6绝对值(二)学案
北师大版七年级数学上册:2.3 绝对值 学案2

绝对值
【学习目标】
1.一个数的绝对值,就是在数轴上该数所对应的点与原点的距离;
2.会求一个已知数的绝对值。
【学习重难点】
学习重点:知道一个数的绝对值的意义。
学习难点:数形结合思想的渗透,会在数轴上表示一个数的绝对值。
【学习过程】
一、问题情境
1.小明家在学校西边3公里处,小李家在学校东边2公里处,他们两家与学校都在同一条直线上,你能画数轴表示它们的位置吗?
它们到学校的距离分别是多少?
2.数轴上任一个数所对应的点到原点的距离,就叫这个数的绝对值。
距离不可能为负的,所以一个数的绝对值也不会为负。
0到原点的距离就是0.
即:任何一个数的绝对值均大于或等于0(即非负数)。
二、例题评讲
例1.说出数轴上点A,B,C,D,E所表示的数的绝对值。
例2.求—3.5与3的绝对值,并比较它们的大小。
强调:绝对值用符号“︱︱”表示,如-5的绝对值记作︱-5︱,︱-5︱=5
它与()不同,它表示一种运算,有这种运算时要先对它进行计算。
3︱= ,︱-4.7︱= ,︱0︱= 例3.填空:︱-3︱= ,︱
4
-︱-3︱= ,︱-3︱+︱-4︱= 。
人教版七年级数学上册《有理数——绝对值》教学PPT课件(3篇)

非__正__数__的绝对值是它的相反数.
1
2.|- 1 |的相反数是
3
-3
;若| a |=2,则
a= _±__2__.
3.化简: | 0.2 |= 0.2
-273 =
27 3
| b |= -b (b<0)
| a – b | = a-b (a>b)
课堂总结
1.绝对值的定义:数轴上表示数a的点与原点的距离叫做数a
同类型题检测:学案课堂练习第2题
活动形式:1、学生独立思考 2、小组讨论,每一组拍一份答案上传 3、展示小组讨论结果,互评评优,找到问题所在,有针对性的点评讲解
同类型题检测:
已知|a -1|+|b+2|=0,求a+b的值
巩固练习:学案课堂练习第4题 4.正式排球比赛对所用的排球重量是有严格规定的,现检查5个排球的重量,超 过规定重量的克数记作正数,不足规定重量的克数记作负数,检查结果如下:
A.a>b>c B.b>c>a C.c>a>b D.b>a>c
知识点二:运用法则比较有理数的大小
学生自学问题展示:
展示学案对应部分学生的典型问题
知识点二:运用法则比较有理数的大小
同桌讨论:两个负数之间如何比较大小? 要点梳理: (1)正数大于0,负数小于0,正数大于负数; (2)两个负数,绝对值大的反而小.
活动形式:1、学生独立完成,拍照上传, 2、老师给出标准答案,互评 3、展示互评结果,找到问题所在,有针对性的点评讲解
学生自学问题展示:学案课前自主学习任务第7题
同类题检测:
(1)绝对值等于2的数是 2或-2 ,
(2)绝对值等于0的数是 0
学案6 山西大学附中高一年级含绝对值不等式的解法 高一

山西大学附中高中数学(必修1)学案 编号6含绝对值不等式的解法【学习目标】1. 掌握一些简单的含绝对值的不等式的解法;2. 理解含绝对值不等式的解法思想:去掉绝对值符号,等价转化【学习重点】会解简单的含绝对值的不等式【学习难点】解含绝对值不等式过程中的等价转化【学习过程】一.导读复习回顾 (1)绝对值的定义:a R ∀∈,||a ⎧⎪=⎨⎪⎩(2)绝对值的几何意义:10. 实数a 的绝对值||a ,表示数轴上坐标为a 的点A20.任意两个实数,a b ,它们在数轴上对应的点分别为,A B ,那么||a b -几何意义是新知导学:含绝对值不等式的解法1.设a 为正数, 根据绝对值的意义,不等式a x <的解集是2.设a 为正数, 根据绝对值的意义,不等式a x >的解集是3.设a 为正数, 则10.()f x a <⇔; 20.()f x a >⇔; 30. 设0b a >>, 则()a f x b ≤<⇔ ;4.10. ()f x ≥()g x ⇔ ; 20. ()()f x g x <⇔ . 解题方法:1.解含绝对值的不等式的基本思想是去掉绝对值符号2.去掉绝对值的主要方法有:(1)公式法:|| (0)x a a a x a <>⇔-<<,|| (0)x a a x a >>⇔>或x a <-.(2)定义法:00x x x x x ≥⎧=⎨-≤⎩,零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方ax b c -<()0c >⇔()22ax b c -<3.解绝对值不等式的其他方法:(1)利用绝对值的几何意义法: (2) 利用函数图象法:原理:不等式()()f x g x >的解集是函数()y f x =的图象位于函数()y g x =的图象上方的点的横坐标的集合.二.导练例1解关于x 的不等式(1)5|500-x |≤ (2) 4|23|7x <-≤(3)213+<-x x (4)x x ->-213(5)|2||1|x x -<+ (6)22+>+x x x x例2 解关于x 的不等式 (1)52312≥-++x x (2)512≥-+-x x三.目标检测1.若不等式26ax +<的解集为()1,2-,则实数a 等于 ( ).A 8 .B 2 .C 4- .D 8-2.不等式1|1|3x <+<的解集为( ).A (0,2) .B (2,0)(2,4)- .C (4,0)- .D (4,2)(0,2)--3.不等式()120x x ->的解集是( ).A )21,(-∞ .B )21,0()0,(⋃-∞ .C ),21(+∞ .D )21,0( 4.已知{23}A x x a =-<,{B x x =≤10},且A B ⊂≠,求实数a 的范围。
绝对值学案

里辛一中导学案初 一 数学 课题: 绝对值 备课时间: 2012.9.7课堂寄语:数学王子高斯说:“给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登。
” 学习 目标 1、借助数轴,初步理解相反数和绝对值的概念。
2、能求一个数的相反数和绝对值,会利用绝对值比较两个负数的大小。
3、通过应用绝对值解决实际问题,体会绝对值的意义和作用重难点 相反数和绝对值的概念及意义负数的大小比较学 习 过 程师生共享 (二次备课)一、知识回顾 夯实基础1、规定了 、 和 的直线叫做数轴。
2、用数轴上的点表示下列各数:3、数轴上两个点表示的数, 总比 的大。
大于0,负数 ,正数 负数。
二、自主学习 探究新知活动一:3与-3,23与-23,5与-5有什么相同点?能否举两个例子? 归纳:如果两个数只有符号不同,那么称其中一个为另一个的相反数,也称这两个数互为相反数。
特别的,0的相反数是 。
小试身手:写出下列各数的相反数321 ,-0.25 ,0 ,30 ,-15 ,0.5 活动二:1、将3与-3,23与-23,5与-5三组数用数轴上的点表示出来。
2、每组数所对应的点在数轴上的位置有什么关系?3、在数轴上表示-3和3的点,它们到原点的距离分别是 。
