2022年浙江各地中考数学真题按知识点分类汇编专题15 压轴题(含详解)

合集下载

精品解析:2022年浙江省杭州市中考数学真题(解析版)

精品解析:2022年浙江省杭州市中考数学真题(解析版)
A. B.
C. D.
【答案】C
【解析】
【分析】根据题中数量关系列出方程即可解题;
【详解】解:由10张A票的总价与19张B票的总价相差320元可知,
或 ,
∴ ,
故选:C.
【点睛】本题主要考查二元一次方程的应用,解题的关键在于能根据实际情况对题目全面分析.
8.如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在 , , , 四个点中,直线PB经过的点是()
10.如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为()
A. B.
C. D.
【答案】D
【解析】
【分析】要使△ABC的面积S= BC•h的最大,则h要最大,当高经过圆心时最大.
【详解】解:当△ABC的高AD经过圆的圆心时,此时△ABC的面积最大,
如图所示,
∴从中随机抽取一张,编号是偶数的概率等于 ,
故答案为: .
【点睛】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.
13.已知一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组 的解是_________.
【答案】
【解析】
【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.
∴∠ABC=∠DEF=90°,
∴Rt△ABC∽△Rt△DEF,
∴ ,即 ,
解得AB=9.88,
∴旗杆的高度为9.88m.
故答案为:9.88.
【点睛】本题考查了相似三角形的判定与性质,平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.证明Rt△ABC∽△Rt△DEF是解题的关键.

2022年浙江省宁波市中考数学模拟卷压轴题精选(一)

2022年浙江省宁波市中考数学模拟卷压轴题精选(一)

1.(本题12分)【基础巩固】(1)如图1,在ABC△中,AB AC=,90BAC∠=︒,点D为CB延长线上一点,连结AD,将线段AD绕点A逆时针旋转90︒得到线段AE,连结CE.求证:ABD ACE≌△△;【尝试应用】(2)如图2,在(1)的条件下,连接DE,若AE交DC于点F,已知3FC=,3tan4ADC∠=,求线段DE的长;【拓展提高】(3)如图3,在正方形ABCD中,点E是对角线CA延长线上的一点,连结DE,过D点作DE的垂线交AC于F点,交BC于G点,若GC=,3AE=,求AF的长.2.(本题14分)如图1,在平面直角坐标系中,直线AB:)0y kx k=<与x轴交于点B,与y轴交于点A,点C是x轴负半轴上一点,过A、B、C三点的Me(圆心M落在第四象限)交y轴负半轴于点D,连结CD,已知22ACB ADCα∠=∠=.(1)DAB∠=______(请用α的代数式表示),并求证:DA DB=;(2)若12k=-,求点D的坐标;(3)如图2,连结AM并延长,交BC于点F,交Me于点E,①若AF=BF的长;②若32BF OD=,请直接写出四边形ABDC的面积.3.(本题12分)如果两个三角形的两边对应相等,且它们的夹角互补,那么这两个三角形叫做互补三角形.如图1,AD 是ABC △的中线,则ABD △和ACD △就是互补三角形. (1)根据定义判断下面两个命题的真假(填“真”或“假”) ①互补三角形一定不全等.________命题 ②互补三角形的面积相等.________命题(2)如图2,ABC △和ADE △为互补三角形,AB AE =,AC AD =,AF 是ABC △的中线. 求证:12AF DE =; (3)如图3,在(2)的条件下,若B ,E ,D 三点共线,连结CE ,CD ,四边形ABEC 为圆内接四边形.当120BAE ∠=︒时,求BD AFCD-的值.(1)如图1,O e 是等腰ABC △的外接圆,AB AC =,在»AC 上取一点P ,连结AP ,BP ,CP ,求证:APB PAC PCA ∠=∠+∠;【思考探究】(2)如图2,在(1)条件下,若点P 为»AC 的中点,6AB =,5PB =,求PA 的值; 【拓展延伸】(3)如图3,O e 的半径为5,弦6BC =,弦5CP =,延长AP 交BC 的延长线于点E ,且ABP E ∠=∠,求AP PE ⋅的值.(1)如图1,在ABC △和ADE △中,BAC DAE ∠=∠,AB AC =,AD AE =,连结BD ,CE .求证:BD CE =. 【思考探究】(2)如图2,在(1)的条件下,若4AB =,3BC =,90ABD ∠=︒,BD DE =,求CE 的长. 【拓展延伸】(3)如图3,在四边形ABCD 中,AB AC =,4BC =,8CD =,10BD =,2BAC ADC ∠=∠,求ABAD的值.6.(本题14分)如图1,在Rt ABC △中,90C ∠=︒,D 是AC 上一点(不与点A ,C 重合),以A 为圆心,AD 长为半径作A e 交AB 于点E ,连结BD 并延长交A e 于点F ,连结ED ,EF ,AF . (1)求证:2EAF BDE ∠=∠.(2)如图2,若2EBD EFD ∠=∠,求证:2DF CD =. (3)如图3,6BC =,8AC =.①若90EAF ∠=︒,求A e 的半径长. ②求BE DE ⋅的最大值.7.(本题12分)【基础巩固】(1)如图1,ABC △为等腰直角三角形,90ABC ADB BEC ∠=∠=∠=︒,求证:ADB BEC ≌△△. 【尝试应用】(2)如图2,在(1)的条件下,连结AE ,10AE AC ==,求DE 的长.. 【拓展提高】(3)如图3,在Rt ABC △中,D ,E 分别在直角边AB ,BC 上,22AD DB CE ==,2135BAC BED ∠+∠=︒,求tan BAC ∠.8.(本题14分)如图,Oe是ABC△的外接圆,点D在»BC上,连结DB,DC,DA,过点C作BD的平行线交AD于点E.(1)如图1,求证:ABC CDE∽△△;(2)如图2,若30BAD CAD∠=∠=︒,6AB=,4BD=,求DE;(3)如图3,I为ABC△的内心,若I在线段AE上,10AB=,1tan5BAD∠=,当IE最大时,求出Oe的半径.9.(本题12分)如图,ABC△中30B C∠=∠=°,30DEF∠=°,且点E为边BC的中点.将DEF∠绕点E旋转,在旋转过程中,射线DE与线段AB相交于点P,射线EF与射线CA相交于点Q,连结PQ.(1)如图1,当点Q在线段CA上时,①求证:BPE△∽CEQ△;②线段BE,BP,CQ之间存在怎样的数量关系?请说明理由;(2)当APQ△为等腰三角形时,求CQBP的值.10.(本题14分)如图1,AB 为O e 的直径,点D 为弦AC 的中点,延伸BD 并延长交O e 于点E ,过点C 作CF BE ⊥于点F ,连结AE ,AF . (1)求证:ADF BDA ∽△△;(2)如图2,连结OF ,已知AB kAF =, ①当6AB =,2k =时,求»EC的长. ②已知FOB DCF S kS =△△,求k 的值;(3)设tan OFB x ∠=,tan EAF y ∠=,求y 与x 的关系式.11.(本题14分)如果三角形的两个内角α与β满足90αβ-=︒,我们称这样的三角形为“准直角三角形”.(1)若ABC △是“准直角三角形”,90C ∠>︒,60A ∠=︒,则B ∠=(2)如图1,O e 是ABC △的外接圆,半径为10,AB 是O e 的直径,D 是BC 上的一点,3tan 4B =,若7BD =,请判断ABD △是否为准直角三角形,并说明理由.(3)如图2,O e 是ABC △的外接圆,半径为10,AB 是O e 的直径,E 是直径AB 下方半圆上的一点,3tan 4ABC ∠=,若ACE △为“准直角三角形”,求CE 的长.12.(本题12分)(1)证明推断:如图1,在正方形ABCD 中,点E ,Q 分别在边BC ,AB 上,DQ AE ⊥于点O ,点G ,F 分别在边CD ,AB 上,GF AE ⊥.①求证:DQ AE =; ②推断:GF AE的值为_____; (2)类比探究:如图2,在矩形ABCD 中,BC k AB =(k 为常数).将矩形ABCD 沿GF 折叠,使点A 落在BC 边上的点E 处,得到四边形FEPG ,EP 交CD 于点H ,连接AE 交GF 于点O .试探究GF 与AE 之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP ,当23k =时,若3tan 4CGP =∠,GF =CP 的长.13.(本题14分)如图,AB为Oe的直径,弦CD交AB于点E,且DE OE=(1)求证:3BAC ACD∠∠=;(2)点F在»BD上,且12CDF AEC=∠∠,连接CF交AB于点G,求证:CF CD=;(3)①在(2)的条件下,若4OG=,设OE x=,FG y=,求y关于x的函数关系式;②求出使得y有意义的x的最小整数值,并求出此时Oe的半径.14.(本小题12分)【基础巩固】(1)如图,在ABC △中,D 为AB 上一点,ACD B ∠=∠.求证:2AC AD AB =⋅.【尝试应用】(2)如图2,在菱形ABCD 中,E ,F 分别为BC ,DC 上的点,且12EAF BAD ∠=∠,射线AE 交DC 的延长线与点M ,射线AF 交BC 的延长线于点N .若4AF =,2CF =,10AM =.求:①CM 的长;②FN 的长.【拓展进步】(3)如图3,在菱形ABCD 中,6AB =,60B ∠=°,以点B 为圆心作半径为3的圆,其中点P 是圆上的动点,请直接写出12PD PC +的最小值.15.(本小题14分)有一组邻边相等且对角互补的四边形叫做等邻边互补四边形.(1)如图1,在等邻边互补四边形ABCD 中,AD CD =.且AD BC P ,2BC AD =,则B ∠=______.(2)如图2,在等邻边互补四边形ABCD 中,90BAD ∠=°,且BC CD =,求证:AB AD +=.(3)如图3,四边形ABCD 内接于O e ,连结DO 并延长分别交AC ,BC 于点E ,F ,交O e 于点G ,若点E 是AC 的中点,»»AB BG =,24tan 7ABC ∠=,6AC =,求FG 的长.16.(本题14分)在OAC=,OA=,12e的半径,点C在劣弧AB上,10e中,AO,BO是OAC OB,连结AB.//(1)如图1,求证:AB平分OAC∠;(2)点M在弦AC的延长线上,连结BM,如果AMB△是直角三角形,请你在图2中画出点M的位置并求CM的长;(3)如图,点D在弦AC上,与点A不重合,连结OD与弦AB交于点E,设点D与点C的距离为x,OEB△的面积为y,求y与x的函数关系式,并写出自变量x的取值范围.17.(本小题12分)婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的运算规则,二次方程等方面均有建树,他也研究过对角线互相垂直的圆内接四边形.我们把这类对角线互相垂直的圆内接四边形称为“婆氏四边形”.(1)若平行四边形ABCD是“婆氏四边形”,则四边形ABCD是______(填序号);①矩形②菱形③正方形(2)如图,四边形ABCD内接于圆,P为圆内一点,90∠=∠=︒,且ADP PBC∠=∠,求证:四APD BPC边形ABCD为“婆氏四边形”;(3)在(2)的条件下,4BD=,且AB=.①当DC=AC的长度;②当DC的长度最小时,请直接写出tan ADP∠的值.18.(本小题14分)等腰三角形AFG 中AF AG =,且内接于圆O ,D 、E 为边FG 上两点(D 在F 、E 之间),分别延长AD 、AE 交圆O 于B 、C 两点(如图1),记BAF α∠=,AFG β∠=.(1)求ACB ∠的大小(用α,β表示);(2)连接CF ,交AB 于H (如图2).若45β=︒,且BC EF AE CF =g g ,求证:2AHC BAC ∠=∠;(3)在(2)的条件下,取CH 中点M ,连接OM ,GM (如图3),若245OGM α∠=-︒. ①求证:GM BC P ,12GM BC =; ②请直接写出OMMC 的值.19. (本题12分)【证明体验】(1)如图1,正方形ABCD中,E,F分别是边AB和对角线AC上的点,45EDF∠=︒,BE=. 求证:DBE DCF∽△△.【思考探究】(2)如图2,矩形ABCD中,6AB=,8BC=,E,F分别是边AB和对角线AC上的点,4 tan3EDF∠=,5BE=,求CF的长.【拓展延伸】(3)如图3,菱形ABCD中,5BC=,对角线6AC=,BH AD⊥交DA的延长线于点H,E,F分别是线段HB和AC上的点,3tan4EDF∠=,1CF=,求DE的长.20. (本题14分)如图,四边形ABCD内接于半圆O,BC是半圆O的直径,CE是半圆O的切线,CE AD⊥交AD的延长线于点E,14DE BC=,OE与CD相交于点F,连结BF并延长交AE的延长线于点G,连结CG.(1)求证:AD BCP.(2)探究OF与BF的数量关系. (3)求tan GBC∠的值.21.(本题12分)对于平面直角坐标系xoy 中的两条直线,给出如下定义:若不平行的两条直线与x 轴相交所成的锐角相等,则称这两条直线为“等腰三角线”.如图(1)中,若PQR PRQ ∠=∠,则直线PQ 与直线PR 称为“等腰三角线”;反之,若直线PQ 与直线PR 为“等腰三角线”,则PQR PRQ ∠=∠.(1)如图1,若直线PQ 与直线PR 为“等腰三角线”,且点P 、Q 的坐标分别为()1,4、()3,0-.求直线PR 的解析式;(2)如图2,直线14y x =与双曲线1y x=交于点A 、B ,点C 是双曲线1y x =上的一个动点,点A 、C 的横坐标分别为m 、n (0n m <<),直线BC 、AC 分别与x 轴于点D 、E ;①求证:直线AC 与直线BC 为“等腰三角线”;②过点D 作x 轴的垂线l ,在直线l 上存在一点F ,连结EF ,当EFD DCA ∠=∠时,求出线段DF EF +的值(用含n 的代数式表示)22.(本题14分)如图1,在等腰ABC △中,AB AC ==,120BAC ∠=︒,点D 是线段BC 上一点,以DC 为直径作O e ,O e 经过点A .(1)求证:AB 是O e 的切线;(2)如图2,过点A 作AE BC ⊥垂足为E ,点F 是O e 上任意一点,连结EF .①如图2,当点F 是DC 的中点时,求EF BF的值; ②如图3,当点F 是O e 上的任意一点时,EF BF 的值是否发生变化?请说明理由. (3)在(2)的基础上,若射线BF 与O e 的另一交点G ,连结EG ,当90GEF ∠=︒时,直接写出EF EG -的值.23.(本题12分)【证明体验】(1)如图1,在ABCA CBE D∠=∠=∠=︒,求证:△中,点A、B、D在同一直线上,90△和BDE△△.∽ABC DEB(2)如图2,图3,20AC=,连结BC,M为BC中点,将AD=,点B线段AD上的点,AC AD⊥,4线段BM绕点B顺时针旋转90︒至BE,连结DE.【思考探究】①如图2,当DE=时,求AB的长.2【拓展延伸】②如图3,点G是CA延长线上一点,且8∠=∠,求ED的长.AG=,连结GE,G D24.(本题14分)如图1,在O e 中,M 为弦AB 的中点,过点M 作直径CD ,E 为线段OM 上一点,连结AE 并延长交O e 于点F ,连结BF ,AE BF =.(1)证明:AC BF =.(2)当:2EM OE =时,求tan EAB ∠.(3)如图2,连结CF 交AB 于点G ,当2CD =时,设EM x =,AG AB y ⋅=,求y 关于x 的函数解析式,并确定y 的最大值.25.(本题12分)一个角的余角的两倍称为这个角的倍余角.(1)若130∠=︒,2∠是1∠的倍余角,则2∠的度数为___;若1α∠=,2∠是1∠的倍余角,则2∠的度数为________;(用α的代数式表示)(2)如图1,在ABC △中,AC BC >,在AC 上截取CD CB =,在AB 上截取AE AD =. 求证:ABC ∠是EDB ∠的倍余角;(3)如图2,在(2)的情况下,作BF DE P 交AC 于点F ,将BFC △沿BF 折叠得到BFC '△,BC '交AC 于点P ,若90ABC ∠=︒,设CBF α∠=,求CPB ∠的度数.26. (本题14分)【基础认知】(1)如图1,点A 为MPN ∠内部一点,//AB PN 交PM 于点B ,已知AB PB =,求证:PA 平分MPN ∠;【综合运用】(2)在(1)的情况下,作AH PN ⊥于点H .①如图2,若12AP =,9PH =,求PB 的长;②如图3,延长AH 至点C ,使C H A H =,过P ,A ,C 三点的圆交PN 于点D ,交PB 延长线于点E . 若BP a =,求圆的直径;(用含a 的代数式表示)③在②的情况下,设DH x =,BE y =,当6a =时,求y 关于x 的函数关系式.27.(本题14分)定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”. (1)如图1,在“对角互余四边形”ABCD中,AD CDABC ADCCB=,∠+∠=︒,4BD=,90=, 6.5AB=,3求四边形ABCD的面积.(2)如图2,在四边形ABCD中,连接AC,90△外接圆的圆心,连接OA,∠=︒,点O是ACDBAC∠=∠.OAC ABC求证:四边形ABCD是“对角互余四边形”;(2)如图3,在(2)的条件下,已知AD a=,连接BD,求2AB AC=,DC b=,3BD的值.(结果用带有a,b的代数式表示).28.(本题12分)【问题情境】(1)如图1,在正方形ABCD 中,E ,F ,G 分别是BC ,AB ,CD 上的点,FG AE ⊥于点Q .求证:AE FG =. 【尝试应用】(2)如图2,正方形网格中,点A ,B ,C ,D 为格点,AB 交CD 于点O .求tan AOC ∠的值.【拓展提升】(3)如图3,点P 是线段AB 上的动点,分别以AP ,BP 为边在AB 的同侧作正方形APCD 与正方形PBEF ,连接DE 分别交线段BC 、PC 、AC 于点M 、N 、H ,求ADH ADCS S △△的值.29.(本题14分)如图,O e 为等腰三角形ABC 的外接圆,AB AC =,延长AO 交BC 于点D ,过点C 作CF垂直AB交AD于点E,交AB于点F,交Oe于点G,连结AG,若1GF=.(1)求证:GAF BAD CAD∠=∠=∠.(2)如图1,若1tan3GAB∠=,求ABC△的面积.(3)如图2,若BD=OD的长.30.(本题14分)如图1,四边形ABCD是Oe的内接四边形,其中AB AD=,对角线AC、BD相交于点E,在AC上取一点F,使得AF AB=,过点F作GH ACe于点G、H.⊥交O(1)证明:AED ADC∽△△.(2)如图2,若1AE=,且GH恰好经过圆心O,求BC CD⋅的值.(3)若1EF=,设BE的长为x.AE=,2①如图3,用含有x的代数式表示BCD△的周长.②如图4,BC恰好经过圆心O,求BCD△内切圆半径与外接圆半径的比值.31.(本题14分)定义:三角形的两个内角平分线相交所成的钝角称为该三角形的遥望角.(1)如图1,已知D ∠是ABC △中A ∠的遥望角度,设A α∠=,用含α的代数式表示D ∠.(2)如图2,ABC △内接于O e ,点D 是»BC 的中点,连结AD ,CD ,在AD 上取一点E ,使得DE DC =,连结BD ,CE ,求证:BEC ∠是ABC △中A ∠的遥望角.(3)如图3,在(2)的条件下,取BC 的中点M ,连结并延长EM 交O e 于点N ,若ME MN =. ①求BAC ∠的度数;②已知BC ,AD 交于点F ,若12BC =,求当28MF EF +取得最小值时,BEC △的面积.32.(本题14分)已知AC 是ABCD □的一条对角线,且AB AC =,O e 是ABC △的外接圆,CD 与O e 的另一个交点为E ,连结AE .(1)当点E 在线段CD 上时,如图1.①求证:ABC AED ∽△△;②若tan 3ABC ∠=,AEC △的面积为815,求O e 的半径. (2)当点E 在直线CD 上时,过点E 作EH AB ⊥于点H ,直线EH 与直线BC 交于点F .如图2,若12C E H E=时,求ABCCEFS S △△的值.33.(本题12分)若一个三角形的两条边的和等于第三条边的两倍,我们把这个三角形叫做和谐三角形.(1)已知ABC △是和谐三角形,3AB =,4BC =,请写出所有满足条件的AC 的长.(2)在ABC △中,4AB =,8BC =,D 为BC 边上一点,且2BD =,连结AD ,若ABD △为和谐三角形,求AC 的长.(3)如图,在等腰ABC △中,AB AC =,D 为AC 的中点,且DBC A ∠=∠,E 为AB 上一点,满足:3:2AE EB =,连结DE ,求证:AED △为和谐三角形.34.(本题14分)如图1,在Rt ABC △中,4AB AC ==,AD BC ⊥于点D ,E 为AB边上的点,过点A 、D 、E 三点的O e 交AC 于点F ,连结DE ,DF .(1)求证:AE CF =.(2)若tan 3ADF ∠=,求O e 的面积.(3)如图2,点P 为»DE上一动点,连结PD ,PE ,PF . ①若P 为»DE的中点,设AE 为x ,PDF △的面积为S ,求S 关于x 的函数表达式. ②在点P 运动的过程中,试探索PD ,PE ,PF 之间的数量关系,并证明.35.(本题12分)若一动点P 到一条线段AB 的两个端点的距离满足3PA PB =,则称点P 为线段AB 的Tr 点,但点P 不是线段BA 的Tr 点.(1)如图1,在Rt ABC △中,90C ∠=︒,10AB =,若点C 是线段AB 的Tr 点,求AC 的长.(2)如图2,在ABC △中,D 是边AB 上一点,连结CD ,若点A 分别是线段CD ,线段BC 的Tr 点,求证:点C 是线段BD 的Tr 点.(3)如图3,在菱形ABCD 中,6AB =,120B ∠=︒,点E ,F 分别是BC ,CD 上的点,且满足120AEF ∠=︒,连结AF .点E 是线段AF 的Tr 点,求DF 的长.36.(本题14分)已知AB 为O e 的直径,弦CD 交AB 于点E (点E 不与O 重合),连结AC ,AD ,且A C A D =.(1)如图1,求证:AB CD⊥.(2)如图2,过点D作弦DH AC⊥于点G,求证:»»¼DB BC CH==.(3)如图3,在(2)的条件下,点Q为»AD上一点,连结AQ,HQ,HQ交AB于点P,若145AQ=,3DE=,290HPB CAB∠+∠=︒.①求AP的长;②求Oe的半径.。

