一个对称结构,C点立杆上不会有任
概念结构力学
刚柔搭配要得当,配合不协调,刚者不能发挥作用
概念结构力学
3. 曲与直
力的自然属性是尽快入土为安。因此,
只要有可能,主要传力路径,就是接地的直杆;
承受剪力的直杆必然有连续的弯曲变形。
概念结构力学
力的最短传递路径
朋友们,再见,我直接 下地狱了
概念结构力学
形式上不对称,实质上对称,因为荷载特殊。
或许你觉得这个还是太难,或者觉得这个不规矩?
或者你只想坐在岸边,搭乘光波过河? 所以,彼岸是确定的,
过河的方式
是可以自己选择的。
概念结构力学
原始结构
撤除 多于 约束
基本结构1
基本结构2
基本结构3
概念结构力学
复杂结构由基本结构组成
概念结构力学
解释:如果承认支座的价值就在于承受荷 载,并保持支座处位移为0(或者保持支 座位移为给定值),那么所有的超静定结 构都不过只是多了一些未知反力、并在反 力处有确定位移的静定结构。
概念结构力学
简单看,B2的转动刚度大!
在支座转动相同的情况下, 那不是违背刚者弯矩更大的准则了吗?
概念结构力学
这是因为:
概念结构力学
可是:复杂看,B2的转动刚度还是大!
概念结构力学
下面精确计算:
Hale Waihona Puke 概念结构力学这是最后的结果!
显然,我关于右上角弯矩0点位臵判断失误。 承认这点,对我而言,确实很痛苦!
概念结构力学
因此,正如静定与超静定没有鸿沟一样,
力法与位移法没有鸿沟.
概念结构力学
我的要求是:
忘掉什么是力法,什么是位移法,
那玩意不重要,是人为了把问题系统化进 行的分类。 我们的面前,没有方法,只有问题!
概念结构力学
记住这样一句话:
人类一思考,上帝就发笑!
概念结构力学
在计算机面前,
概念结构力学
概念4:
立杆与弦的交点上,
三个弯矩必然平衡,
两个弯矩必然相等(对两个边立杆)。
上述概念十分重要,但他们不是来自方法。 事实上,我们也不可能用力法位移法计算这样复
杂的题目。
概念结构力学
那么,让我们看看框架弯矩近似计算方法!
概念结构力学
概念结构力学
这是电算成果,与概念分析结构大致一样,细部有差别。
概念结构力学
10.力法与位移法关系
力法是位移法的根,位移法是力法的果实; 力法有清晰的概念,道理很简单, 但过程不直观,容易将概念淹没在计算之中。
概念结构力学
位移法概念难懂,需要想象力, 但计算方法简单,过程很直观,
容易与结构最终的变形趋势结合,
是一种技术先进的方法。
概念结构力学
力 法
位移位
原结构利用力法和位移法化为不同的基本结构
何弯矩;它是一个压杆,只有压力!
这个杆件一定是垂直下沉的! 其他立杆以它为中心,对称倾斜!
概念结构力学
概念3:
立杆中点必然是弯矩0点!因为上弦是压,
下弦是拉,总体而言,压到拉是逐步过渡 的,显然中点连线如同简支梁的中性轴, 上下弦以它为中心转动; 将它假设为可以转动的绞,比较合理!
概念结构力学
下面讨论两个弯矩的作用效果
显然,对于左边梁,M1 与M2的作用效果
完全相反; 虽然他们的反弯点在另一个三分点上, 但由于其弯矩数值比较小(弯矩分配系数 小),使真实的弯矩0点,只能使向左偏 移,但没有越过中点的实力。
所以,我们说反弯点在稍微偏右一点的地
方。请ANSYS验证。
支座绝对没有水平反力
没有可能直接下地!
概念结构力学
连续的弯曲变形
概念结构力学
拱形结构中的直线传力路径
概念结构力学
解释: 曲线是相对直线而言的。 从拱形结构中发现直线, 是判断各个截面受力状态的一种简便方法。 对连续介质力学而言,所有的变形曲线必须分段光滑, 或者整体光滑。
概念结构力学
4. 远与近关系
<结构力学>十大关系
---------课程阶段总结
概念结构力学
1. 强与弱的关系
在机制公平条件下,强者承担更多荷载 。
概念结构力学
概念结构力学
解释: 强弱, 指支座约束的强弱. 机制公平, 是指AC与BD线 刚度相同。图中CD线刚度为无穷大. 实际上, CD刚度为任一 值,结论不变。
概念结构力学
概念结构力学
因此,刚柔是相对的,不是绝对的!
柱与梁比较
当梁柱刚度比不断增大,反弯点不断下移,直到最后稳定在柱子中点。
概念结构力学
概念结构力学
当梁的刚度无穷大的时候,三根柱子的最大弯矩与支座剪力 完全一样;但是,一般条件下,中间柱子弯矩与剪力最大。 请注意实际反弯点与水平刚度无穷大反弯点的细小差距。
概念结构力学
概念结构力学
1
LINE STRESS STEP=1 SUB =1 TIME=1 SMISC1 SMISC7 MIN =-668.819 ELEM=240 MAX =239.403 ELEM=15
Y
对前面框架,计算机计算的轴力图。请大家注意,中柱轴力为0。 Z X
概念结构力学
1
LINE STRESS STEP=1 SUB =1 TIME=1 SMISC6 SMISC12 MIN =-1109 ELEM=1 MAX =1158 ELEM=120
会生活中的偏差---那么大!
概念结构力学
2. 刚与柔的关系
在机制公平条件下,刚者承担更多荷载。
概念结构力学
柱与柱比较
解释: 刚与柔是指杆件体系的抗弯抗剪线刚度。线刚度大者, 刚;线刚度小者,柔。这里没有绝对的标准,只是比较而言。 本图中,BD线刚度是AC线刚度的2倍,那末,VB是VA的两倍。 机制十分公平。
因此,这里涉及一个传导机制问题
梁刚度越大,传导水平力的机制越好,支
座B的强,越能够发挥作用;
如果梁刚度越小,传导机制越差,支座强
的能力显现不出来,VA,与VB的差别越小。
这正如。。。
概念结构力学
中央有个好政策,
由于中层干部故意曲解误解,导致下层执
行结果的偏差。
不过要记住,结构力学中的偏差,没有社
当判断结果与计算结果矛盾的时候, 首先怀疑自己, 其次是怀疑计算机。
概念结构力学
概念结构力学的第二条原则是:
在开始学习概念结构力学之前,所有判断
工具来自结构的变形趋势;
在应用概念结构力学的时候,所有判断工
具,来自基本超静定结构的完整解答。
概念结构力学
对称结构在中间支座的位移下内力对称
请大家注意:ANSYS 有自己的内外之分,所以,同样的弯矩用不同颜色。
Z X
Y
概念结构力学
解释:对称与反对称的利用,是学习 结构力学的高级技术, 也是上帝管理 地球的美学原则。问题是我们要理解 他的苦心。
概念结构力学
9. 原结构与基本结构 原结构是彼岸,基本结构是渡船。
你是准备租船呢,(结构概念分析) 还是准备造船(位移法) ? 或者你体力超强,游泳过河?--力法!
概念结构力学
概念结构力学
这大致是概念结构力学的魅力了
1)按8,9不离10的标准,概念结构力学
的精度足够了; 2)所有的原则---如刚度大小原则, 荷载远近原则,对称与反对称原则,剪力 等刚度分配原则,基本上全能满足。 3)也有不如人意的地方。误差最大达20 %。但绝对没有方向错误。
概念结构力学
一次超静定,使全部杆件都受力