归纳:①在数轴上,表示互为相反数的两个点,位于 ,且与原点的距离 。
②在数轴上,一个数所对应的点与原点之间的距离叫做这个数的 。
通常把有理数a 的绝对值记作 。
例如,+2的绝对值等于2,它表示在数轴上 与 的距离,记作|+2|=2;-3的绝对值等于 ,它表示数轴上 与 的距离,记作:= 。
小试身手:求出下列各数的绝对值6, -6, -3.2, 0,我又学到了:互为相反数的两个数的绝对值 .三、知识互动 合作共赢1、求出下列各数的绝对值: (1)|+4|= .|51|= .|+7.4|= . (2)|-2|= .|-0.3|= .|-72|= . (3)|0|= . 你发现了什么规律?① 。
高中数学 第六章 含绝对值的不等式教学案 苏教版

第十七教时教材:含绝对值的不等式目的:要求学生掌握和、差的绝对值与绝对值的和、差的性质,并能用来证明有关含绝对值的不等式。
过程:一、复习:绝对值的定义,含有绝对值的不等式的解法当a >0时,a x a x a x ax a a x -<>⇔><<-⇔<或||||二、定理:||||||||||b a b a b a +≤+≤-证明:∵|||||)||(|||||||||b a b a b a b b b a a a +≤+≤+-⇒⎭⎬⎫≤≤-≤≤- ||||||b a b a +≤+⇒ ①又∵a =a +b -b |-b |=|b |由①|a |=|a +b -b |≤|a +b |+|-b | 即|a |-|b |≤|a +b | ②综合①②: ||||||||||b a b a b a +≤+≤-注意:1︒ 左边可以“加强”同样成立,即||||||||||b a b a b a +≤+≤-2︒ 这个不等式俗称“三角不等式”——三角形中两边之和大于第三边,两边之差小于第三边3︒ a ,b 同号时右边取“=”,a ,b 异号时左边取“=”推论1:||21n a a a +++ ≤||||||21n a a a +++推论2:||||||||||b a b a b a +≤-≤-证明:在定理中以-b 代b 得:|||||)(|||||b a b a b a -+≤-+≤--即:||||||||||b a b a b a +≤-≤-三、应用举例例一 至 例三见课本P26-27略例四 设|a |<1, |b |<1 求证|a +b |+|a -b |<2证明:当a +b 与a -b 同号时,|a +b |+|a -b |=|a +b +a -b |=2|a |<2当a +b 与a -b 异号时,|a +b |+|a -b |=|a +b -(a -b )|=2|b |<2∴|a +b |+|a -b |<2例五 已知21)(x x f += 当a ≠b 时 求证:|||)()(|b a b f a f -<- 证一:1111|11||)()(|222222+++--+=+-+=-b a b a b a b f a f |||||)(||||))((|11||222222b a b a b a b a b a b a b a b a +-+=+-+<+++-= |||||||||)||(|b a b a b a b a -=+-+≤ 证二:(构造法) 如图:21)(a a f OA +== 21)(b b f OB +==||||b a AB -= 由三角形两边之差小于第三边得:|||)()(|b a b f a f -<-四、小结:“三角不等式”五、作业:P28 练习和习题6.5。
七年级数学上册人教版绝对值专题(课堂学案及配套作业)(解析版)

期末复习绝对值专题(解析版)第一部分教学案类型一利用绝对值的性质求值例1(2022秋•江岸区校级月考)已知|x|=3,|y|=5.(1)若x<y,求x+y的值;(2)若xy<0,求x﹣y的值.思路引领:由题意可知x=±3,y=±5,(1)由于x<y时,有x=3,y=5或x=﹣3,y=5,代入x+y即可求出答案;(2)由于xy<0,x=﹣3,y=5或x=3,y=﹣5,代入x﹣y即可求出答案.解:由题意知:x=±3,y=±5,(1)∵x<y,∴x=±3,y=5,∴x+y=2或8;(2)∵xy<0,∴x=﹣3,y=5或x=3,y=﹣5,∴x﹣y=±8.总结提升:本题考查有理数的运算,绝对值的性质,涉及代入求值,分类讨论的思想,属于基础题型.变式训练1.(2022秋•方城县校级月考)已知|x|=3,|y|=7.(1)若x<y,求x+y的值;(2)若x>y,求x﹣y的值.思路引领:(1)先求得x=±3,y=±7,再根据条件求出x、y即可求解;(2)根据条件求得x、y,进而求解即可.解:(1)∵|x|=3,|y|=7,∴x=±3,y=±7,∵x<y,∴x=﹣3,y=7或x=3,y=7,当x=﹣3,y=7时,x+y=﹣3+7=4;当x=3,y=7时,x+y=3+7=10,∴x+y的值为4或10;(2)∵x>y,∴x=﹣3,y=﹣7或x=3,y=﹣7,当x =﹣3,y =﹣7时,x ﹣y =﹣3+7=4, 当x =3,y =﹣7时,x ﹣y =3+7=10, ∴x ﹣y 的值为4或10.总结提升:本题考查代数式求值、绝对值的性质,根据题设求得对应的x 、y 是解答的关键.类型二 利用绝对值的性质去绝对值例2 已知a <﹣b ,且ab >0,化简|a |﹣|b |+|a +b |+|ab |= .思路引领:根据题中的条件判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果. 解:∵a <﹣b ,且ab >0,∴a +b <0,a ,b 同号,都为负数, 则原式=﹣a +b ﹣a ﹣b +ab =﹣2a +ab . 故答案为:﹣2a +ab总结提升:此题考查了整式的加减,以及绝对值,判断出绝对值里边式子的正负是解本题的关键.例3(2021秋•渝中区校级期中)已知有理数a ,b ,c 在数轴上面的位置如图所示:化简|a +b |﹣|c ﹣a |+|b ﹣c |= .思路引领:根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可. 解:由图可知b <0<a <c , 则a +b <0,c ﹣a >0,b ﹣c <0, ∴原式=﹣a ﹣b ﹣c +a ﹣b +c =﹣2b . 故答案为:﹣2b .总结提升:本题考查了整式的加减、数轴及绝对值的知识,掌握数轴上右边的数总比左边的数大是解答本题的关键. 变式训练1.(2022秋•江岸区期中)如图,数轴上的点A 、B 、C 、D 对应的数分别为a 、b 、c 、d ,且这四个点满足每相邻的两点之间的距离相等. (1)化简|a ﹣c |﹣|b ﹣a |﹣|b ﹣d |. (2)若|a |=|c |,b ﹣d =﹣4,求a 的值.思路引领:(1)根据数轴得到a<b<c<d,得到a﹣c<0 b﹣a>0 b﹣d<0,根据绝对值的性质和去括号法则计算;(2)根据题意得到B点为原点,即b=0,根据数轴的概念解答.