2022年浙江各地数学中考真题(杭州温州金华嘉兴等)按知识点汇编专题09 平行线与三角形(原卷版)

2022年浙江各地数学中考真题(杭州温州金华嘉兴等)按知识点汇编专题09  平行线与三角形(原卷版)

专题09平行线与三角形一、单选题1.(2022·台州)如图,已知190∠=︒,为保证两条铁轨平行,添加的下列条件中,正确的是( )A .290∠=︒B .390∠=︒C .490∠=︒D .590∠=︒2.(2022·杭州)如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若∠C =20°,∠AEC =50°,则∠A =( )A .10°B .20°C .30°D .40°3.(2022·绍兴)如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,AC ∥EF ,则1∠=( )A .30°B .45°C .60°D .75°4.(2022·台州)如图,点D 在ABC 的边BC 上,点P 在射线AD 上(不与点A ,D 重合),连接PB ,PC .下列命题中,假命题是( )A .若AB AC =,AD BC ⊥,则PB PC = B .若PB PC =,AD BC ⊥,则AB AC =C .若AB AC =,12∠=∠,则PB PC =D .若PB PC =,12∠=∠,则AB AC =5.(2022·杭州)如图,CD ⊥AB 于点D ,已知∠ABC 是钝角,则( )A .线段CD 是ABC 的AC 边上的高线B .线段CD 是ABC 的AB 边上的高线C .线段AD 是ABC 的BC 边上的高线 D .线段AD 是ABC 的AC 边上的高线6.(2022·湖州)如图,将△ABC 沿BC 方向平移1cm 得到对应的△A ′B ′C ′.若B ′C =2cm ,则BC ′的长是( )A .2cmB .3cmC .4cmD .5cm7.(2022·湖州)如图,已知在锐角△ABC 中,AB =AC ,AD 是△ABC 的角平分线,E 是AD 上一点,连结EB ,E C .若∠EBC =45°,BC =6,则△EBC 的面积是( )A .12B .9C .6D .32 8.(2022·宁波)如图,在Rt ABC 中,D 为斜边AC 的中点,E 为BD 上一点,F 为CE 中点.若AE AD =,2DF =,则BD 的长为( )A .22B .3C .23D .49.(2022·金华)如图,AC 与BD 相交于点O ,,OA OD OB OC ==,不添加辅助线,判定ABO DCO △≌△的依据是( )A .SSSB .SASC .AASD .HL10.(2022·金华·)已知三角形的两边长分别为5cm 和8cm ,则第三边的长可以是( )A .2cmB .3cmC .6cmD .13cm 二、填空题11.(2022·嘉兴)小曹同学复习时将几种三角形的关系整理如图,请帮他在横线上____填上一个适当的条件.12.(2022·台州)如图,在ABC 中,90ACB ∠=︒,D ,E ,F 分别为AB ,BC ,CA 的中点.若EF 的长为10,则CD 的长为________.13.(2022·杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .已知B ,C ,E ,F 在同一直线上,AB ⊥BC ,DE ⊥EF ,DE =2.47m ,则AB =_________m .14.(2022·湖州)如图,已知在△ABC 中,D ,E 分别是AB ,AC 上的点,DE BC ∥,13AD AB =.若DE =2,则BC 的长是______.15.(2022·嘉兴)如图,在ABC 中,∠ABC =90°,∠A =60°,直尺的一边与BC重合,另一边分别交AB ,AC 于点D ,E .点B ,C ,D ,E 处的读数分别为15,12,0,1,则直尺宽BD 的长为_________.16.(2022·温州)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M 在旋转中心O 的正下方.某一时刻,太阳光线恰好垂直照射叶片,OA OB ,此时各叶片影子在点M 右侧成线段CD ,测得8.5m,13m MC CD ==,垂直于地面的木棒EF 与影子FG 的比为2∶3,则点O ,M 之间的距离等于___________米.转动时,叶片外端离地面的最大高度等于___________米.17.(2022·绍兴)如图,在ABC 中,40ABC ∠=︒,80BAC ∠=︒,以点A 为圆心,AC 长为半径作弧,交射线BA 于点D ,连接CD ,则BCD ∠的度数是______.18.(2022·金华)如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C ''',连结CC ',则四边形AB C C ''的周长为_____cm .19.(2022·丽水)一副三角板按图1放置,O 是边()BC DF 的中点,12cm BC =.如图2,将ABC 绕点O 顺时针旋转60︒,AC 与EF 相交于点G ,则FG 的长是___________cm .三、解答题20.(2022·温州)如图,BD是ABC的角平分线,DE BC∥,交AB于点E.(1)求证:EBD EDB∠=∠.(2)当AB AC=时,请判断CD与ED的大小关系,并说明理由.21.(2022·杭州)如图,在ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF,已知四边形BFED是平行四边形,DE1 BC4=.(1)若8AB=,求线段AD的长.(2)若ADE的面积为1,求平行四边形BFED的面积.22.(2022·杭州)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.23.(2022·绍兴)如图,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于点E.P是边BC上的动点(不与B,C重合),连结AP,将△APC沿AP翻折得△APD,连结DC,记∠BCD=α.(1)如图,当P与E重合时,求α的度数.(2)当P与E不重合时,记∠BAD=β,探究α与β的数量关系.24.(2022·宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图25.(2022·丽水)如图,在66形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与ABC相似的三角形,相似比不等于1.。

2022年浙江各地数学中考真题(杭州温州金华嘉兴等)按知识点汇编专题11 函数与一次函数(含详解)

2022年浙江各地数学中考真题(杭州温州金华嘉兴等)按知识点汇编专题11  函数与一次函数(含详解)