解:(1)由图可知:a<b<c<d∴a﹣c<0 b﹣a>0 b﹣d<0,∴原式=﹣(a﹣c)﹣(b﹣a)﹣[﹣(b﹣d)]=﹣a+c﹣b+a﹣d+b=c﹣d;(2)∵|a|=|c|,a<c,AB=BC∴B点为原点,∴b=0,∵b﹣d=﹣4,∴d=4,∴a=﹣2.总结提升:本题考查的是数轴和绝对值,掌握绝对值的性质,数轴的概念是解题的关键.2.(2021秋•贡井区期中)如图,数轴上的点A,B,C,D,E对应的数分别为a,b,c,d,e,且这五个点满足每相邻两个点之间的距离都相等.(1)填空:a﹣c0,b﹣a0,b﹣d0(填“>“,“<“或“=“);(2)化简:|a﹣c|﹣2|b﹣a|﹣|b﹣d|;(3)若|a|=|e|,|b|=3,直接写出b﹣e的值.思路引领:(1)根据数轴得出a<b<c<d<e,再比较即可;(2)先去掉绝对值符号,再合并同类项即可;(3)先求出b、e的值,再代入求出即可.解:(1)从数轴可知:a<b<c<d<e,∴a﹣c<0,b﹣a>0,b﹣d<0,故答案为:<,>,<;(2)原式=|a﹣c|﹣2|b﹣a|﹣|b﹣d|=﹣a+c﹣2(b﹣a)﹣(d﹣b)=﹣a+c﹣2b+2a﹣d+b=a﹣b+c﹣d;(3)|a|=|e|,∴a、e互为相反数,∵|b|=3,这五个点满足每相邻两个点之间的距离都相等,∴b=﹣3,e=6,∴b﹣e=﹣3﹣6=﹣9.总结提升:本题考查了数轴,绝对值,相反数和有理数的大小比较等知识点,能根据数轴得出a<b<c<d<e是解此题的关键.类型三利用绝对值的非负性求值例4(2009秋•新华区校级月考)已知|a+2|+|b﹣3|=0,求a和b的值.思路引领:直接根据非负数的性质进行解答即可.解:∵|a+2|+|b﹣3|=0,∴a+2=0,b﹣3=0,解得a=﹣2,b=3.总结提升:本题考查的是非负数的性质,根据绝对值的性质得出a+2=0,b﹣3=0是解答此题的关键.变式训练1.(2020秋•洪山区校级月考)已知|a﹣1|=3,|b﹣3|与(c+1)2互为相反数,且a<b,求代数式2a﹣b+c﹣abc的值.思路引领:利用绝对值的代数意义,非负数的性质确定出各自的值,代入原式计算求出值.解:∵|a﹣1|=3,|b﹣3|与(c+1)2互为相反数,且a<b,∴a﹣1=3或a﹣1=﹣3,|b﹣(c+1)2=0,解得:a=4或﹣2,∵a<b,∴a=﹣2,b=3,c=﹣1,原式=2×(﹣2)﹣3+(﹣1)﹣(﹣2)×3×(﹣1)=﹣14.总结提升:此题考查了有理数的混合运算,以及非负数的性质,熟练掌握运算法则是解本题的关键.类型四aa类型问题例5(2022秋•隆昌市校级月考)阅读下列材料并解决有关问题,我们知道|x|={x(x>0)0(x=0)−x(x<0),当x>0时,x|x|=xx=1,当x<0时,x|x|=x−x=−1.且当x>0,y<0时,xy<0.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当a<0,b>0时,a|a|+b|b|=.(2)已知a,b是有理数,当ab≠0时,a|a|+b|b|=.(3)已知a,b,c是有理数,a+b+c=0,abc<0,求b+c|a|+a+c|b|+a+b|c|的值.思路引领:(1)根据“当x>0时,x|x|=xx=1,当x<0时,x|x|=x−x=−1”进行计算即可;(2)分三种情况进行解答,即a、b同正,同负,一正一负进行解答即可;(3)由a+b+c=0可得a+b=﹣c,a+c=﹣b,b+c=﹣a,进而将原式变为−a|a|−b|b|−c|c|,再根据(1)的解法进行计算即可.解:(1)∵a<0,∴|a|=﹣a,∴a|a|=a−a=−1,又∵b>0,∴|b|=b,∴b|b|=bb=1,∴a|a|+b|b|=0;故答案为:0;(2)当a>0,b>0时,a|a|+b|b|=1+1=2,当a>0,b<0时,a|a|+b|b|=1﹣1=0,当a<0,b>0时,a|a|+b|b|=−1+1=0,当a<0,b<0时,a|a|+b|b|=−1﹣1=﹣2,故答案为:﹣2或0或2;(3)∵a+b+c=0,∴a+b=﹣c,a+c=﹣b,b+c=﹣a,∴原式=−a|a|−b|b|−c|c|,又∵a+b+c=0,abc<0,∴a、b、c中有一个负数,两个正数,∴原式=−a |a|−b |b|−c |c|=﹣1﹣1+1 =﹣1, 答:b+c |a|+a+c |b|+a+b |c|的值为﹣1.总结提升:本题考查绝对值,理解“当x >0时,x|x|=x x=1,当x <0时,x|x|=x −x=−1”是解决问题的关键. 变式训练1.(2017秋•邛崃市期末)设a +b +c =0,abc >0,则b+c |a|+c+a |b|+a+b |c|的值是 .思路引领:由a +b +c =0,abc >0,可知a 、b 、c 中二负一正,将b +c =﹣a ,c +a =﹣b ,a +b =﹣c 代入所求代数式,可判断−a |a|,−b |b|,−c |c|中二正一负.解:∵a +b +c =0,abc >0, ∴a 、b 、c 中二负一正,又b +c =﹣a ,c +a =﹣b ,a +b =﹣c , ∴b+c |a|+c+a |b|+a+b |c|=−a |a|+−b |b|+−c |c|,而当a >0时,−a |a|=−1,当a <0时,−a |a|=1,∴−a |a|,−b |b|,−c |c|的结果中有二个1,一个﹣1,∴b+c |a|+c+a |b|+a+b |c|的值是1.故答案为:1.总结提升:此题考查的知识点是绝对值,判断a 、b 、c 的符号是解题的关键. 类型五 多绝对值问题例6 (2020秋•恩施市月考)已经知道|x |的几何意义是数轴上数x 所对应的点与原点之间的距离,即|x ﹣0|,也就是说,表示数轴上的数x 与数0之间的距离,这个结论可以推广为,|x 1﹣x 2|表示数x 1与数x 2对应点之间的距离. 例1:已知|x |=2,求x 的值.解:在数轴上与原点的距离为2的点表示的数为﹣2和2,所以x 的值为2或者﹣2. 例2:已知|x ﹣1|=2,求x 的值.解:在数轴上与1对应的点的距离为2的点表示的数为3和﹣1,所以x 的值为3或者﹣1.根据两个例子,求解:(1)|x﹣1|=5,求x.(2)|x+1|=5,求x.(3)|x+3|+|x﹣3|=6,找出所有符合条件的整数x.思路引领:通过对例题的理解,根据数轴的性质,找到在数轴上对应的点,即可求解.解:(1)在数轴上与1对应的点的距离为5的点表示的数为﹣4和6,所以x的值为﹣4或者6;(2)在数轴上与(﹣1)对应的点的距离为5的点表示的数为4和﹣6,所以x的值为4或者﹣6;(3)在数轴上与(﹣3)对应的点的距离加上在数轴上与3对应的点的距离之和为6,因为(﹣3)到3的距离为6,所以x只有在(﹣3)与3之间可以满足表达式,x可以取:﹣3,﹣2,﹣1,0,1,2,3.总结提升:本题主要考查了数轴结合绝对值的应用,绝对值性质在数轴上双向表示方法是解决问题的关键.类型六绝对值最值问题例7(2018秋•雨花区校级月考)同学们都知道,|2﹣(﹣1)|表示2与﹣1的差的绝对值,实际上位可理解为在数轴上正数2对应的点与负数﹣1对应的点之间的距离,试探索:(1)|2﹣(﹣1)|=;如果|x﹣1|=2,则x=.(2)求|x﹣2|+|x﹣4|的最小值,并求此时x的取值范围;(3)由以上探索已知(|x﹣2|+|x+4|)+(|y﹣1|+|y﹣6|)=20,则求x+y的最大值与最小值;(4)由以上探索及猜想,计算x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2017|+|x﹣2018|的最小值.思路引领:(1)根据绝对值的意义直接计算即可;(2)把|x﹣2|+|x﹣4|理解为:在数轴上表示x到﹣4和2的距离之和,根据两点间的距离公式,点在线段上,可得最小值,从而得结论;(3)先确定x、y的取值范围,再分类讨论.(4)观察已知条件可以发现,|x﹣a|表示x到a的距离.要使题中式子取得最小值,则应该找出与最小数和最大数距离相等的x的值,此时式子得出的值则为最小值.解:(1)|2﹣(﹣1)|=|2+1|=3,|x﹣1|=2,x﹣1=2或x﹣1=﹣2x=3或﹣1故答案为:3,3或﹣1;(2)∵|x﹣2|+|x﹣4|理解为:在数轴上表示x到4与2的距离之和,∴当x 在2与4之间的线段上(即2≤x ≤4)时,|x ﹣2|+|x ﹣4|的值有最小值,最小值为4﹣2=2,此时x 的取值范围为:2≤x ≤4.(3)因为x ﹣2=0,x +4=0时,x =2或﹣4,y ﹣1=0,y ﹣6=0时,y =1或6. 当x <﹣4时,|x ﹣2|+|x +4|=2﹣x ﹣x ﹣4=﹣2x ﹣2;当﹣4≤x ≤2时,|x ﹣2|+|x +4|=2﹣x +x +4=6;当x >2时,|x ﹣2|+|x +4|=x ﹣2+x +4=2x +2;当y <1时,|y ﹣1|+|y ﹣6|=1﹣y +6﹣y =﹣2y +7;当1≤y ≤6时,|y ﹣1|+|y ﹣6|=y ﹣1+6﹣y =5;当y >6时,|y ﹣1|+|y ﹣6|=y ﹣1+y ﹣6=2y ﹣7; 当x <﹣4,y <1时,x +y 取最小值, 此时(﹣2x ﹣2)+(﹣2y +7)=20 x +y =−152当x >2,y >6时,x +y 取最大值, 此时(2x +2)+(2y ﹣7)=20 x +y =252所以x +y 的最大值是252,最小值是−152.(4)由已知条件可知,|x ﹣a |表示x 到a 的距离,只有当x 到1的距离等于x 到2018的距离时,式子取得最小值. ∴当x =1+20182=1009.5时,式子取得最小值, 此时,|x ﹣1|+|x ﹣2|+|x ﹣3|+…+|x ﹣2017|+|x ﹣2018|=|1009.5﹣1|+|1009.5﹣2|+|1009.5﹣3|+…+|1009.5﹣2016|+|1009.5﹣2017|+|1009.5﹣2018| =2(1008.5+1007.5+…+2.5+1.5+0.5) =2×[0.5×1009+(1+2+3…+1008)] =2×(504.5+1008(1+1008)2) =1018081.总结提升:本题考查了绝对值,读懂题目信息,理解绝对值的几何意义是解题的关键. 变式训练1.(2022秋•灌南县校级月考)认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A ,B 两点在数轴上分别表示有理数a ,b ,那么A ,B 两点之间的距离可表示为|a ﹣b |.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是,②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的取值在的范围时,|x|+|x﹣2|的最小值是;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.思路引领:(1)根据两点间的距离公式,可得答案;(2)根据两点间的距离公式,点在线段上,可得最小值;(3)|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|,根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到2之间(包括﹣1、2)的任意一个数,要使|x ﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可;(4)根据两点间的距离公式,点在线段上,可得答案.解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|.故答案为:|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4.故答案为:﹣2,4;②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x ﹣2|取得最小值,这个最小值是2;故答案为:4;不小于0且不大于2;2;4,2;(3)由分析可知,当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x+1|+|x+2|=(|x﹣3|+|x+2|)+(|x﹣2|+|x+1|),要使|x﹣3|+|x+2|的值最小,x的值取﹣2到3之间(包括﹣2、3)的任意一个数,要使|x ﹣2|+|x+1|的值最小,x取﹣1到2之间(包括﹣1、2)的任意一个数,显然当x取﹣1到2之间(包括﹣1、2)的任意一个数能同时满足要求,不妨取x=0代入原式,得|x﹣3|+|x ﹣2|+|x+1|+|x+2|=3+2+1+2=8;方法二:当x取在﹣1到2之间(包括﹣1、2)时,|x﹣3|+|x﹣2|+|x+1|+|x+2|=﹣(x﹣3)﹣(x﹣2)+(x+1)+(x+2)=﹣x+3﹣x+2+x+1+x+2=8.总结提升:本题考查了列代数式、数轴、绝对值,读懂题目信息,理解绝对值的几何意义是解题的关键.第二部分配套作业1.(2020秋•江汉区校级期末)下列说法:①|a|=﹣a,则a为负数;②数轴上,表示a、b 两点的距离为a﹣b;③|a+b|=a﹣b,则a>0,b=0或a=0,b<0;④|a+b|=|a|﹣|b|,则ab≤0.其中正确的有()个.A.1B.2C.3D.4思路引领:根据绝对值的性质,数轴的概念计算,判断即可.解:|a|=﹣a,则a为非正数,①错误;数轴是表示a、b两点的距离为|a﹣b|,②错误;|a+b|=a﹣b,则a>0,b=0或a=0,b<0或a=0,b=0,③错误;|a+b|=|a|﹣|b|,则ab≤0.④正确;故选:A.总结提升:本题考查的是数轴的概念,绝对值的性质,掌握绝对值的性质,灵活运用分情况讨论思想是解题的关键.2.