专题11 函数与一次函数一、单选题1.(2022·台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -2.(2022·金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超市B .医院C .体育场D .学校3.(2022·台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x 之间函数关系的图象中,正确的是( )A .B .C .D .4.(2022·温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s 米,所经过的时间为t 分钟,下列选项中的图像,能近似刻画s 与t 之间关系的是( )A .B .C .D .5.(2022·嘉兴)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( )A .52B .2C .32D .16.(2022·杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫ ⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( ) A .1M B .2M C .3M D .4M7.(2022·绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >二、填空题 8.(2022·杭州)已知一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),则方程组310x y kx y -=⎧⎨-=⎩的解是_________.9.(2022·丽水)三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是___________.三、解答题10.(2022·湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.11.(2022·丽水·)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?12.(2022·嘉兴)6月13日,某港口的潮水高度y (cm )和时间x (h )的部分数据及函数图象如下:(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x =时,y 的值为多少?当y 的值最大时,x 的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm 时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口? 13.(2022·绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米).为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),k y x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x .专题11 函数与一次函数一、单选题1.(2022·台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -【答案】B【解析】解:根据题意,点E 与点D 关于y 轴对称,∵飞机E 的坐标为(40,a ),∴飞机D 的坐标为(-40,a ),故选:B .2.(2022·金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超市B .医院C .体育场D .学校【答案】A【解析】解:根据学校和体育场的坐标建立直角坐标系,==故选:A .3.(2022·台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x 之间函数关系的图象中,正确的是( )A.B.C.D.【答案】C【解析】解:吴老师家出发匀速步行8min到公园,表示从(0,400)运动到(8,0);在公园,停留4min,然后匀速步行6min到学校,表示从(12,0)运动到(18,600);故选:C.4.(2022·温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟,下列选项中的图像,能近似刻画s与t之间关系的是()A.B.C.D.【答案】A【解析】解:对各段时间与路程的关系进行分析如下:从家到凉亭,用时10分种,路程600米,s从0增加到600米,t从0到10分,对应图像为在凉亭休息10分钟,t从10分到20分,s保持600米不变,对应图像为从凉亭到公园,用时间10分钟,路程600米,t从20分到30分,s从600米增加到1200米,对应图像为故选:A.5.(2022·嘉兴)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( )A .52B .2C .32D .1【答案】B【解析】把(,)A a b 代入3y kx =+得:3b ka =+ ∴2239(3)3()24ab a ka ka a k a k k=+=+=+- ∵ab 的最大值为9∴0k <,且当32a k =-时,ab 有最大值,此时994ab k=-= 解得14k =- ∴直线解析式为134=-+y x 把(4,)B c 代入134=-+y x 得14324c =-⨯+= 故选:B .6.(2022·杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫ ⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( ) A .1M B .2M C .3M D .4M【答案】B【解析】解:∵点A (4,2),点P (0,2),∴P A ⊥y 轴,P A =4,由旋转得:∠APB =60°,AP =PB =4,如图,过点B 作BC ⊥y 轴于C ,∴∠BPC =30°,∴BC =2,PC∴B (2,,设直线PB 的解析式为:y =kx +b ,则222k b b ⎧+=+⎪⎨=⎪⎩∴2k b ⎧=⎪⎨=⎪⎩∴直线PB 的解析式为:y +2,当y =0+2=0,x =∴点M 1(0)不在直线PB 上,当x =y =-3+2=1,∴M 2(-1)在直线PB 上,当x =1时,y ,∴M 3(1,4)不在直线PB 上,当x =2时,y ,∴M 4(2,112)不在直线PB 上. 故选:B .7.(2022·绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >【答案】D【解析】解:∵直线y =−2x +3∴y 随x 增大而减小,当y =0时,x =1.5∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =−2x +3上的三个点,且x 1<x 2<x 3∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意;若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意.故选:D.二、填空题8.(2022·杭州)已知一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组310 x ykx y-=⎧⎨-=⎩的解是_________.【答案】12 xy=⎧⎨=⎩【解析】解:∵一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),∴联立y=3x-1与y=kx的方程组31y xy kx=-⎧⎨=⎩的解为:12xy=⎧⎨=⎩,即31x ykx y-=⎧⎨-=⎩的解为:12xy=⎧⎨=⎩,故答案为:12xy=⎧⎨=⎩.9.(2022·丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(,则A点的坐标是___________.【答案】3,3A【解析】解:如图,延长正六边形的边BM与x轴交于点E,过A作AN x⊥轴于N,连接AO,BO,∴三个正六边形,O为原点,,120,BM MO OH AH BMO OHA,BMO OHA≌,OB OA11209030,18012030,2MOE BMO MOB 60,90,BOE BEO 同理:120303060,906030,AON OAN ,BOE AON ,,A O B ∴三点共线,,A B ∴关于O 对称,3,3.A 故答案为:3.A三、解答题10.(2022·湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.【答案】(1)轿车出发后2小时追上大巴,此时,两车与学校相距120千米(2)点B 的坐标是()3,120,s =60t -60(3)34小时 【解析】(1)解:设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时.根据题意,得:()60401x x =+,解得x =2.则60602120x =⨯=千米,∴轿车出发后2小时追上大巴,此时,两车与学校相距120千米.(2)解:∵轿车追上大巴时,大巴行驶了3小时,∴点B 的坐标是()3,120.由题意,得点A 的坐标为()1,0.设AB 所在直线的解析式为s kt b =+,则:3120,0,k b k b +=⎧⎨+=⎩解得k =60,b =-60.∴AB 所在直线的解析式为s =60t -60.(3)解:由题意,得()40 1.560 1.5a +=⨯, 解得:34a =, 故a 的值为34小时. 11.(2022·丽水·)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?【答案】(1)1.5;(2)s =100t -150;(3)1.2【解析】(1)由图中可知,货车a 小时走了90km ,∴a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩, 解得,100150k b =⎧⎨=-⎩, ∴轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=h ,到达乙地一共:3+3=6h ,6-4.8=1.2h ,∴轿车比货车早1.2h 时间到达乙地.12.(2022·嘉兴)6月13日,某港口的潮水高度y (cm )和时间x (h )的部分数据及函数图象如下:(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x =时,y 的值为多少?当y 的值最大时,x 的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm 时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?【答案】(1)①见解析;②200y =,21x =(2)①当27x 时,y 随x 的增大而增大;②当14x =时,y 有最小值80(3)510x <<和1823x <<【解析】(1)①②观察函数图象:当4x =时,200y =;当y 的值最大时,21x =;21x =.(2)答案不唯一.①当27x 时,y 随x 的增大而增大;②当14x =时,y 有最小值80.(3)根据图像可得:当潮水高度超过260cm 时510x <<和1823x <<,【点睛】本题考查函数图像的画法、从函数图像获取信息,准确的画出函数图像是解题的关键.13.(2022·绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米).为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),k y x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x .【答案】(1)y =x +1(0≤x ≤5),图见解析;(2)4小时【解析】(1)选择y =kx +b ,将(0,1),(1,2)代入,得12b k b =⎧⎨+=⎩,,解得11.k b =⎧⎨=⎩, ∴y =x +1(0≤x ≤5).(2)当y =5时,x +1=5,∴x =4.答:当水位高度达到5米时,进水用时x 为4小时.。

2022年浙江金华中考数学试题及答案详解

2022年浙江金华中考数学试题及答案详解

2022年浙江金华中考数学试题及答案详解(试题部分)一、选择题(本题有10小题,每小题3分,共30分),√3,2中,是无理数的是() 1.在-2,12A.-2B.1C.√3D.222.计算a3·a2的结果是()A.aB.a6C.6aD.a53.体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16 320 000吨,数16 320 000用科学记数法表示为()A.1 632×104B.1.632×107C.1.632×106D.16.32×1054.已知三角形的两边长分别为5 cm和8 cm,则第三边的长可以是()A.2 cmB.3 cmC.6 cmD.13 cm5.观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数为()A.5B.6C.7D.86.如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是()A.SSSB.SASC.AASD.HL7.如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,-2),下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校8. 如图,圆柱的底面直径为AB ,高为AC ,一只蚂蚁在C 处,沿圆柱的侧面爬到B 处,现将圆柱侧面沿AC “剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )A B C D9. 一配电房示意图如图所示,它是一个轴对称图形,已知BC =6 m ,∠ABC =a ,则房顶A 离地面EF 的高度为( )A.(4+3sin a )mB.(4+3tan a )mC.(4+3sina)m D.(4+3tana)m10. 如图是一张矩形纸片ABCD ,点E 为AD 中点,点F 在BC 上,把该纸片沿EF 折叠,点A ,B 的对应点分别为A',B',A'E 与BC 相交于点G ,B'A'的延长线过点C 。

2022年浙江省中考数学考前必刷真题试卷附解析

2022年浙江省中考数学考前必刷真题试卷附解析

2022年浙江省中考数学考前必刷真题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 如图,⊙O 的直径 AB 与弦 AC 的夹角为35°,过C 点的切线 PC 与 AB 的延长线交于点 P ,那么∠P 等于( )A .15°B .20°C .25°D .30°2.反比例函数x k y =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) A .2 B .-2 C .4 D .-43. 已知反比例函数y =k x(k<0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1<x 2,则y 1-y 2的值是( )A .正数B .负数C .非正数D .不能确定 4.下列函数中,当 x>0 时,y 随x 的增大而减小的是( ) A .y x = B .1y x = C .1y x =- D .21y x =-5.将一个有40个数据的样本经统计后分成6组,若某一组的频率为0.15,则该组的频数 为 ( )A .6B .0.9C .6.67D .1 6. 已知 2 是关于y 的方程23202y a -=的一个解,则21a -的值是( )A . 3B . 4C . 5D . 67.2007年我国铁路进行了第六次大提速,一列火车由甲市匀速驶往相距600 km 的乙市,火车的速度是200 km /h ,火车离乙市的距离S (单位:km )随行驶时间t (单位:h )变化的函数关系用图象表示正确的是( )A .B .C .D . 8.下面四张扑克牌中,以牌的对角线交点为旋转中心,旋转 180°后能与原图形重合的有( )A .B .C .D .9.下列说法中,正确的个数有( )①延长直线AB ;②取线段AB 的中点C ;③以0为圆心作弧;④已知∠α,作∠α的余角的一半.A .0个B .1个C .2个D .3个二、填空题10.如图,△ABC 中,∠A =60°,点 I 是内心,则∠BIC .11.晚上,小亮走在大街上,如图,他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为 3m ,左边的影子长为 1.5m ,且自己的身高为 1.80 m ,两盏路灯的高相同,两盏路灯之间的距离为 12m ,则路灯的高度为 m .12.若x=0是一元二次方程0823)2(22=-+++-m m x x m 的解,则m= .13.在矩形ABCD 中,对角线AC ,BD 交于点O ,∠AOB=60°,AB=3,•则•BC=. 14.某日的最高气温是15℃,气温的极差为10℃,则该日的最低气温是_______℃.15.在一组数据中,其中的两个数为m ,n ,已知m 比n 大10,最小的数比m 小l4,最大的 数比n 大l7,那么这组数据的极差是 .16.某机构要调查某厂家生产的手机质量,从中抽取了20只手机进行试验检查,其中样本 容量是 .17.小王想把 20 元人民币全部兑换成 2元和 5元两种面值的人民币,她有 种不同的兑换方法(只兑换一种币值也可以).18.福顺路交通拥堵现象十分严重.上周末,陈新同学在福顺人行天桥处对3 000名过往行人作了问卷调查,问题是:从这里横过福顺路时,你是否自觉走人行天桥?供选择的答案有:A.是;(B)否;(C)无所谓.他将得到的数据处理后,画出了扇形统计图(如图).根据这个扇形统计图,可知被调查者中自觉走人行天桥的有人.19.三个连续奇数的和为69,则这三个数分别为 .20.多项式211 2a a-+的各项系数分别是;它是次项式.三、解答题21.曙光中学需制作一副简易篮球架,如图是篮球架的侧面示意图,已知篮板所在直线AD和直杆EC都与BC垂直,BC=2.8米,CD=1.8米,∠ABD=40°,求斜杆AB与直杆EC的长分别是多少米?(结果精确到0.01米)22.身高 1.6m 的小明在课外数学活动小组的户外活动中,准备利用太阳光线和影子测旗杆AB的高度. 如图所示,在小亮的帮助下,小明圆满地完成了任务.(1)他们必须测出哪几条线段的长?(2)若旗杆的影长为 4m,小明的影长为1.2m,请你帮小明计算出旗杆的长.23.画出如图所示的几何体的三视图.24.分别写出下列函数解析式,并指出式中的常量与变量:(1)居民用电平均每度0.52元,则电费y(元)与用电量x(度)之间的函数解析式;(2)小昕用50元钱购买6元/件的某种商品,则剩余的钱y(元)与购买这种商品x(件)之间的函数解析式.25.已知方程组713x y ax y a+=--⎧⎨-=+⎩的解x为非正数,y为负数,求a的取值范围.26.如图,在△ABC中,AB=AC,点D、E分别是AB、AC的中点,点F是BE、CD的交点。