(2022秋•江岸区校级期中)下列说法正确的个数为()①如果|a|=a,那么a>0;②使得|x﹣1|+|x+3|=4的x的值有无数个;③用四舍五入法把数2005精确到百位是2000;④几个数相乘,积的符号一定由负因数的个数决定,当负因数的个数为偶数时积为正A.0个B.1个C.2个D.3个思路引领:根据绝对值的性质可判断①,②,利用四舍五入法可直接求解判断③,根据有理数乘法的性质可判断求解④.解:①如果|a|=a,那么a≥0,故原说法不符合题意;②当﹣3≤x≤1时,|x﹣1|+|x+3|=1﹣x+x+3=4,故x的值有无数个,故原说法符合题意;③用四舍五入法把数2005精确到百位是2.0×103,故原说法不符合题意;④几个非0的数相乘,积的符号一定由负因数的个数决定,当负因数的个数为偶数时积为正,故原说法不符合题意.故有1个.故选:B.总结提升:本题主要考查有理数的乘法,绝对值的性质,近似数,掌握相关性质是解题的关键.3.(2021秋•涪城区校级月考)下列说法:①若a为有理数,且a≠0,则a<a2;②若1a=a,则a=1;③若a3+b3=0,则a、b互为相反数;④若|a|=﹣a,则a<0;⑤若b<0<a,且|a|<|b|,则|a+b|=﹣|a|+|b|,其中正确说法的有.思路引领:各式利用相反数,绝对值,倒数的定义,乘方的意义,以及加法法则判断即可.解:①若a为有理数,且a≠0,则a不一定小于a2,说法错误;②若1a=a,则a=1或﹣1,说法错误;③若a3+b3=0,则a、b互为相反数,说法正确;④若|a|=﹣a,则a≤0,说法错误;⑤若b<0<a,且|a|<|b|,则|a+b|=﹣|a|+|b|,说法正确.故答案为:③⑤.总结提升:此题考查了有理数的乘方,相反数,绝对值,倒数,以及有理数的加法,熟练掌握运算法则及各自的性质是解本题的关键.4.(2022秋•蒲江县校级期中)已知:|a|=2,|b|=3且a>b,求a+b的值.思路引领:计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下2组.a=2时,b=﹣3或a=﹣2时,b=﹣3,所以a+b=﹣1或a+b=﹣5.解:∵|a|=2,|b|=3,∴a=±2,b=±3.∵a>b,∴当a=2时,b=﹣3,则a+b=﹣1.当a=﹣2时,b=﹣3,则a+b=﹣5.总结提升:本题是绝对值性质的逆向运用,此类题要注意答案一般有2个.两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下两组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.5.(2022秋•安岳县校级月考)(1)已知|a|=5,|b|=3,且a>b,求a﹣b的值;(2)已知|a+2|+|b﹣4|+|c﹣5|=0,求式子a﹣2b﹣(﹣c)的值.思路引领:(1)根据绝对值的意义,可得a、b的值,根据有理数的减法,可得答案;(2)根据绝对值的和为零,可得每个绝对值为零,根据代数式求值,可得答案.解:(1)由|a|=5,|b|=3,且a>b,得a=5,b=±3.当a=5,b=3时,a﹣b=5﹣3=2,当a=5,b=﹣3时,a﹣b=5﹣(﹣3)=5+3=8;(2)由|a+2|+|b﹣4|+|c﹣5|=0,得a+2=0,b﹣4=0,c﹣5=0.解得a=﹣2,b=4,c=5.当a=﹣2,b=4,c=5时,a﹣2b﹣(﹣c)=﹣2﹣2×4﹣(﹣5)=﹣2﹣8+5=﹣5.总结提升:本题考查了代数式求值,利用绝对值的意义得出a、b、c的值,再利用代数式求值.6.(2021秋•新洲区期中)已知|x+1|=4,(y+2)2=4,若x+y≥﹣5,求x﹣y的值.思路引领:根据条件求出x,y的值,根据x+y≥﹣5,分三种情况分别计算即可.解:∵|x+1|=4,(y+2)2=4,∴x+1=±4,y+2=±2,∴x=﹣5或3,y=0或﹣4,∵x+y≥﹣5,∴当x=﹣5,y=0时,x﹣y=﹣5;当x=3,y=0时,x﹣y=3;当x=3,y=﹣4时,x﹣y=7;综上所述,x﹣y的值为﹣5或3或7.总结提升:本题考查了绝对值,有理数的加减法,考查分类讨论的数学思想,根据x+y ≥﹣5,分三种情况分别计算是解题的关键.7.(1)已知a,b,c在数轴上的位置如图所示,化简:|a+b|﹣2|c﹣b|+|c﹣a|﹣|a+c|(2)已知a<0,ab>0,|c|﹣c=0,化简:|b|﹣|a+b|﹣|c﹣b|+|a﹣c|.思路引领:(1)由题意可得c<a<0<b,则a+b>0,c﹣b<0,c﹣a<0,a+c<0,根据绝对值的定义化简可得.(2)由题意可得b<0,c是非负数,则a+b<0,c﹣b>0,a﹣c<0,再根据绝对值的定义化简可得.解:(1)由题意可得c<a<0∴a+b>0,c﹣b<0,c﹣a<0,a+c<0∴|a+b|﹣2|c﹣b|+|c﹣a|﹣|a+c|=a+b﹣2b+2c+a﹣c+a+c=3a﹣b+2c(2)∵a<0,ab>0,|c|﹣c=0,∴b<0,c是非负数∴a+b<0,c﹣b>0,a﹣c<0|b|﹣|a+b|﹣|c﹣b|+|a﹣c|=﹣b+a+b﹣c+b+c﹣a=b总结提升:本题考查了数轴和绝对值,利用|a|=a(a>0),|a|=﹣a(a<0),|a|=0(a =0)化简是本题的关键.8.(2021秋•西城区校级期中)已知|ab﹣2|与|b﹣1|互为相反数,求式子1ab +1(a+1)(b+1)+1(a+2)(b+2)+⋯+1(a+2021)(b+2021)的值.思路引领:由题意可知,|ab﹣2|+|b﹣1|=0,根据绝对值的非负性可得|ab﹣2|=0,|b﹣1|=0,进而求出a和b的值,再代入所求式子即可.解:由题意可知,|ab﹣2|+|b﹣1|=0,∴|ab﹣2|=0,|b﹣1|=0,∴b=1,a=2,∴1ab +1(a+1)(b+1)+1(a+2)(b+2)+⋯+1(a+2021)(b+2021)=12×1+1(2+1)(1+1)+1(2+2)(1+2)+⋯+1(2+2021)(1+2021)=1−12+12−13+13−14+⋯+12022−12023=1−1 2023=2022 2023.总结提升:本题考查了代数式求值,绝对值的非负性,得出1n(n+1)=1n−1n+1,以及抵消法的运用是解题的关键.9.阅读材料:我们知道:|x|的几何意义为数轴上表示数x的点到原点的距离,点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=|a﹣b|,所以式子|x﹣3|的几何意义是数轴上表示数x的点与表示数3的点之间的距离.根据上述材料,回答下列问题:(1)数轴上表示数﹣2的点与表示数5的点之间的距离为;(2)等式|x﹣2|=3的几何意义是,x的值为;(3)若|x﹣3|=|x﹣5|,求x的值;(4)求式子|x﹣1|+|x﹣3|的最小值.思路引领:(1)根据两点间的距离公式即可求解;(2)根据|x1﹣x2|的几何意义求解可得;(3)先去绝对值,再解方程即可求解;(4)由题意知|x﹣1|+|x﹣3|表示数x到1和3的距离之和,当数x在两数之间时式子取得最小值.解:(1)数轴上表示数﹣2的点与表示数5的点之间的距离为5﹣(﹣2)=7.故答案为:7;(2)等式|x﹣2|=3的几何意义是表示到数2的距离为3的点,x的值为﹣1或5.故答案为:表示到数2的距离为3的点,﹣1或5;(3)|x﹣3|=|x﹣5|,x﹣3=±(x﹣5),解得x=4.故x的值为4;(4)式子|x﹣1|+|x﹣3|表示数x到1和3的距离之和,当x<1时,原式=﹣x+1﹣x+3=﹣2x+4>2,当1≤x≤3时,原式=x﹣1﹣x+3=2,当x>3时,原式=x﹣1+x﹣3=2x﹣4>2,故式子|x﹣1|+|x﹣3|的最小值为2.总结提升:本题考查了一元一次方程的应用,数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.10.(2022秋•安阳期中)我们知道,在数轴上,|a|表示数a到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A、B,分别用a,b表示,那么A、B两点之间的距离为:AB=|a﹣b|.利用此结论,回答以下问题:(1)数轴上表示﹣10和﹣5的两点之间的距离是.(2)数轴上表示x和﹣3的两点A,B之间的距离是.(3)说出|x+2|+|x﹣2|+|x﹣4|的最小值是.(4)结合数轴求|x﹣1|+|x|+|x+2|+|x﹣4|的最小值为.此时符合条件的整数x 为.思路引领:(1)利用两点距离公式|﹣10﹣(﹣5)|计算即可;(2)利用两点距离公式|x﹣(﹣3)|计算即可;(3)根据|x﹣a|表示数轴上x与a之间的距离,因而原式表示数轴上一点到﹣2,2,4的距离之和,据此解答即可;(4)根据|x﹣a|表示数轴上x与a之间的距离,因而原式表示数轴上一点到1,0,﹣2,4的距离之和,此时符合条件的整数x为1或0.解:(1)根据结论:数轴上两个点A、B,分别用a,b表示,那么A、B两点之间的距离为AB=|a﹣b|可得,数轴上表示﹣10和﹣5的两点之间的距离是|﹣10﹣(﹣5)|=|﹣5|=5.故答案为:5;(2)∵数轴上表示x和﹣3的两点A、B之间的距离是|x+3.故答案为:|x+3|;(3)|x+2|+|x﹣2|+|x﹣4|表示数轴上一点到﹣2,2,4的距离之和,∴当x为2时,距离和最小为4﹣(﹣2)=6.故答案为:6.(4)|x﹣1|+|x|+|x+2|+|x﹣4|表示数轴上一点到1,0,﹣2,4的距离之和,此时符合条件的整数x为1或0.故答案为:7,1或0.总结提升:此题综合考查了一元一次方程的应用、数轴、绝对值的有关内容,解题的关键是正确理解题意给出的距离的定义.11.(2022秋•祁阳县校级期中)我们知道,在数轴上,|a|表示a到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A、B,分别用a,b表示,那么A、B两点之间的距离为:AB=|a﹣b|利用此结论.回答以下问题:(1)数轴上表示﹣10和﹣5的两点之间的距离是;(2)数轴上表示x和﹣3的两点A,B之间的距离是;(3)式子|x+2|+|x﹣2|+|x﹣4|的最小值是.思路引领:(1)利用两点距离公式|﹣10﹣(﹣5)|计算即可;(2)利用两点距离公式|x﹣(﹣3)|计算即可;(3)根据|x﹣a|表示数轴上x与a之间的距离,因而原式表示数轴上一点到﹣2,2,4的距离之和,据此解答即可.解:(1)根据结论:数轴上两个点A、B,分别用a,b表示,那么A、B两点之间的距离为AB=|a﹣b|可得,数轴上表示﹣10和﹣5的两点之间的距离是|﹣10﹣(﹣5)|=|﹣5|=5,故答案为:5;(2)∵数轴上表示x和﹣3的两点A、B之间的距离是|x+3|,故答案为:|x+3|;(3)|x+2|+|x﹣2|+|x﹣4|表示数轴上一点到﹣2,2,4的距离之和,∴当x为2时,距离和最小为﹣(﹣2)=6,故答案为:6.总结提升:此题综合考查了一元一次方程的应用、数轴、绝对值的有关内容,解题的关键是正确理解题意给出的距离的定义,本题属于基础题型.13.(2020秋•公安县期中)探究活动:【阅读】我们知道,|﹣5|表示数轴上表示﹣5的点到原点的距离,|a|表示数轴上表示a的点到原点的距离,这是绝对值的几何意义.【探索】(1)数轴上表示﹣1和﹣5的两点之间的距离是,数轴上表示2和﹣3的两点之间的距离是;数轴上两个点A、B,分别用数a、b表示,那么A、B两点之间的距离为AB=.(2)数轴上表示﹣2和x的两点A、B之间的距离是,如果AB=3,那么x的值为.(3)若|x﹣2|+|x+3|=7,试求x的值;(4)当x为何值时,式子|x+2020|+|x﹣1|取最小值,最小值是多少.思路引领:(1)根据数轴上两点间的距离求法求解即可;(2)由题意可得|x+2|=3,求解x即可;(3)|x﹣2|+|x+3|=7表示数轴上表示x的点到表示2的点的距离与到﹣3的点的距离之和,当﹣3≤x≤2时,(3)|x﹣2|+|x+3|的值最小为5,结合题意可知,当表示x的点在表示2的点的右边时,x的值为3;当表示x的点在表示﹣3的点的左边时,x的值为﹣4;(4)|x+2020|表示数轴上表示x的点到表示﹣2020的点的距离,|x﹣1|表示数轴上表示x 的点到表示1的点的距离,由(3)的分析可知,﹣2020≤x≤1时,距离之和最小是2021.解:(1)数轴上表示﹣1和﹣5的两点之间的距离是|﹣1﹣(﹣5)|=4,数轴上表示2和﹣3的两点之间的距离是|2﹣(﹣3)|=5,AB=|a﹣b|,故答案为:4,5,|a﹣b|;(2)表示﹣2和x的两点A、B之间的距离是|x﹣(﹣2)|=|x+2|,∵AB=3,∴|x+2|=3,解得x=1或x=﹣5,故答案为:|﹣2﹣x|,﹣5或1;(3)|x﹣2|+|x+3|=7表示数轴上表示x的点到表示2的点的距离与到﹣3的点的距离之和,∵表示x的点在表示2和﹣3的两个点之间时,距离之和为5,∴当表示x的点在表示2的点的右边时,若|x﹣2|+|x+3|=7,则x的值为3;当表示x的点在表示﹣3的点的左边时,若|x﹣2|+|x+3|=7,则x的值为﹣4;∴x的值为3或﹣4;(4)∵|x+2020|表示数轴上表示x的点到表示﹣2020的点的距离,|x﹣1|表示数轴上表示x的点到表示1的点的距离,由(3)的分析可知,当表示x的点在表示﹣2020和1的两个点之间时,距离之和最小,∴当﹣2020≤x≤1时,式子|x+2020|+|x﹣1|取最小值,最小值是2021.总结提升:本题考查实数与数轴,熟练掌握数轴上点的特征,绝对值的意义是解题的关键.。
七年级数学绝对值和相反数(2)教学案