2024年中考数学真题汇编专题15 二次函数的实际应用+答案详解

2024年中考数学真题汇编专题15 二次函数的实际应用+答案详解

2024年中考数学真题汇编专题15 二次函数的实际应用+答案详解(试题部分)一、单选题1.(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =−≤≤.有下列结论:①小球从抛出到落地需要6s ; ②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度. 其中,正确结论的个数是( ) A .0B .1C .2D .32.(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt ABC △中,90BAC ∠=︒,12AB =,动点E ,F 同时从点A 出发,分别沿射线AB 和射线AC 的方向匀速运动,且速度大小相同,当点E 停止运动时,点F 也随之停止运动,连接EF ,以EF 为边向下做正方形EFGH ,设点E 运动的路程为()012x x <<,正方形EFGH 和等腰Rt ABC △重合部分的面积为下列图像能反映y 与x 之间函数关系的是( )A .B .C .D .3.(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,6cm AB =,8cm BC =,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,EF =,60E ∠=︒,现将菱形EFGH 以1cm /s的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积()2cm S 与运动时间()s t 之间的函数关系图象大致是( )A .B .C .D .二、填空题4.(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM = m .5.(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =−++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车 完全停到车棚内(填“能”或“不能”).6.(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB CD ⊥于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得 6.6AE =m , 1.4OE =m ,6OB =m ,5OC =m ,3OD =m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是 2cm .三、解答题7.(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索1L 与缆索2L 均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF '为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索1L 所在抛物线与缆索2L 所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离100m OC =,17m AO BC ==,缆索1L 的最低点P 到FF '的距离2m PD =(桥塔的粗细忽略不计)(1)求缆索1L 所在抛物线的函数表达式;(2)点E 在缆索2L 上,EF FF '⊥,且 2.6m EF =,FO OD <,求FO 的长.8.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m ,篱笆长80m .设垂直于墙的边AB 长为x 米,平行于墙的边BC 为y 米,围成的矩形面积为2cm S .(1)求y 与,x s 与x 的关系式.(2)围成的矩形花圃面积能否为2750cm ,若能,求出x 的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x 的值.9.(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =−+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示). (2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.10.(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =−+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km . ①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离. (2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .11.(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒. (1)求这两种粽子的进价;(2)设猪肉粽每盒售价x 元()5270x ≤≤,y 表示该商家销售猪肉粽的利润(单位:元),求y 关于x 的函数表达式并求出y 的最大值.12.(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.13.(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)14.(2024·四川遂宁·中考真题)某酒店有A B、两种客房、其中A种24间,B种20间.若全部入住,一天、两种客房均有10间入住,一天营业额为3200元.营业额为7200元;若A B(1)求A B、两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?15.(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A 类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)16.(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.17.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?18.(2024·江西·中考真题)如图,一小球从斜坡O点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:(1)①m =______,n =______; ②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =−+. ①小球飞行的最大高度为______米; ②求v 的值.19.(2024·江苏苏州·中考真题)如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A −,()6,0C ,反比例函数()0,0ky k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值; (2)点P 为反比例函数()0,0ky k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.20.(2024·青海·中考真题)在如图所示的平面直角坐标系中,有一斜坡OA ,从点O 处抛出一个小球,落到点33,2A ⎛⎫⎪⎝⎭处.小球在空中所经过的路线是抛物线2y x bx =−+的一部分.(1)求抛物线的解析式; (2)求抛物线最高点的坐标;(3)斜坡上点B 处有一棵树,点B 是OA 的三等分点,小球恰好越过树的顶端C ,求这棵树的高度. 21.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==.(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).2024年中考数学真题汇编专题15 二次函数的实际应用+答案详解(答案详解)一、单选题1.(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =−≤≤.有下列结论:①小球从抛出到落地需要6s ; ②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度. 其中,正确结论的个数是( ) A .0 B .1 C .2 D .3令0=解方程即可判断【详解】解:令0=,则30,解得:10t =,∴小球从抛出到落地需要6∵()230553t t x =−−−∴最大高度为45m ,∴小球运动中的高度可以是2t =时,302=⨯−时,305=⨯−∴小球运动2s 时的高度大于运动时的高度,故③错误;2.(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt ABC △中,90BAC ∠=︒,12AB =,动点E ,F 同时从点A 出发,分别沿射线AB 和射线AC 的方向匀速运动,且速度大小相同,当点E 停止运动时,点F 也随之停止运动,连接EF ,以EF 为边向下做正方形EFGH ,设点E 运动的路程为()012x x <<,正方形EFGH 和等腰Rt ABC △重合部分的面积为下列图像能反映y 与x 之间函数关系的是( )A .B .C .D .∴2EF x =,12BE x =−,∵45AEF B ∠=∠=︒,A ∠∴FAE EOB ∽V V , ∴AE EO=,3.(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,6cm AB =,8cm BC =,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,EF =,60E ∠=︒,现将菱形EFGH 以1cm /s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积()2cm S 与运动时间()s t 之间的函数关系图象大致是( )A .B .C .D .∴HFG是等边三角形,EF=23cm∠=30OEF=EG EO2S=时,重合部分为MNG,依题意,MNG为等边三角形,运动时间为t,则NG⨯⨯NG NG6时,如图所示,12EKJ S =EKJ S S S =菱形 (3333t −−二、填空题4.(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM = m .5.(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =−++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车 完全停到车棚内(填“能”或“不能”).【答案】能【分析】本题主要考查了二次函数的实际应用,根据题意求出当2x =时,y 的值,若此时y 的值大于1.8,则货车能完全停到车棚内,反之,不能,据此求解即可.【详解】解:∵4m CD =,()62.68B ,, ∴642−=,在20.020.3 1.6y x x =−++中,当2x =时,20.0220.32 1.6 2.12y =−⨯+⨯+=,∵2.12 1.8>,∴可判定货车能完全停到车棚内,故答案为:能.6.(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙OE=m,6AE=m, 1.4AB CD⊥于点O(如图),其中AB上的EO段围墙空缺.同学们测得 6.6OB=m,OD=m.班长买来可切断的围栏16m,准备利用已有围墙,围出一块封闭的矩形菜地,则该OC=m,35菜地最大面积是2cm.三、解答题7.(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索1L 与缆索2L 均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF '为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索1L 所在抛物线与缆索2L 所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离100m OC =,17m AO BC ==,缆索1L 的最低点P 到FF '的距离2m PD =(桥塔的粗细忽略不计)(1)求缆索1L 所在抛物线的函数表达式;(2)点E 在缆索2L 上,EF FF '⊥,且 2.6m EF =,FO OD <,求FO 的长.8.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长80m.设垂直于墙的边AB长为x米,平行于墙的边BC为y米,围成的矩形面积为2cmS.(1)求y与,x s与x的关系式.(2)围成的矩形花圃面积能否为2750cm,若能,求出x的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x的值.∵1940x ≤<,∴25x =;(3)解:()22280220800s x x x =−+=−−+∵20,-<∴s 有最大值,又1940x ≤<,∴当20x =时,s 取得最大值,此时800s =,即当20x =时,s 的最大值为8009.(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =−+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.10.(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =−+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .11.(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒. (1)求这两种粽子的进价;(2)设猪肉粽每盒售价x 元()5270x ≤≤,y 表示该商家销售猪肉粽的利润(单位:元),求y 关于x 的函数表达式并求出y 的最大值.∴当60x =时,y 取得最大值为1000元.12.(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值. 【答案】(1)280y x =−+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元 (3)2【分析】本题考查了二次函数的应用,解题的关键是: (1)利用待定系数法求解即可;(2)设日销售利润为w 元,根据利润=单件利润×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w 元,根据利润=单件利润×销售量-m ×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可.【详解】(1)解∶设y 与x 的函数表达式为y kx b =+, 把12x =,56y =;20x =,40y =代入,得12562040k b k b +=⎧⎨+=⎩,解得280k b =−⎧⎨=⎩,∴y 与x 的函数表达式为280y x =−+; (2)解:设日销售利润为w 元, 根据题意,得()10w x y =−⋅()()10280x x =−−+22100800x x =−+−13.(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)14.(2024·四川遂宁·中考真题)某酒店有A B、两种客房、其中A种24间,B种20间.若全部入住,一天、两种客房均有10间入住,一天营业额为3200元.营业额为7200元;若A B(1)求A B、两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?15.(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A 类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A 类特产和5件B 类特产需540元.(1)求A 类特产和B 类特产每件的售价各是多少元?(2)A 类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A 类特产降价x 元,每天的销售量为y 件,求y 与x 的函数关系式,并写出自变量x 的取值范围.(3)在(2)的条件下,由于B 类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w 元,求w 与x 的函数关系式,并求出每件A 类特产降价多少元时总利润w 最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A 类特产的售价为60元/件,B 类特产的售价为72元/件 (2)1060y x =+(010x ≤≤)(3)A 类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,()1根据题意设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x −元,进一步得到关于x 的一元一次方程求解即可;()2根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x得取值范围;()3结合(2)中A 类特产降价x 元与每天的销售量y 件,得到A 类特产的利润,同时求得B 类特产的利润,整理得到关于x 的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x −元. 根据题意得()35132540x x +−=. 解得60x =.则每件B 类特产的售价1326072−=(元).答:A 类特产的售价为60元/件,B 类特产的售价为72元/件. (2)由题意得1060y x =+∵A 类特产进价50元/件,售价为60元/件,且每件售价不低于进价 ∴010x ≤≤.答:1060y x =+(010x ≤≤).(3)(6050)(1060)100(7260)w x x =−−++⨯−22=−++=−−+.x x x1040180010(2)1840Q−<100,∴当2x=时,w有最大值1840.答:A类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.16.(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.17.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?18.(2024·江西·中考真题)如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:(1)①m =______,n =______; ②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =−+. ①小球飞行的最大高度为______米; ②求v 的值.19.(2024·江苏苏州·中考真题)如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A −,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标. PMN S =()2,0A −)6,0,又AC BC =8BC =.ACB ∠=∴点(6,8B 设直线AB 将(2,0A −AC BC=PN x∥轴,BLN∴∠=PM AB∥MPL∴∠=QMP∴∠QM QP∴=设点P的坐标为PMNS=当3t=20.(2024·青海·中考真题)在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点33,2A⎛⎫⎪⎝⎭处.小球在空中所经过的路线是抛物线2y x bx=−+的一部分.(1)求抛物线的解析式;(2)求抛物线最高点的坐标;(3)斜坡上点B处有一棵树,点B是OA的三等分点,小球恰好越过树的顶端C,求这棵树的高度.∵BOD AOE ∠=∠,BDO ∠∴OBD OAE ∽△△, ∴OD BD OB OE AE OA==, 又∵点B 是OA 的三等分点,∴1OB =,21.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==.(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).,再证明EO A'是等边三角形,运用线段的和差关系重合时,和当C'与点,再分别以2 3分别作图,运用数形结合思路列式计算,即可作答.60,(A∴EO A'是等边三角形=AE AO'=−BE AB=−BE AB=−+2BE t∵由①得出EO A '是等边三角形,(122AO t ='3EAO '=,32t ⎛⎫− ⎪⎝⎭3124。

2022年中考数学压轴题(附答案)

2022年中考数学压轴题(附答案)

一、解答题1.如图,在平面直角坐标系中,一抛物线的对称轴为直线x=1,且该抛物线与y轴负半轴交于C点,与x轴交于A,B两点,其中B点的坐标为(3,0),且OB=OC.(1)求此抛物线的函数表达式;(2)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ是以MN为一直角边的等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.2.直线y=﹣x+6与x轴、y轴分别交于点A,点B.点P为线段AB上一动点(与点A,B不重合).过点P作PM⊥OA于点M,以OB,OM为邻边作矩形BOMN.点Q在直线BN上,且PQ⊥OP.(1)如图1,①判断△APM的形状,并说明理由;②求证:△PNQ≌△OMP;③若∠PQN=22.5°,直接写出点P的坐标.(2)作射线OQ交直线AB于点K,∠OPQ的角平分线交边OB于点G.若BGOG=35,①当∠PKQ为钝角时,直接写出线段PK的长;②当∠PKQ为锐角时,直接写出BK2+AP2的值.3.已知抛物线29 4y ax x c=++与x轴交于A、B两点,与y轴交于C点,且点A的坐标为1,0、点C 的坐标为()0,3.(1)求该抛物线的函数表达式;(2)如图1,若该抛物线的顶点为P ,求PBC 的面积;(3)如图2,有两动点D 、E 在COB △的边上运动,速度均为每秒1个单位长度,它们分别从点C 和点B 同时出发,点D 沿折线COB 按C →O →B 方向向终点B 运动,点E 沿线段BC 按B →C 方向向终点C 运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动时间为t 秒,在点D 、E 运动过程中,该抛物线上存在点F ,使得依次连接AD 、DF 、FE 、EA 得到的四边形ADFE 是平行四边形,请直接写出所有符合条件的点F 的坐标.4.如图,在平面直角坐标系中,抛物线264y ax ax =-+与x 轴的一个交点为()2,0A -,与y 轴的交点为C ,点B 为抛物线对称轴上一动点.(1)抛物线的函数表达式为________,抛物线的对称轴为________.(2)线段BC 绕点B 顺时针旋转90︒得到BP ,当点P 落在抛物线上时,求出点B 坐标.(3)当点B 在x 轴上时,M ,N 是抛物线上的两个动点,M 在N 的右侧,若以B ,C ,M ,N 四点为顶点的四边形是平行四边形,求出此时点M 的横坐标.5.如图,抛物线顶点(1,4)P ,与y 轴交于点(0,3)C ,与x 轴交于点A ,B .(1)求抛物线的解析式;(2)Q 是抛物线上除点P 外一点,BCQ △与BCP 的面积相等,求点Q 的坐标:(3)M 是线段BC 上方抛物线上一个动点,过点M 作x 轴的垂线,交线段BC 于点D ,再过点M 做MN //x 轴交抛物线于点N ,连结DN ,请问是否存在点M 使MDN △为等腰直角三角形?若存在,求出点M 的坐标;若不存在,说明理由.6.已知二次函数y =x 2+bx +b ﹣1,其中b 为常数.(1)当y =0时,求x 的值;(用含b 的式子表示)(2)抛物线y =x 2+bx +b ﹣1与x 轴交于A ,B 两点(点A 在点B 的左侧),过点E (4,2)作直线交抛物线于P ,Q 两点,其中点P 在第一象限,点Q 在第四象限,连接AP ,AQ 分别交y 轴于点M (0,m ),N (0,n ).①当b <2时,求点P 的横坐标xP 的值;(用含m ,b 的式子表示)②当b =﹣3时,求证:OM •ON 是一个定值.7.如图,抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点,其中A (3,0),B (-1,0),与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,直线y =kx +b 1经过点A 、C ,连接CD .(1)分别求抛物线和直线AC 的解析式;(2)在直线AC 下方的抛物线上,是否存在一点P ,使得△ACP 的面积是△ACD 面积的2倍,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在一点Q ,使线段AQ 绕Q 点顺时针旋转90°得到线段QA 1,且点A 1恰好落在该抛物线上?若存在,求出点Q 的坐标;若不存在,请说明理由.8.如图1,在ABC 中,90,ACB CD ∠=︒平分ACB ∠,且AD BD ⊥于点D .(1)判断ABD △的形状;(2)如图2,在(1)的结论下,若22,3,75BQ DQ BQD ==∠=︒,求AQ 的长;(3)如图3,在(1)的结论下,若将DB 绕着点D 顺时针旋转()090αα︒<<︒得到DP ,连接BP ,作DE BP ⊥交AP 于点F .试探究AF 与DE 的数量关系,并说明理由.9.如图1,已知数轴上的点A 、B 对应的数分别是﹣5和1.(1)若P 到点A 、B 的距离相等,求点P 对应的数;(2)动点P 从点A 出发,以2个单位/秒的速度向右运动,设运动时间为t 秒,问:是否存在某个时刻t ,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍?若存在,请求出t 的值;若不存在,请说明理由;(3)如图2在数轴上的点M 和点N 处各竖立一个挡板(点M 在原点左侧,点N 在原点右侧且OM >ON ),数轴上甲、乙两个弹珠同时从原点出发,甲弹珠以2个单位/秒的速度沿数轴向右运动,乙弹珠以5个单位/秒的速度沿数轴向左运动.当弹珠遇到挡板后立即以原速度向反方向运动,若甲、乙两个弹珠相遇的位置恰好到点M 和点N 的距离相等,试探究点M 对应的数m 与点N 对应的数n 是否满足某种数量关系,请写出它们的关系式,并说明理由.10.如图,在平面直角坐标系xOy 中,△ABC 是等腰直角三角形,∠BAC =90°,A (1,0),B (0,2),二次函数y =x 2+bx ﹣2的图象经过C 点.(1)求二次函数的解析式;(2)若点P是抛物线的一个动点且在x轴的下方,则当点P运动至何处时,恰好使△PBC 的面积等于△ABC的面积的两倍.(3)若点Q是抛物线上的一个动点,则当点Q运动至何处时,恰好使∠QAC=45°?请你求出此时的Q点坐标.11.已知,如图,抛物线y=14x2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x﹣2经过A、C两点.(1)直接写出抛物线的解析式;(2)P为抛物线上一点,若点P关于直线AC的对称点Q落在y轴上,求P点坐标;(3)现将抛物线平移,保持顶点在直线y=x﹣114,若平移后的抛物线与直线y=x﹣2交于M、N两点.①求证:MN的长度为定值;②结合(2)的条件,直接写出△QMN的周长的最小值12.已知二次函数经过点A(﹣3,0)、B(1,0)、C(0,3).(1)求该抛物线解析式;(2)如图1,点M 为抛物线上第二象限内一动点,BM 交y 轴于点N ,当BM 将四边形ABCM 的面积分为1:2两部分时,求点M 的坐标;(3)如图2,点P 为对称轴上D 点下方一动点,点Q 为直线y =x 第一象限上的动点,且DP =2OQ ,求BP +2BQ 的最小值并求此时点P 的坐标.13.如图,在平面直角坐标系中,函数的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴的正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式.(2)如果在直线AM 上有一点P ,使得,请求出点P 的坐标.(3)在坐标平面内是否存在点N ,使以A 、B 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出所有点N 的坐标;若不存在,请说明理由.14.定义:在平面直角坐标系中,对于任意两点()11,A x y ,()22,B x y ,如果点(),M x y 满足122x x x -=,122y y y -=,那么称点M 是点A 、B 的“双减点”. 例如:()4,5A -,()6,1B -、当点(),T x y 满足4652x --==-,()5132y --==,则称点()5,3M -是点A 、B 的“双减点”.(1)写出点()1,3A -,()1,4B -的“双减点”C 的坐标;(2)点()6,4E -,点4,43F m m --⎛⎫ ⎪⎝⎭,点(),M x y 是点E 、F 的“双减点”.求y 与x 之间的函数关系式;(3)在(2)的条件下,y 与x 之间的函数图象与y 轴、x 轴分别交于点A 、C 两点,B 点坐标为3,0,若点E 在平面直角坐标系内,在直线AC 上是否存在点F ,使以A 、B 、E 、F 为顶点的四边形为菱形?若存在,请求出F 点的坐标;若不存在,请说明理由. 15.如图,拋物线24832999y x x =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),顶点为D .点P 为对称轴右侧抛物线上的一个动点,其横坐标为m ,直线AD 交y 轴于点C ,过点P 作PF ∥AD 交x 轴于点.F ,PE ∥x 轴,交直线AD 于点E ,交直线DF 于点M .(1)求直线AD 的表达式及点C 的坐标;(2)当DM =3MF 时,求m 的值;(3)试探究点P 在运动过程中,是否存在m ,使四边形AFPE 是菱形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.16.如图(1),抛物线y =﹣x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,已知点B 坐标为(2,0),点C 坐标为(0,2).(1)求抛物线的表达式;(2)如图(1),点P 为直线BC 上方抛物线上的一个动点,当△PBC 的面积最大时,求点P 的坐标;(3)如图(2),过点M(1,3)作直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.17.在平面直角坐标系中,抛物线y12=-x22x+3与x轴交于A、B两点(A在B左侧),与y轴交于点C,抛物线的顶点为D,过点B作BC的垂线,交对称轴于E.(1)如图1,点P为第一象限内的抛物线上一动点,当△PAE面积最大时,在对称轴上找一点M,在y轴上找一点N,使得OM+MN+NP最小,求此时点M的坐标及OM+MN+NP 的最小值;(2)如图2,平移抛物线,使抛物线的顶点D在射线AD上移动,点D平移后的对应点为D',点A的对应点A',设原抛物线的对称轴与x轴交于点F,将△FBC沿BC翻折,使点F 落在点F′处,在平面上找一点G,使得以A'、D'、F'、G为顶点的四边形为菱形.直接写出D′的坐标.18.如图,在矩形ABCD中,6cmAB=,12cmBC=,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动.(1)几秒钟后DPQ的面积等于228cm;(2)在运动过程中,是否存在这样的时刻,使点D恰好落在以点Q为圆心,PQ为半径的圆上?若存在,求出运动时间;若不存在,请说明理由.(3)在点P、Q的运动过程中,几秒后DPQ是直角三角形?请直接写出答案.19.已知AB、CD为O的两条弦,//AB CD.(1)如图1,求证弧AC=弧BD;(2)如图2,连接AC、BC、OA、BD,弦BC与半径OA相交于点G,延长AO交CD于点E,连接BE,使BE BD=,若OA BC⊥,求证:四边形ABEC为菱形;(3)在(2)的条件下,CH与O相切于点C,连接CO并延长交BE于点F,延长BE交CH于点H,11OF=,24sin25BDC∠=,求CH长.20.如图1和图2,在△ABC中,AB=AC=5,sinC=35.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.【参考答案】**科目模拟测试一、解答题1.(1)y=x2﹣2x﹣3(2)0)或(20)或(00)【解析】【分析】(1)根据线段相等、对称轴求出A,C两点的坐标,设出抛物线的函数表达式,并代入A,B,C三点坐标,得方程组,解出未知数的值,即可得到函数表达式;(2)根据题意,设出M点的坐标,表示出MN的长度,再分类讨论,当点M、N在x轴下方和下方时,分别根据MN=MQ、MN=NQ列出方程,解方程即可.(1)∵B点的坐标为(3,0)且OB=OC∴C点的坐标为(0,﹣3)∵抛物线的对称轴为直线x=1,B点的坐标为(3,0)∴A点的坐标为(﹣1,0)设抛物线的函数表达式为y=a(x+1)(x﹣3)(a≠0)将C(0,﹣3)代人y=a(x+1)(x﹣3)中解得:a=1∴抛物线的函数表达式为y=(x+1)(x﹣3)=x2﹣2x﹣3.(2)∵MN∥x轴,且M、N在抛物线上∴M、N关于直线x=1对称设点M(m,m2﹣2m﹣3)且m>1则MN=2(m﹣1)①当点M、N在x轴下方时,若∠QMN=90°且MN=MQ时,△MNQ为等腰直角三角形∴MQ⊥MN即MQ⊥x轴∴2(m﹣1)=﹣(m2﹣2m﹣3)解得:m1m2∴点M2﹣Q10)由MQ1=MN可得﹣(2﹣xN解得:xN=2∴点N为(22﹣故当∠MNQ2=90°,MN=NQ2时,点Q2的坐标为(2﹣5,0)②当点M、N在x轴上方时,若∠QMN=90°且MN=MQ时,△MNQ为等腰直角三角形∴MQ⊥MN,即MQ⊥x轴∴2(m﹣1)=m2﹣2m﹣3解得:m1=2+5,m2=2﹣5(舍去)∴点M为(2+5,2+25),点Q3为(2+5,0)由MQ3=MN,可得2+25=2+5﹣xN,解得xN=﹣5∴点N为(﹣5,2+25)当∠MNQ4=90°,MN=NQ4时,点Q4的坐标为(﹣5,0)综上所述,存在满足条件的点Q,其坐标分别为(5,0)或(2﹣5,0)或(2+5,0)或(﹣5,0).,【点睛】本题是二次函数的综合题目,涉及等腰直角三角形的存在性问题,主要考查了待定系数法求二次函数解析式、二次函数的性质、等腰三角形的性质及判定,熟练运用上述知识是解题的关键.2.(1)①等腰直角三角形,理由见解析,②证明见解析,③(63232),,(2)52,②225 2【解析】【分析】(1)①求出直线y=﹣x+6与x轴、y轴交点坐标,得出∠BAO=45°即可证明;②由①得出BN=PN=OM,再根据PQ⊥OP得出∠PQB=∠OPM,即可证明△PNQ≌△OMP;③∠PQN=22.5°,可得BQ=PB,设点P坐标为(a,-a+6),列出关于a的方程求解即可;(2)①证△OPG∽△OBP,求出OP长,得出P点坐标,再证△OPB∽△KPO,求出PK 的长即可;②类似①得出P点坐标,求出PK的长即可.【详解】解:(1)①△APM是等腰直角三角形,理由如下:y=﹣x+6与x轴、y轴分别交于点A,点B.当x=0时,y=6,当y=0时,x=6,则点A(6,0)点B(0,6);∴OA=OB,∴∠BAO=45°,∵PM⊥OA,∴∠BAO=∠MPA=45°,∴PM=PA,∴△APM是等腰直角三角形;②由①同理可得BN=PN,∵BN=OM,∴PN=OM,∵PQ⊥OP,∴∠QPN+∠OPM=90°,∵∠POM+∠OPM=90°,∴∠POM=∠QPN,∵∠PMO=∠PNQ=90°,∴△PNQ≌△OMP;③设点P坐标为(a,-a+6),∵∠PQN=22.5°,∠PBN=45°,∴∠PQN=∠BPQ=22.5°,∴BQ=PB,∵△PNQ≌△OMP;∴QN=PM=-a+6,6a a+=-+,解得,6a=-则点P坐标为(6-;(2)∵BGOG=35,OB=6,∴94BG=,154OG=,①∵∠OPQ 的角平分线交边OB 于点G ,∴∠OPG =∠OBA =45°,∵∠PGO =45°+∠BPG ,∠BPO =45°+∠BPG ,∴∠PGO =∠BPO ,∴△OPG ∽△OBP , ∴OP OG OB OP =,即1546OP OP =,解得3102OP =(负值舍去), 设点P 坐标为(a ,-a +6),222310(6)()2a a +-+=, 解得,132a =,292a =; 当∠PKQ 为钝角时,92a =,P 坐标为93()22,, 则322AP =,922BP =, ∵∠POK =∠OBA =45°,∠BPO =∠BPO ,∴△OPB ∽△KPO ,∴OP PB KP OP =,即31092223102KP =,解得522KP =;②当∠PKQ 为锐角时,32a =,P 坐标为39()22,, 则92AP =32BP = 由①得,310OP =OP PB KP OP =即31032223102KP =,1522KP =, 152326222BK =-=, BK 2+AP 2=229222562+=22()().【点睛】本题考查了一次函数与图形,全等三角形的判定与性质,相似三角形的判定与性质,解题关键是熟练运用相关定理进行推理证明.3.(1)239344y x x =-++;(2)458;(3)1013,36⎛⎫ ⎪⎝⎭或()3,3. 