七年级数学绝对值和相反数(2)教学案 主备人: 教案审核: 班级 姓名课题 2.4绝对值和相反数(2)学习目标通过对相反数的意义和求一个数的相反数的方法的探究,培养观察、比较、分析、归纳、概括的逻辑思维能力以及动手实践能力,经历将实际问题数学化的过程,感受数学与生活的关系. 学习重点理解相反数的意义,会求已知数的相反数. 学习难点 理解相反数在生活中的实际意义,掌握多重符号化简的规律.教学流程随笔栏 一、自学检测1.化简: ____,12=____,2.1=-____;4=-____,4=____,4=-- .____4=-2.比较大小:—21 —31;|-5| |-3.5|;|-5| 0. 3.绝对值小于4的整数是 ,绝对值不大于4的非负整数是 ,a 的绝对值等于5,则a 的值为 .二、探究活动1.小明的家在学校西边3km处,小丽的家在学校东边3km处.(1)你能将小明家、小丽家和学校的相对位置在数轴上表示出来吗?(规定向东为正,小明家用点A 表示,小丽家用点B 表示,学校用点O 表示)(2)观察A 、B 两点表示的数,你发现了什么?2.观察下列各对有理数,你发现了什么?与同学交流.2和-2,0.8和-0.8,231和-231. 相反数的概念: .三、典例研究1.求74,5.4,3-的相反数.2.数a 的相反数可表示为 ;则-5的相反数可表示为______; 而我们知道—5的相反数是___ .3.化简:)43(),3(),7.2(),2(----+-+-.四、课堂反馈1.填空:-2的相反数是 , 3.75与 是互为相反数,相反数是其本身的数是 .2.化简:-(+7)= , -(-7)= ,-[+(-7)]= , -[-(-7)]= .3.已知A 、B 两点分别为数轴上表示互为相反数的两个数,且两点间的距离为7,则这两个点表示的数为_____和 ______.4.如图:试比较a 、b 、-a 、-b 的大小.5.下列说法正确的是 ( )A .正数的绝对值是负数B .符号不同的两个数互为相反数C .π的相反数是―3.14D .任何一个有理数都有相反数6.一个数的相反数是非正数,那么这个数一定是 ( )A .正数B .负数C .零或正数D .零五、拓展延伸有A 、B 两点,在数轴上分别表示实数a 、b ,若a 的绝对值是b 的绝对值的4倍,且A 、B 两点间的距离是12,求a 、 b 出的值.探究1:若A 、B 两点在原点的同侧.①A 、B 两点都在原点的左侧时,a= ,b= .②A 、B 两点都在原点的右侧时,a= ,b= .探究2:若A 、B 两点在原点的两侧.①A 在原点的左侧,B 在原点的右侧,a= ,b= .②A 在原点的右侧,B 在原点的左侧,a= ,b= .六、小结与反思通过本节课的学习,你有什么收获?课堂反思:ba 0。
绝对值学案
2.4绝对值一.预习导学:看课本第24~25页,思考:(1)我们把数轴上表示数a 的点离开___ __的距离,叫做数a 的绝对值,记作__ __.(2)在数轴上表示-6的点离开原点的距离是__ ___,所以-6的绝对值是_ ____;数轴上表示+6的点离开原点的距离是______,所以+6的绝对值是_____;因此绝对值为6的数有_____个,分别是________.(3)完成课本第25页的“试一试”,并思考怎样求一个数的绝对值?(4)有绝对值的意义,我们可以知道:一个正数的绝对值是它______;一个负数的绝对值是它的_________;零的绝对值是_______.(5)绝对值等于它本身的数有______________;相反数等于它本身的数是_ ___.(6)完成课本第25页的“试一试”.(7)由上可以看出:任何有理数的绝对值都是____________(通常称为________)即对于任何有理数a 都有___________.二、过关测评:1. -7.8的绝对值记作________,结果是______.2. ______213=-,______213=+,______0=,______3.0=-,______3.0= 因此互为相反数的两个数的绝对值_________.3. 若7=m ,则m =_______.4. 绝对值是12的正数是_______,绝对值是3.5的负数是_______,绝对值是0的有理数是_______,绝对值是4的有理数是_______.5. 化简: ______212=-+,______5.2=--,______)8.3(=--,______)213(=-+ 6.计算:(1)1+______21=-,(2)______3.22.3=++- 7. 数轴上与原点距离小于4且表示整数的点有_____个;绝对值小于3 的整数有_____个,分别是________.8.判断对错,并简单说明理由:(1)b a ,=则若b a =; (2)b a b a =,则=若三、巩固提高:1.若4,5==b a ,且a <0,b >0,则a =______,b =______.2.若a a =,则a 是____________;若a a -=,则a 是___________.3.已知有理数a 、b 、c 在数轴上如图所示,且2=a ,3=b ,1=c .求a 、b 、c 的值.。
绝对值第二课时
1.2.4绝对值 (第2课时)教学目标1.使学生进一步巩固绝对值的概念。
2.使学生会利用绝对值比较两个负数的大小。
3.培养学生逻辑思维水平,渗透数形结合思想,注意培养学生的推理论证水平。
教学重点和难点:重点:利用绝对值比较两个负数的大小。
难点:利用绝对值比较两个异分母负分数的大小学 案1. 通过“思考”中问题的解决,从而得出有理数大小比较的规律:① 正数______________, 0_______________ 负数, 正数____________ ② 两个负数,__________________________________负数与负数之间怎样比较它们的大小呢?强调数轴的画法和字母在数轴上时如何比较。
2.比较有理数大小. -218和-74 -3和-5 -2.5和-25.2--(-0.6)和32--|-(-2.1)|与-[-(-1.8)]3.写出以下各数的绝对值.-125,+23,-3.5,0,32,-23,-0.05 上面的数中哪个数最大?哪个数最小?哪个数的绝对值最大?哪个数的绝对值最小?4.⑴-1与0之间还有负数吗?-21与0之间呢?如有,请举例说明.⑵有比-1大的负整数吗? -3与-1之间有负整数吗?-2与2之间有哪些整数?⑶写出3个小于-100并大于-103的数.【展示提升 拓展延伸】1.会用绝对值的相关性质比较数的大小,互查.2.归纳比较两个的大小的一般规律,互背.巩固案1.下面是我国几个城市某年一月份的平均气温,把它们按从高到低的顺序排列.北京 武汉 广州 哈尔滨 南京-4.6℃ 3.8℃ 13.1℃ -19.4℃ 2.4℃2.2003年我国人均水资源比上年的增幅是-5.6℅,2004年,2005年2006年各年比上年的增幅分别是-40℅,13.0℅, -9.6℅,这些增幅中哪个最小?增幅是负数说明什么?3.先化简,再比较大小.①-[-(-41)]与-(- 41-) ②)2(--与-(-21) 4.若 x =2,y =3且x > y ,则x,y 的值分别为__________.5.当x ≥3时,∣3-x ∣= ; 当x ≤3时,∣3-x ∣= .6.已知a,b 为有理数且a >b ,若a>b ,则a 0;若a<b ,则a 0.教学反思:在传授知识的同时,要重视学科基本思想方法的教学。