【解析】【分析】(1)把A 、C 两点代入抛物线294y ax x c =++解析式,即可得表达式. (2)把解析式配方得顶点式,即可得顶点坐标,令y=0,得B 点的坐标,连接OP ,可求得PBC OPC OPB OBC S S S S =+-=111••••••222p p OC x OB y OB OC +-,即得结果. (3)在△OBC 中,BC <OC +OB ,当动点E 运动到终点C 时,另一个动点D 也停止运动,由勾股定理得BC =5,当运动时间为t 秒时,BE =t ,过点E 作EN ⊥x 轴,垂足为N ,根据相似三角形的判定得△BEN ∽△BCO ,根据相似三角形的性质得,点E 的坐标为43(4,)55t t -,分两种情形讨论当点D 在线段CO 上运动时,0<t <3,此时CD =t ,点D 的坐标为(0,3-t ),当点D 在线段OB 上运动时,3≤t ≤5,BD =7-t ,根据平行四边形ADFE 的性质得出坐标.【详解】解:(1)∵抛物线294y ax x c =++经过A (-1,0),C (0,3)两点, ∴9043a c c ⎧-+=⎪⎨⎪=⎩, 解得343a c ⎧=-⎪⎨⎪=⎩, ∴该抛物线的函数表达式为239344y x x =-++; (2)∵抛物线223933753()444216y x x x =-++=--+, ∴抛物线的顶点P 的坐标为375(,)216, ∵239y 344x x =-++, 令y=0,解得:x 1=-1,x 2=4,∴B 点的坐标为(4,0),OB =4,如图,连接OP ,则PBC OPC OPB OBC S S S S =+-,=111222p p OC x OB y OB OC ⋅⋅+⋅⋅-⋅⋅ =1317513443222162⨯⨯+⨯⨯-⨯⨯ =975648+- =458∴△PBC 的面积为458; (3)∵在△OBC 中,BC <OC +OB ,∴当动点E 运动到终点C 时,另一个动点D 也停止运动,∵OC =3,OB =4,∴在Rt △OBC 中,225BC OB OC =+=∴0<t ≤5,当运动时间为t 秒时,BE =t ,如图,过点E 作EN ⊥x 轴,垂足为N ,则△BEN ∽△BCO ,∴5BN EN BE t BO CO BC === 43BN ,,55t EN t == ∴点E 的坐标为43(4,)55t t -, 下面分两种情形讨论:Ⅰ、当点D 在线段CO 上运动时,0<t <3,此时CD =t ,点D 的坐标为(0,3-t ),设点239,344F a a a ⎛⎫-++ ⎪⎝⎭根据平行四边对角线互相平分,得,2414533933544a t t t a a ⎧-=-⎪⎪⎨⎪-+=-++⎪⎩, 消去t 得,237100a a --= ,解得1210,13a a ==- (舍去) 当1103a =时,239163443a a -++=, ∴ F 坐标为1013(,)36Ⅱ、如图,当点D 在线段OB 上运动时,3≤t ≤5,BD=7-t ,()473OD t t =--=- ()3,0D t ∴-根据平行四边的性质,AD DF = ,AE DF =,243(1)(4)53933445t a t a a t ⎧---=--⎪⎪∴⎨⎪-++=⎪⎩,消去t 得,2120a a +-=, 解得14a =-(舍去),23a =当3a =时,2393344a a -++= ∴ F 坐标为(3,3),综上所述:F 坐标为1013(,)36或(3,3). 【点睛】 本题考查了抛物线的综合运用,本题涉及到抛物线的求解,勾股定理,二次函数的性质,相似三角形的判定与性质,正确运用分类讨论思想是解题的关键.4.(1)20.25 1.54=-++y x x ,直线3x =;(2)12(3,3),(3,1)B B ;(3)M 的横坐标为3259±或436 【解析】【分析】(1)把()2,0A -代入函数解析式,求出a 的值即可得函数关系式,再进行配方可得函数的对称轴;(2)设(3,)B t ,过B 作BE y ⊥轴垂足为E ,过点P 作PF BE ⊥垂足为F ,证明≌CEB BFP 得3,4PF BE BF CE t ====-,可得(7,3)P t t -+,代入抛物线解析式得方程,求解即可;(3)分两种情况,根据平行四边形的判定与性质求解即可.【详解】解:(1)把()2,0A -代入264y ax ax =-+得,4+124=0a a +解得,a=-0.25∴抛物线的函数表达式为20.25 1.54=-++y x x ,由220.25 1.54=0.25(3) 6.25y x x x =-++-⨯-+∴抛物线的对称轴为直线3x =,故答案为:20.25 1.54=-++y x x ,直线3x =;(2)∵点B 为抛物线对称轴上一动点∴设(3,)B t过B 作BE y ⊥轴垂足为E ,过点P 作PF BE ⊥垂足为F∵90CBP ∠=︒,∴CBE BPF ∠=∠,∵,90=∠=∠=︒BC BP CEB BFP , ∴≌CEB BFP∴3,4PF BE BF CE t ====-∴(3,7)+-P t t ,∵点P 落在抛物线上,∴把(7,3)P t t -+代入20.25 1.54=-++y x x ,整理得2430t t -+=得121,3t t ==所以12(3,3),(3,1)B B(3)①如图,当BC 为边时,∵四边形BCNM 是平行四边形,∴//,=BC MN BC MN∵点B 向左平移3个单位,再向上平移4个单位得到点C ∴设点23,442⎛⎫-++ ⎪⎝⎭m m M m ,则N 坐标为233,842⎛⎫--++ ⎪⎝⎭m m m ∵点N 在抛物线上,∴把233,842⎛⎫--++ ⎪⎝⎭m m N m 代入23442=-++x x y 得223(3)3(3)844242---++=-++m m m m , 解得436=m ②如图,当BC 为对角线时,∵四边形BNCM 是平行四边形,∴,==CQ BQ NQ MQ∵(3,0),(0,4)B C ,∴(1.5,2)Q ,∴设点23,442⎛⎫-++ ⎪⎝⎭m m M m ,则N 坐标为233,42m m m ⎛⎫-- ⎪⎝⎭∵点N 在抛物线上,∴把233,42m m N m ⎛⎫-- ⎪⎝⎭代入23442=-++x x y 得()()22333344242m m m m ---=-++,解得32592m ±= 所以点M 的横坐标为32592±或436. 【点睛】本题是二次函数综合题目,考查了二次函数解析式的求法、平行四边形的性质、平移的性质、解方程等知识;本题综合性强,有一定难度.5.(1)2y x 2x 3=-++;(2)1(2,3)Q ,2317117(,)22Q +--,3317117(,)22Q --+;(3)存在,(2,3)M 或5175317(,)22--+ 【解析】【分析】(1)设2(1)4(0)y a x a =-+≠,把C(0,3)代入求出a ,即可得出答案;(2)①过P 作PQ //BC ,交抛物线于点Q ,如图1所示;②求出点G 坐标,可得2PG GH ==,过H 作直线23Q Q //BC ,交x 轴于点H ,分别求出Q 的坐标即可; (3)MDN △为等腰直角三角形,则MN MD =,求出MN 、MD 的长度即可列出等量关系式,从而得出答案.【详解】(1)设2(1)4(0)y a x a =-+≠,把C(0,3)代入抛物线解析式得:43a +=,即1a =-,则抛物线解析式为22(1)423 y x x x =--+=-++;(2)由(3,0)B ,C(0,3),得到直线BC 解析式为3y x =-+,①过P 作1PQ //BC ,交抛物线于点1Q ,如图1所示,(1,4)P ,∴直线PQ 解析式为5y x =-+,联立得:2235y x x y x ⎧=-++⎨=-+⎩,解得:14x y =⎧⎨=⎩或23x y =⎧⎨=⎩,即1(2,3)Q ;②过P 作PH x ⊥轴,交BC 于点G ,交x 轴于点H , 令1x =,代入3y x =-+,得2y =,(1,2)G ∴,2PG GH ∴==,过H 作直线23Q Q //BC ,则直线23Q Q 解析式为1y x =-+,联立得:2231y x x y x ⎧=-++⎨=-+⎩,解得:x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧⎪⎪⎨⎪=⎪⎩2Q ∴,3Q , 综上所述:点Q 的坐标为1(2,3)Q,2Q,3Q ; (3)MDN △为等腰直角三角形,则MN MD =, 点()2,23M m m m -++,令x m =,代入3y x =-+得:3y m =-+,(,3)D m m ∴-+,函数的对称轴为:1x =,则点N 的横坐标为:2m -, 则|22|MN m =-,2223(3)3MD m m m m m =-++--+=-+,2223m m m ∴-=-+,2223m m m -=-+或2223m m m -+=-+,解得:12m =或21m =-(舍)或3m =4m =当2m =时,2233m m -++=,当m =223m m -++= 故点M 的坐标为:(2,3)或. 【点睛】本题考查了二次函数综合题,设计知识有:用待定系数法求函数解析式、同底等高的面积计算、等腰直角三角形的性质,一次函数与二次函数交点问题,熟练掌握相关知识点是解决本题的关键.6.(1)x 1=-1,x 2=1-b ;(2)①xP =m -b +1;②OM •ON =2. 【解析】 【分析】(1)令y =0可得x 2+bx +b -1=0,然后解一元二次方程即可解答;(2)①当b <2时,由不等式性质可得:1-b >-1,根据点A 在点B 的左侧,可得A (-1,0),再利用待定系数法求得直线AM 的解斤式为y =mx +m ,联立方程组可得:x 2+(b -m )x +b -m -1=0,由根与系数关系可得xA +xP =-(b -m )=m -b ,进而确定xP ;②当b =-3时,二次函数解析式为y =x 2-3x -4,由题意可得P (m +4,m 2+5m ),Q (n +4,n 2+5),再根据直线PQ 过点E (4,2),可推出(mn +2)m -n )=0,再由P 、Q 不重合,即mn ,得出mn =-2即可.【详解】解:(1)当y =0时,x 2+bx +b -1=0,即(x +1)(x +b -1)=0, ∴x +1=0或x +b -1=0,即x 1=-1,x 2=1-b ; (2)①当b <2时,由(1)可知:x 1=-1,x 2=1-b , ∵b <2, ∴-b >-2, ∴1-b >-1,∵点A 在点B 的左侧, ∴A (-1,0),设直线AM 的解析式为y =kx +a , ∵A (-1,0),M 0,m ),∴0k a a m -+=⎧⎨=⎩,解得k m a m =⎧⎨=⎩∴直线AM 的解析式为y =mx +m ,联立方程组,得:2,1y mx my x bx b =+⎧⎨=++-⎩消去y 可得:x 2+(b -m )x +b -m -1=0, 由根与系数关系,得xA +xP =-(b -m )=m -b , ∴xP =m -b +1;②证明:当b =-3时,二次函数解析式为y =x 2-3x -4, ∴A (-1,0),B (4,0), ∵xP =m +4,∴yP =m +4)2-3(m +4)-4=m 2+5m , ∴P (m +4,m 2+5m ), ∴直线AN 的解析式为:(1)01ny x nx n =+=++, 联立方程组可得:234,y x x y nx n ⎧=--⎨=+⎩∴x 2-(3+n )x -4-n =0∴xQ =4+n ,yQ =n 2+5n ,即Q (n +4,n 2+5n ), ∵直线PQ 过点E (4,2), ∴kEP =kEQ ,∴2225254444m m n n m n ++=+-+-,即mn 2+5mn -2m =m 2n +5mn -2n ,即(mn +2)(m -n )=0, ∵P 、Q 不重合,即m ≠n , ∴mn =-2,∴OM ·ON =|mn |=2为定值. 【点睛】本题主要考查了二次函数的性质、待定系数法、一次函数图象和性质、一元二次方程根与系数关系等知识点,本题综合性较强,熟练掌握二次函数的图象及性质、灵活应用根与系数的关系成为解答本题的关键.7.(1)y =-x 2+2x +3,y =-x +3;(2)存在,(-1,0)或(4,-5);(3)存在,(1,2)或(1,-3) 【解析】 【分析】(1)将点A ,B 坐标代入抛物线解析式中,求出b ,c 得出抛物线的解析式,进而求出点C 的坐标,再将点A ,C 坐标代入直线AC 的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD AD =,进而判断出ABC 的面积和ACP △的面积相等,即可得出结论;(3)分点Q 在x 轴上方和在x 轴下方,构造全等三角形即可得出结论. 【详解】(1)把(30)A ,、(10)B -,代入2y x bx c =-++, 解得2b =、3c =∴抛物线的解析式为2y x 2x 3=-++则C 点为(0,3),又(30)A ,,代入1y kx b =+, 得1k =-,13b =, ∴直线AC 的解析式为3y x =-+, (2)如图,连接BC ,∵点D 是抛物线的对称轴与x 轴的交点, ∴AD BD =, ∴2ABCACDSS=,∵2ACP ACD S S =△△,∴ACP ABC S S =△△,此时,点P 与点B 重合, 即:(10)P -,, 过B 点作PB AC ∥交抛物线于点P ,则直线BP 的解析式为1y x =--①, ∵抛物线的解析式为2y x 2x 3=-++②,联立①②解得,10x y =-⎧⎨=⎩或45x y =⎧⎨=-⎩,∴P (4,﹣5),∴即点P 的坐标为(﹣1,0)或(4,﹣5); (3)由(1)可知,抛物线解析式为()214y x =--+ 把1x =代入直线AC 解析式3y x =-+得AC 与抛物线对称轴的交点(1,2)M ,如下图所示:22222BM AM ==+,4AB =即222BM AM AB +=则MAB △是等腰直角三角形,符合题意,M 点即为所求Q 点的一种情况,当Q 点在x 轴下方时,设Q 为(1,)m ,0m <, 因为线段AQ 绕Q 点顺时针旋转90°得到线段1QA 过A1作直线DQ 的垂线于E 点,则1ADQ QEA ≌ ∴2AD QE ==,1DQ EA m ==- ∴12(1)A m m --,∵点A1恰好落在抛物线2y x 2x 3=-++上, 代入,解得m=-3或2m = (舍去) ∴Q (1,-3)综上,Q 点坐标为(1,2)或(1,-3), 【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,全等三角形的判定与性质,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.8.(1)ABD △是等腰直角三角形,证明见解析;(2)38;(3)2,AF DE =证明见解析 【解析】 【分析】(1)先求解45,ACD BCD ∠=∠=︒取AB 的中点,G 连接,,CG DG 再证明,,,A C B D 在以G 为圆心,GC 为半径的同一个圆上,从而可得答案.(2)如图, 把ADQ △顺时针旋转90︒得到,BDQ ' 连接,QQ ' 过Q '作,Q F BQ '⊥ 交BQ 的延长线于,F 证明45,32,DQQ QQ ∠=︒='' 证明120,60,BQQ FQQ ∠=︒∠='︒' 求解3236·cos 60,?sin 60,22QF QQ FQ QQ =︒==︒=''' 再利用勾股定理可得答案; (3)如图,连接,BF 证明 ,DPE ABF ∽ 可得,DP DEAB AF= 结合(1)问的结论可得答案. 【详解】解:(1) 90,ACB CD ∠=︒平分ACB ∠, 45,ACD BCD ∴∠=∠=︒取AB 的中点,G 连接,,CG DG90,ACB ADB ∠=∠=︒ ,CG AG BG DG ∴===,,,A C B D ∴在以G 为圆心,GC 为半径的同一个圆上, 45,ABD ACD ∴∠=∠=︒ABD ∴为等腰直角三角形.(2)如图,,90,AD BD ADB =∠=︒把ADQ △顺时针旋转90︒得到,BDQ ' 连接,QQ ' 过Q '作,Q F BQ '⊥ 交BQ 的延长线于,F3,90,,DQ DQ QDQ AQ BQ ''∴∠=︒='==2245,3332,DQQ QQ ''∴∠=︒=+=75,BQD ∠=︒120,60,BQQ FQQ ∴∠=︒∠='︒'3236·cos 60?sin 60QF QQ FQ QQ ∴=︒==︒=''' 327222BF BQ QF ∴=+== 22723638,22BQ ⎛⎫⎛⎫∴=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭' 38.AQ BQ '∴==(3)2,AF DE =理由如下: 如图,连接,BF2,90,45,BD AD BD ADB ABD BAD AB =∠=︒∠=∠=︒= ,,,DB DP BDP DE BP α=∠=⊥11,,90,,22BE PE BDE PDE DBE FB FP αα∴=∠=∠=∠=︒-=,90,AD DP ADP α=∠=︒+145,2DAP DPA α∴∠=∠=︒-114545,22BAP PDE αα⎛⎫∴∠=︒-︒-==∠ ⎪⎝⎭11180459045,22APB αα⎛⎫∴∠=︒--︒-︒-=︒ ⎪⎝⎭,FB FP =45,90,FBP FPB BFP BFA ∴∠=∠=︒∠=︒=∠ 90,BFA DEP ∴∠=∠=︒ ,DPE ABF ∴∽,DP DEAB AF∴= 2DE DB AF AB ∴== 即2.AF DE = 【点睛】本题考查的是等腰直角三角形的判定与性质,旋转的性质,相似三角形的判定与性质,圆的确定,圆周角定理的应用,是典型的综合题,熟练的运用图形的性质,作出恰当的辅助线是解本题的关键.9.(1)点P 对应的数为-2;(2)当t =2或6时,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍;(3)m +13n =0.【解析】 【分析】(1)设点P 对应的数为x ,表示出BP 与PA ,根据BP =PA 求出x 的值,即可确定出点P 对应的数;(2)表示出点P 对应的数,进而表示出PA 与PB ,根据PA =2PB 求出t 的值即可; (3)因为OM >ON ,只有甲乙均反弹之后在中点相遇一种情况,设点M 对应的数为m ,点N 对应的数为n ,时间为t ,则M 、N 的中点对应的数为2m n+,根据甲、乙两个弹珠相遇的位置恰好到点M 和点N 的距离相等列出关系式即可. 【详解】解:(1)点A 、B 对应的数分别是﹣5和1, 设点P 对应的数为x , 则BP =1-x ,PA =x +5, ∵BP =PA , ∴1-x =x +5, 解得:x =-2, ∴点P 对应的数为-2; (2)P 对应的数为-5+2t , ∴PA =2t ,PB =|-5+2t -1|=|2t -6|, ∵PA =2PB , ∴2t =2|2t -6|, 当t =2t -6时,t =6; 当t +2t -6=0时,t =2;答:当t =2或6时,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍; (3)设点M 对应的数为m ,点N 对应的数为n ,时间为t , 则M 、N 的中点对应的数为2m n+, ∴MN =n -m ,OM =-m ,ON =n ,∴()()252502t t n m m n t m m ⎧+=-⎪+⎨⎛⎫=-+- ⎪⎪⎝⎭⎩,即()()351073352t n m n m t ⎧=-⎪⎨-=⎪⎩, 化简得m +13n =0. 【点睛】本题考查了二元一次方程的应用,数轴,两点间的距离,运用分类讨论思想、方程思想及数形结合思想是解题的关键.10.(1);(2)当点P运动至坐标为或时,恰好使△PBC的面积等于△ABC的面积的两倍;(3)或【解析】【分析】(1)如图,过C作于先证明可得再代入二次函数y=x2+bx﹣2中,再利用待定系数法求解b即可;H再求解直线BC (2)先求解过P作轴交BC于,为:设则再利用再解方程即可;(3)分两种情况讨论:如图,作B关于AC的对称点,N连接作的角平分线H交抛物线于,Q由则再求解的交CN于,解析式,再求解与抛物线的交点坐标即可,如图,同理可得:当平分BAC时,射线与抛物线的交点Q满足按同样的方法可得答案.【详解】解:(1)如图,过C作于则而而二次函数y=x2+bx﹣2的图象经过C点,解得:∴ 二次函数的解析式为:(2)过P 作轴交BC 于,H设直线BC 为,y mx n =+解得:所以直线BC 为:设则整理得:解得:当2x =时, 当时, 或所以当点P 运动至坐标为或时,恰好使△PBC 的面积等于△ABC 的面积的两倍.(3)如图,作B 关于AC 的对称点,N 连接 作的角平分线 交CN 于,H 交抛物线于,Q由则平分则同理可得直线的解析式为:解得:或(不合题意,舍去)如图,同理可得:当平分BAC时,射线与抛物线的交点Q满足同理:直线为:解得:或(不合题意舍去)【点睛】本题考查的是利用待定系数法求解一次函数,二次函数关系式,全等三角形的性质与判定,等腰直角三角形的性质,一元二次方程的解法,清晰的分类讨论是解本题的关键.11.(1)213y x x 242=-+-;(2)P 点坐标为(6,2);(3)①【解析】【分析】(1)求出A 、C 点的坐标,再将点代入y =14-x 2+bx +c ,即可得解; (2)先求∠OCA =45º,再由对称性可知PC ⊥y 轴,即可求出点P 的纵坐标,最后利用二次函数的解析式求出结果;(3)①先求出平移后的抛物线,再利用2111()44x m m --+-=x -2,得出2121224,43x x m x x m m +=-⋅=-+,最后利用两点之间的距离公式求解;②作KQ ⊥MN ,连接MK ,MP ,先得出KM =QN 即求KM +MP 的最小值,即KP 的长,最后根据△QMN 的周长的最小值即KQ +KP ,得解.【详解】解:(1)在y =x ﹣2中,令y =0,x =2;令x =0,y =-2;∴A (2,0),C (0,-2),代入y =14-x 2+bx +c 得104242b c c⎧=-⨯++⎪⎨⎪-=⎩, 解得322b c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为:213y x x 242=-+-; (2)如图,∵OA =OC =2,∴∠OCA =45°,∵点P 关于直线AC 的对称点Q 在y 轴上,∴∠OCA =∠PCA =45°,∴PC ⊥y 轴,∴P 的纵坐标为-2,由2132242x x -=-+-; 解得16x =,20x =(舍去),∴P 点坐标为(6,2);(3)①设顶点为(m ,m ﹣114),平移后抛物线解析式为2111()44y x m m =--+-, 则2111()44x m m --+-=x -2, 22(42)430x m x m m +-+-+=,设1122(,),(,)M x y N x y , 则2121224,43x x m x x m m +=-⋅=-+,∴MN 22222121212121212()()()(22)2()8x x y y x x x x x x x x -+--+--++-22= ∴MN 的长度为定值22②如图,作KQ ⊥MN ,连接MK ,MP ,由题知P (6,2),Q (0,4),KQ =MN 2,则只需求QM +QN 的最小值即可,∵//,,KQ MN KQ MN =∴KM =QN 即求KM +MP 的最小值,即KP 的长,∵Q (0,4),KQ 2 ∴K (-2,2),∴KP 228445+=∴△QMN 的周长的最小值为52【点睛】本题考查了二次函数的综合应用,算了掌握二次函数的图象及性质,轴对称的性质,正确作出图形是解题的关键.12.(1)y=﹣x2﹣2x+3.(2)M(﹣2,3)或(,119).(3)最小值为AC=32P(﹣1,2).【解析】【分析】(1)根据A、B点的坐标设出抛物线的交点式,再将C点的坐标带图求解,即可得出结论.(2)过A点作AG⊥x轴交BM的延长线于G,则,设ON=t,则AG=4t,CN=3﹣t,进而得出或2,进而建立方程求解,即可得出结论.(3)先判断出△PCD∽△OBQ,进而得出PC2OQ,在判断出A、P、C在同一条直线上时,BP2的最小值,在求出直线AC的解析式,即可得出结论.(1)解:∵二次函数经过点A(﹣3,0)、B(1,0),∴设抛物线的解析式为y=a(x+3)(x﹣1),∵点C(0,3)在抛物线上,∴﹣3a=3,∴a=﹣1,∴抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)解:如图1,过点A作AG⊥x轴交BM的延长线于G,由(1)知,抛物线的解析式为y=﹣x2﹣2x+3,设点M(m,﹣m2﹣2m+3)(﹣3<m<0),∴S△BCM=12CN(1﹣m),S△ABM=S△ABG﹣S△AMG=12AG[(1+3)﹣(m+3)]=12AG(1﹣m),∴,∵,∴=14,设ON=t,则AG=4t,CN=3﹣t,∵BM将四边形ABCM的面积分为1:2两部分时,∴=12或2,∴,或2,∴或2,∴t=1或13t ,∴N(0,1)或N(0,13),当N(0,1)时,∵B(1,0),∴直线BM的解析式为y=﹣x+1①,由(1)知,抛物线的解析式为y=﹣(x+3)(x﹣1)②,联立①②解得,或,∴M(﹣2,3);当N(0,13)时,∵B(1,0),∴直线BM的解析式为y=﹣13x+13③,联立②③解得,或,∴M(,119);即M(﹣2,3)或(,119);(3)解:如图2,连接PC,CD,过点C作CH⊥DP于H,由(1)知,抛物线的解析式为y=﹣x2﹣2m+3=﹣(m﹣1)2+4,∴D(﹣1,4),∵C(0,3),∴CD2,DH=1,CH=1,∴DH=CH,∴∠CDP=45°,∵点Q为直线y=x第一象限上的动点,∴∠BOQ=45°=∠CDP,∵DP2OQ,∴2,∵2∴=2∴△PCD∽△OBQ,∴,∴PC2OQ,∴BP2=BP+PC,连接AP,∵点P是抛物线的对称轴上的点,∴PB=PA,∴BP+2OQ=BP+PC=PA+PC,∴当点A,P,C在同一条直线上时,BP+2OQ最小,最小值为AC==32,∵A(﹣3,0),C(0,3),∴直线AC的解析式为y=x+3,当x=﹣1时,y=2,∴点P(﹣1,2).【点睛】本题考察了二次函数解析式的求法,抛物线的性质,三角形面积公式,相识三角形等问题,需要数形结合解答问题.13.(1)443y x=-+(2)(0,4)或(6,-4)(3)(-3,12),(3,-4)或(3,4).【解析】【分析】利用一次函数图象上点的坐标特征可求得点A,B的坐标,由点M是线段OB的中点可得出点M的坐标,根据A、M的坐标,利用待定系数法即可求得直线AM的解析式;设点P的坐标为,利用三角形的面积公式结合,即可得到关于x的含绝对值符号的一元一次方程,解之即可求得点P的坐标;设点N的坐标为,分别以△ABM的三边为对角线,利用平行四边形的对角线互相平分即可得到关于m,n的方程,解之即可求解.(1)解:当x=0时,,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题15 压轴题一、解答题1.(2022·杭州)在正方形ABCD 中,点M 是边AB 的中点,点E 在线段AM 上(不与点A 重合),点F 在边BC 上,且2AE BF =,连接EF ,以EF 为边在正方形ABCD 内作正方形EFGH .(1)如图1,若4AB =,当点E 与点M 重合时,求正方形EFGH的面积,(2)如图2,已知直线HG 分别与边AD ,BC 交于点I ,J ,射线EH 与射线AD 交于点K . ①求证:2EK EH =;②设AEK α∠=,FGJ 和四边形AEHI 的面积分别为1S ,2S .求证:2214sin 1S S α=-. 2.(2022·湖州)已知在Rt △ABC 中,∠ACB =90°,a ,b 分别表示∠A ,∠B 的对边,a b >.记△ABC 的面积为S .(1)如图1,分别以AC ,CB 为边向形外作正方形ACDE 和正方形BGF C .记正方形ACDE 的面积为1S ,正方形BGFC 的面积为2S . ①若19S =,216S =,求S 的值;②延长EA 交GB 的延长线于点N ,连结FN ,交BC 于点M ,交AB 于点H .若FH ⊥AB (如图2所示),求证:212S S S -=. (2)如图3,分别以AC ,CB 为边向形外作等边三角形ACD 和等边三角形CBE ,记等边三角形ACD 的面积为1S ,等边三角形CBE 的面积为2S .以AB 为边向上作等边三角形ABF (点C 在△ABF 内),连结EF ,CF .若EF ⊥CF ,试探索21S S -与S 之间的等量关系,并说明理由.3.(2022·嘉兴)小东在做九上课本123页习题:“1AB (如图1),用直尺和圆规作AB 上的一点P ,使AP :AB =1”小东的作法是:如图2,以AB 为斜边作等腰直角三角形ABC ,再以点A 为圆心,AC 长为半径作弧,交线段AB 于点P ,点P 即为所求作的点.小东称点P 为线段AB 的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP ,点D 为线段AC 上的动点,点E 在AB 的上方,构造DPE ,使得DPE ∽CPB .①如图3,当点D 运动到点A 时,求∠CPE 的度数.②如图4,DE 分别交CP ,CB 于点M ,N ,当点D 为线段AC 的“趣点”时(CD <AD ),猜想:点N 是否为线段ME 的“趣点”?并说明理由.4.(2022·温州)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE CD ⊥,交CD 延长线于点E ,交半圆于点F ,已知5,3BC BE ==.点P ,Q 分别在线段AB BE ,上(不与端点重合),且满足54AP BQ =.设,BQ x CP y ==.(1)求半圆O 的半径.(2)求y 关于x 的函数表达式.(3)如图2,过点P 作PR CE ⊥于点R ,连结,PQ RQ . ①当PQR 为直角三角形时,求x 的值.②作点F 关于QR 的对称点F ',当点F '落在BC 上时,求CF BF ''的值. 5.(2022·宁波)如图1,O 为锐角三角形ABC 的外接圆,点D 在BC 上,AD 交BC 于点E ,点F 在AE 上,满足,∠-∠=∠∥AFB BFD ACB FG AC 交BC 于点G ,BE FG =,连结BD ,DG .设ACB α∠=.(1)用含α的代数式表示BFD ∠. (2)求证:△≌△BDE FDG . (3)如图2,AD 为O 的直径. ①当AB 的长为2时,求AC 的长.②当:4:11=OF OE 时,求cos α的值.6.(2022·绍兴)如图,在矩形ABCD 中,6AB =,8BC =,动点E 从点A 出发,沿边AD ,DC 向点C 运动,A ,D 关于直线BE 的对称点分别为M ,N ,连结MN .(1)如图,当E 在边AD 上且2DE =时,求AEM ∠的度数.(2)当N 在BC 延长线上时,求DE 的长,并判断直线MN 与直线BD 的位置关系,说明理由. (3)当直线MN 恰好经过点C 时,求DE 的长.7.(2022·金华)如图,在菱形ABCD 中,310,sin 5AB B ==,点E 从点B 出发沿折线B C D --向终点D 运动.过点E 作点E 所在的边(BC 或CD )的垂线,交菱形其它的边于点F ,在EF 的右侧作矩形EFGH .(1)如图1,点G 在AC 上.求证:FA FG =.(2)若EF FG =,当EF 过AC 中点时,求AG 的长.(3)已知8FG =,设点E 的运动路程为s .当s 满足什么条件时,以G ,C ,H 为顶点的三角形与BEF 相似(包括全等)?8.(2022·丽水)如图,以AB 为直径的O 与AH 相切于点A ,点C 在AB 左侧圆弧上,弦CD AB ⊥交O 于点D ,连接,AC AD .点A 关于CD 的对称点为E ,直线CE 交O 于点F ,交AH 于点G .(1)求证:CAG AGC ∠=∠;(2)当点E 在AB 上,连接AF 交CD 于点P ,若25EF CE =,求DP CP的值; (3)当点E 在射线AB 上,2AB =,以点A ,C ,O ,F 为顶点的四边形中有一组对边平行时,求AE 的长. 9.(2022·台州)如图1,灌溉车沿着平行于绿化带底部边线l 的方向行驶,为绿化带浇水.喷水口H 离地竖直高度为h (单位:m ).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG ,其水平宽度3m DE =,竖直高度为EF 的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若 1.5EF=;h=,0.5m①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围;(2)若1mEF=.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.专题15 压轴题一、解答题1.(2022·杭州)在正方形ABCD 中,点M 是边AB 的中点,点E 在线段AM 上(不与点A 重合),点F 在边BC 上,且2AE BF =,连接EF ,以EF 为边在正方形ABCD 内作正方形EFGH .(1)如图1,若4AB =,当点E 与点M 重合时,求正方形EFGH的面积,(2)如图2,已知直线HG 分别与边AD ,BC 交于点I ,J ,射线EH 与射线AD 交于点K . ①求证:2EK EH =;②设AEK α∠=,FGJ 和四边形AEHI 的面积分别为1S ,2S .求证:2214sin 1S S α=-. 【答案】(1)5;(2)①见解析;②见解析 【解析】(1)解:∵4AB =,点M 是边AB 的中点, ∴2AE BE ==, ∵2AE BF =, ∴1BF =, 由勾股定理,得2225EF BE BF =+=, ∴正方形EFGH 的面积为5.(2)解:①由题意知90KAE B ∠=∠=︒, ∴90EFB FEB ∠+∠=︒, ∵四边形EFGH 是正方形, ∴90HEF ∠=︒, ∴90KEA FEB ∠+∠=︒, ∴KEA EFB ∠=∠,∴KEA EFB ∽△△, ∴2KE AE EF BF==. ∴22EK EF EH ==.②由①得HK HE GF ==,又∵90KHI FGJ ∠=∠=︒,KIH FJG ∠=∠,∴KHI FGJ ≌△△, 设KHI △的面积为1S .