绝对值的几何意义(优秀学案)
绝对值的几何意义(专题一)学案初一数学组【学习目标】1.理解绝对值的几何意义的概念;2.掌握用绝对值的几何意义解绝对值方程;3.体会数形结合、分类讨论、方程思想。
【学习过程】【第1关】接力打BOSS 游戏【第2关】绝对值几何意义概念的理解 的几何意义是什么?)(a 1(2)在数轴上,数 a 的点到数2的点的距离用绝对值该怎么表示? ?的几何意义又是什么呢)那(23+a【开火车游戏】“一笑奈何”队下列绝对值的几何意义是什么?23-+ 5--a 5+a 2-0 221-+下列的几何意义用绝对值怎么表示?(1)在数轴上,数-x 的点与数-y 的点的距离用绝对值该怎么表示?(2)在数轴上,数3的点与数-3的点的距离用绝对值该怎么表示?(3)在数轴上,数m 的点与数n 的点的距离用绝对值该怎么表示?“芦苇微微”队下列绝对值的几何意义是什么? 0-2 4 25-3-3- 5-+x下列的几何意义用绝对值怎么表示?(1)在数轴上,数a 的点与数2的点的距离用绝对值该怎么表示?(2)在数轴上,数a 的点与数-3的点的距离用绝对值该怎么表示?(3)在数轴上,数-4的点与数x 的点的距离用绝对值该怎么表示?用绝对值几何意义解绝对值方程【第3关】【第4关】3=a 0=a -3=a2125-=a 025-=a 21-25-=a【第5关】532-=++a a232-=++a a932-=++a a【第6关】用绝对值几何意义解绝对值方程 4-=x 51-=+x113-2=+++x x【课后练级】xx=+++nn)5(4为常数-【第7关】知识总结:数学思想总结:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册第一章《1.2.4绝对值(第2课时)》学案
一、 学习目标:
1、理解比较有理数大小的规定的合理性;
2、会比较有理数的大小;
二、 自主学习:
1、用“<”把课本12页图62.1-中的14个温度按从低到高的顺序连接起来:
2、在数轴上表示的两个有理数,左边的数 右边的数。
3、正数 0,0 负数,正数 负数;
两个负数, 的反而小。
三、课堂同步互动:
(一)数轴上各点所表示的数的大小顺序
1、把温度按从低到高的顺序排列后,在温度计上所对应的点是从 到 的。
按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序是从 到 的。
2、数学中规定,在数轴上表示有理数,它们从左到右的顺序,就是 , 即 。
(二)负数的大小比较:
3、6-和1-这两个负数谁大?为什么?谁的绝对值大?为什么?
4、比较两个负数大小的法则是: 。
例 比较下列各对数的大小:
(1))1(-- 和)2(+- (2)218-和73- (3))3.0(--和3
1-
四 课堂训练:
(一) 、教材第14页练习.
比较下列各对数的大小:
(1)3-和5- (2)5.2-和25.2--
(二)、教材第15页习题6至10题:
6、
7、
8、
9、
10、
五、中考链接
1、下面四个结论中,正确的是 ( ) A 32->- B 32> C 32-> D 32-<-
2、比较大小(填“>”或“<”)
(1) 32- 4
3- (2) 20082007- 20092008- (3) )91
(-- 10
1-- 3、在数轴上表示下列各数:322
+,21-,),6(-- ,7- )3(+-, 1, 0, .5.1- 并用“<”将它们连接起来。
六、拓展提升
1、(数形结合题)有理数y x 、在数轴上的对应点如图所示:
(1)在数轴上表示y x 、--;
(2)
试把y x y x --、、、
、0这五个数从大到小用“>”连接。
2、 已知有理数b a ,在数轴上的位置如图所示,请比较b a b a ,,,的大小。
达标训练(绝对值第二课时)
1、(绝对值的意义)
1°绝对值的几何定义:在数轴上表示数a 的点与__________的距离叫做数a 的绝对值,记作__________.
2°绝对值的代数定义:一个正数的绝对值是_________;一个负数的绝对值是________;0的绝对值是_________.
2、(2005年梅州)(3)设a 是有理数,则|a|-a 的值( )
A 、可以是负数
B 、不可能是负数
C 、必是正数
D 、可以是正数也可以是负数
3、(绝对值的性质)
(1)任何数都有绝对值,且只有________个.
(2)由绝对值的几何意义可知:距离不可能为负数,因此,任何一个数的绝对值都是_____数,绝对值最小的数是______.
(3)绝对值是正数的数有_____个,它们互为_________.
(4)两个互为相反数的绝对值________;反之,绝对值相等的两个数______或________.
4、(2006年资阳)绝对值为3的数为____________
5、正数_________0,负数________0,正数________负数;两个负数比较大小的时候,__________大的反而小
6、绝对值小于π的整数有______________________
7、如果3a >,则3a -=__________,3a -=___________.
9、若1x x =,则x 是_______(选填“正”或“负”)数;若1x x
=-,则x 是_______(选填“正”或“负”)数;
10、已知3x =,4y =,且x y <,则x y +=________
11、比较4
1,31,21--的大小,结果正确的是( )
A 、413121<-<-
B 、314121-<<-
C 、213141-<-<
D 、4
12131<-<- 12、有理数的绝对值一定是 ( )
A 、正数
B 、整数
C 、正数或零
D 、自然数
13、下列说法中正确的个数有 ( )
①互为相反数的两个数的绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等
A 、1个
B 、2个
C 、3个
D 、4个
14、下列说法正确的是( )
A 、a -一定是负数
B 、只有两个数相等时它们的绝对值才相等
C 、若a b =,则a 与b 互为相反数
D 、若一个数小于它的绝对值,则这个数为负数
15、如果22a a -=-,则a 的取值范围是 ( )
A 、0a >
B 、0a ≥
C 、0a ≤
D 、0a <
16、代数式23x -+的最小值是 ( )
A 、0
B 、2
C 、3
D 、5
17、已知a b 、为有理数,且0a <,0b >,a b >,则 ( )
A 、a b b a <-<<-
B 、b a b a -<<<-
C 、a b b a -<<-<
D 、b b a a -<<-<
18、已知420x y -++=,求x ,y 的值
19、比较下列各组数的大小
(1)35-,34- (2)56-,45-,115-。