∵∠K =∠K , ∠KHI =∠A =90°,∴KHI KAE ∽△△, ∴2222122244sin 12S S KA KA KA S KH KE KE α⎛⎫ ⎪+⎛⎫==== ⎪ ⎪⎝⎭ ⎪⎝⎭, ∴2214sin 1S S α=-. 2.(2022·湖州)已知在Rt △ABC 中,∠ACB =90°,a ,b 分别表示∠A ,∠B 的对边,a b >.记△ABC 的面积为S .(1)如图1,分别以AC ,CB 为边向形外作正方形ACDE 和正方形BGF C .记正方形ACDE 的面积为1S ,正方形BGFC 的面积为2S . ①若19S =,216S =,求S 的值;②延长EA 交GB 的延长线于点N ,连结FN ,交BC 于点M ,交AB 于点H .若FH ⊥AB (如图2所示),求证:212S S S -=. (2)如图3,分别以AC ,CB 为边向形外作等边三角形ACD 和等边三角形CBE ,记等边三角形ACD 的面积为1S ,等边三角形CBE 的面积为2S .以AB 为边向上作等边三角形ABF (点C 在△ABF 内),连结EF ,CF .若EF ⊥CF ,试探索21S S -与S 之间的等量关系,并说明理由. 【答案】(1)①6;②见解析;(2)2114S S S -=,理由见解析 【解析】(1)∵19S =,216S = ∴b =3,a =4 ∵∠ACB =90°∴11S ab 34622==⨯⨯=②由题意得:∠F AN =∠ANB =90°,∵FH ⊥AB ∴∠AFN =90°-∠F AH =∠NAB ∴△F AN ∽△AN B ∴FA AN AN NB=∴a b aa b+=, 得:22ab b a += ∴122S S S +=. 即212S S S -= (2)2114S S S -=,理由如下: ∵△ABF 和△BEC 都是等边三角形∴AB =FB ,∠ABC =60°-∠FBC =∠FBE ,CB =EB ∴△ABC ≌△FBE (S A S ) ∴AC =FE =b ∠FEB =∠ACB =90° ∴∠FEC =30°∵EF ⊥CF ,CE =BC =a∴cos30b FE a CE ==︒=∴b =∴212S ab ==由题意得:21S =,22S =∴22221S S -== ∴2114S S S -=3.(2022·嘉兴)小东在做九上课本123页习题:“1AB (如图1),用直尺和圆规作AB 上的一点P ,使AP :AB =1”小东的作法是:如图2,以AB 为斜边作等腰直角三角形ABC ,再以点A 为圆心,AC 长为半径作弧,交线段AB 于点P ,点P 即为所求作的点.小东称点P 为线段AB 的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP ,点D 为线段AC 上的动点,点E 在AB 的上方,构造DPE ,使得DPE ∽CPB .①如图3,当点D 运动到点A 时,求∠CPE 的度数.②如图4,DE 分别交CP ,CB 于点M ,N ,当点D 为线段AC 的“趣点”时(CD <AD ),猜想:点N 是否为线段ME 的“趣点”?并说明理由.【答案】(1)赞同,理由见解析,(2)①45︒,②点N 是线段ME 的“趣点”,理由见解析 【解析】(1)证明:赞同,理由如下: 等腰直角三角形ABC ,,45,AC BC A B 21cos 45,22ACAB ,AC AP 1,2AP AB ∴点P 为线段AB 的“趣点”. (2)①由题意可得:45,90,,CABB ACB AC AP BC11804567.5,2ACP APC9067.522.5,BCP 1804522.5112.5,CPBDPE ∽CPB ,D ,A 重合,112.5,DPE CPB 18045.CPE DPE CPB ②点N 是线段ME 的“趣点”,理由如下:当点D 为线段AC 的“趣点”时(CD <AD ), 1,2AD AC 而,AC AP 1,2AD AP1,,2AC A A AB ,ADP ACB ∽90,ADP ACB 45,,APD DP CB ∥22.5,DPC PCB PDE ,DMPM 9022.567.5,MDC MCD ,MD MC 同理可得:,MCMN,MP MD MC MN 22.5,45,MDP MPD E B 45,90,EMP MPE 1,2MP MNME ME∴ 点N 是线段ME 的“趣点”.4.(2022·温州)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE CD ⊥,交CD 延长线于点E ,交半圆于点F ,已知5,3BC BE ==.点P ,Q 分别在线段AB BE ,上(不与端点重合),且满足54AP BQ =.设,BQ x CP y ==.(1)求半圆O 的半径.(2)求y 关于x 的函数表达式.(3)如图2,过点P 作PR CE ⊥于点R ,连结,PQ RQ . ①当PQR 为直角三角形时,求x 的值.②作点F 关于QR 的对称点F ',当点F '落在BC 上时,求CF BF ''的值.【答案】(1)158;(2)5544y x =+;(3)①97或2111;②199 【解析】(1)解:如图1,连结OD .设半圆O 的半径为r .∵CD 切半圆O 于点D ,∴OD CD ⊥.∵BE CD ⊥, ∴OD BE ∥,∴△∽△COD CBE , ∴OD CO BE CB=, 即535r r -=, ∴158r =,即半圆O 的半径是158.(2)由(1)得:1555284CA CB AB =-=-⨯=. ∵5,4AP BQ x BQ ==, ∴54AP x =. ∵CP AP AC =+, ∴5544y x =+. (3)①显然90PRQ ∠<︒,所以分两种情况. ⅰ)当90RPQ ∠=︒时,如图2.∵PR CE ⊥,∴90ERP ∠=︒. ∵90E ∠=︒,∴四边形RPQE 为矩形, ∴PR QE =.∵333sin 544PR PC C y x =⋅==+, ∴33344x x +=-, ∴97x =.ⅰ)当90PQR ∠=︒时,过点P 作PH BE ⊥于点H ,如图3,则四边形PHER 是矩形, ∴,PH RE EH PR ==. ∵5,3CB BE ==,∴4CE ==. ∵4cos 15CR CP C y x =⋅==+, ∴3PH RE x EQ ==-=, ∴45EQR ERQ ∠=∠=︒, ∴45PQH QPH ∠=︒=∠, ∴3HQ HP x ==-,由EH PR =得:33(3)(3)44x x x -+-=+, ∴2111x =. 综上所述,x 的值是97或2111.②如图4,连结,AF QF ',由对称可知QF QF =',F QR EQR ∠=∠'∵BE ⊥CE ,PR ⊥CE , ∴PR ∥BE , ∴∠EQR =∠PRQ , ∵BQ x =,5544CP x =+,∴EQ =3-x ,∵PR ∥BE ,∴CPR CBE △∽△,∴CP CB CR CE=, 即:x CR +=555444,解得:CR =x +1,∴ER =EC -CR =3-x ,即:EQ = ER∴∠EQR =∠ERQ =45°,∴45F QR EQR ∠=∠='︒∴90BQF ∠='︒, ∴4tan 3QF QF BQ B x ==⋅='. ∵AB 是半圆O 的直径,∴90AFB ∠=︒, ∴9cos 4BF AB B =⋅=, ∴4934x x +=, ∴2728x =, ∴319119CF BC BF BC BF BF BF x -==''''=-='-. 5.(2022·宁波)如图1,O 为锐角三角形ABC 的外接圆,点D 在BC 上,AD 交BC 于点E ,点F 在AE 上,满足,∠-∠=∠∥AFB BFD ACB FG AC 交BC 于点G ,BE FG =,连结BD ,DG .设ACB α∠=.(1)用含α的代数式表示BFD ∠.(2)求证:△≌△BDE FDG .(3)如图2,AD 为O 的直径.①当AB 的长为2时,求AC 的长.②当:4:11=OF OE 时,求cos α的值.【答案】(1)902︒∠=-BFD α;(2)见解析;(3)①3;②5cos 8α= 【解析】(1)∵∠-∠=∠=AFB BFD ACB α,①又∵180∠+∠=︒AFB BFD ,②②-①,得2180∠=︒-BFD α, ∴902︒∠=-BFD α.(2)由(1)得902︒∠=-BFD α,∵∠=∠=ADB ACB α, ∴180902∠=︒-∠-︒-∠=FBD ADB BFD α,∴DB DF =.∵FG AC , ∴∠=∠CAD DFG .∵CAD DBE ∠=∠,∴∠=∠DFG DBE .∵BE FG =,∴()BDE FDG SAS △≌△.(3)①∵△≌△BDE FDG ,∴∠=∠=FDG BDE α,∴2∠=∠+∠=BDG BDF EDG α.∵DE DG =, ∴()11809022∠=︒-∠=︒-DGE FDG α, ∴在BDG 中,3180902∠=︒-∠-∠=︒-DBG BDG DGE α, ∵AD 为O 的直径,∴90ABD ∠=︒. ∴32∠=∠-∠=ABC ABD DBG α. ∴AC 与AB 的度数之比为3∶2.∴AC 与AB 的的长度之比为3∶2,∵2AB =,∴3=AC .②如图,连结BO .∵OB OD =,∴∠=∠=OBD ODB α,∴2∠=∠+∠=BOF OBD ODB α.∵2∠=BDG α,∴∠=∠BOF BDG . ∵902∠=∠=︒-BGD BFO α, ∴△∽△BDG BOF ,设BDG 与BOF 的相似比为k , ∴==DG BD k OF BO . ∵411=OF OE , ∴设4OF x =,则114OE x DE DG kx ===,,∴114==+=+OB OD OE DE x kx ,154==+BD DF x kx , ∴154154114114++==++BD x kx k BO x kx k , 由154114+=+k k k,得247150+-=k k , 解得154k =,23k =-(舍), ∴11416=+=OD x kx x ,15420=+=BD x kx x ,∴232==AD OD x ,在Rt ABD △中,205cos 328∠===BD x ADB AD x , ∴5cos 8α=. 6.(2022·绍兴)如图,在矩形ABCD 中,6AB =,8BC =,动点E 从点A 出发,沿边AD ,DC 向点C 运动,A ,D 关于直线BE 的对称点分别为M ,N ,连结MN .(1)如图,当E 在边AD 上且2DE =时,求AEM ∠的度数.(2)当N 在BC 延长线上时,求DE 的长,并判断直线MN 与直线BD 的位置关系,说明理由.(3)当直线MN 恰好经过点C 时,求DE 的长.【答案】(1)∠AEM =90°;(2)DE =103;MN ∥BD ,证明见解析;(3)DE 的长为 【解析】(1)解:∵DE =2,∴AE =AB =6,∵四边形ABCD 是矩形,∴∠A =90°,∴∠AEB =∠ABE =45°,由对称性知∠BEM =45°,∴∠AEM =∠AEB+∠BEM =90°;(2)如图1, ∵AB =6,AD =8,∴由勾股定理得BD =10,∵当N 落在BC 延长线上时,BN =BD =10,∴CN =2.由对称性得,∠ENC =∠BDC ,∴cos ∠ENC =2610EN =, ∴EN =103, ∴DE =EN =103; 直线MN 与直线BD 的位置关系是MN ∥BD .由对称性知BM =AB =CD ,MN =AD =BC ,又∵BN =BD ,∴△BMN ≌△DCB (SSS ),∴∠DBC =∠BNM ,所以MN ∥BD ;(3)①情况1:如图2,当E 在边AD 上时,直线MN 过点C ,∴∠BMC =90°,∴MC =∵BM =AB =CD ,∠DEC =∠BCE ,∠BMC =∠EDC =90°,∴△BCM ≌△CED (AAS ),∴DE =MC =②情况2:如图3,点E 在边CD 上时,∵BM =6,BC =8,∴MC =CN =8-∵∠BMC =∠CNE =∠BCD =90°,∴∠BCM +∠ECN =90°,∵∠BCM +∠MBC =90°,∴∠ECN =∠MBC ,∴△BMC ∽△CNE , ∴BM MC CN EN=,∴EN MC CN BM ⋅=∴DE =EN综上所述,DE 的长为 7.(2022·金华)如图,在菱形ABCD 中,310,sin 5AB B ==,点E 从点B 出发沿折线B C D --向终点D 运动.过点E 作点E 所在的边(BC 或CD )的垂线,交菱形其它的边于点F ,在EF 的右侧作矩形EFGH .(1)如图1,点G 在AC 上.求证:FA FG =.(2)若EF FG =,当EF 过AC 中点时,求AG 的长.(3)已知8FG =,设点E 的运动路程为s .当s 满足什么条件时,以G ,C ,H 为顶点的三角形与BEF 相似(包括全等)?【答案】(1)见解析(2)7AG =或5(3)1s =或3225s =或327s =或1012s ≤≤ 【解析】(1)证明:如图1, ∵四边形ABCD 是菱形,∴BA BC =,∴BAC BCA ∠=∠.∵FG BC ,∴FGA BCA ∠=∠,∴BAC FGA ∠=∠,∴△AFG 是等腰三角形,∴FA FG =.(2)解:记AC 中点为点O .①当点E 在BC 上时,如图2,过点A 作AM BC ⊥于点M ,∵在Rt ABM 中,365AM AB ==,∴8BM =.∴6,2FG EF AM CM BC BM ====-=,∵,OA OC OE AM =∥,∴112122CE ME CM ===⨯=, ∴1AF ME ==,∴167AG AF FG =+=+=.②当点E 在CD 上时,如图3,过点A 作AN CD ⊥于点N .同理,6,2FG EF AN CN ====,112AF NE CN ===, ∴615AG FG AF =-=-=.∴7AG =或5.(3)解:过点A 作AM BC ⊥于点M ,作AN CD ⊥于点N .①当点E 在线段BM 上时,08s <≤.设3EF x =,则4,3BE x GH EF x ===, ⅰ)若点H 在点C 的左侧,810s +≤,即02s <≤,如图4, 10(48)24CH BC BH x x =-=-+=-.∵GHC FEB △∽△,∴GH CH EF BE=,∴GH EF CH BE =, ∴33244x x =-, 解得14x =, 经检验,14x =是方程的根, ∴41s x ==.∵GHC BEF △∽△, ∴GH CH BE EF =, ∴GH BE CH EF =, ∴34243x x =-, 解得825x =, 经检验,825x =是方程的根, ∴32425s x ==. ⅰ)若点H 在点C 的右侧,810s +>,即28s <≤,如图5,(48)1042CH BH BC x x =-=+-=-.∵GHC FEB △∽△, ∴GH CH EF BE =, ∴GH EF CH BE =,∴33424x x =-, 此方程无解.∵GHC BEF △∽△, ∴GH CH BE EF =, ∴GH BE CH EF =, ∴34423x x =-, 解得87x =,经检验,87x =是方程的根, ∴3247s x ==. ②当点E 在线段MC 上时,810s <≤,如图6,6,8,EF EH BE s ===.∴8,2BH BE EH s CH BH BC s =+=+=-=-.∵GHC FEB △∽△, ∴GH CH EF BE =, ∴GH EF CH BE =, ∴662s s=-, 此方程无解.∵GHC BEF △∽△, ∴GH CH BE EF =, ∴GH BE CH EF =, ∴626s s =-,解得1s =±经检验,1s =∵810s <≤,∴1s =③当点E 在线段CN 上时,1012s ≤≤,如图7,过点C 作⊥CJ AB 于点J ,在Rt BJC △中,10,6,8BC CJ BJ ===.8,EH BJ JF CE ===,∴BJ JF EH CE +=+,∴CH BF =,∵,90GH EF GHC EFB =∠=∠=︒,∴GHC EFB △≌△,符合题意,此时,1012s ≤≤.④当点E 在线段ND 上时,1220s <<,∵90EFB ∠>︒,∴GHC 与BEF 不相似.综上所述,s 满足的条件为:1s =或3225s =或327s =或1012s ≤≤. 8.(2022·丽水)如图,以AB 为直径的O 与AH 相切于点A ,点C 在AB 左侧圆弧上,弦CD AB ⊥交O 于点D ,连接,AC AD .点A 关于CD 的对称点为E ,直线CE 交O 于点F ,交AH 于点G .(1)求证:CAG AGC ∠=∠;(2)当点E 在AB 上,连接AF 交CD 于点P ,若25EF CE =,求DP CP的值; (3)当点E 在射线AB 上,2AB =,以点A ,C ,O ,F 为顶点的四边形中有一组对边平行时,求AE 的长.【答案】(1)证明过程见解析;(2)57;352或22+【解析】(1)证明:如图,设CD 与AB 相交于点M , ∵O 与AH 相切于点A , ∴90BAG ,∵CD AB ⊥,∴90AMC ∠=,∴AG CD ∥, ∴CAG ACD ,AGC FCD ,∵点A 关于CD 的对称点为E ,∴FCD ACD ∠=∠,∴CAG AGC ∠=∠.(2)解:过F 点作FK AB ⊥于点K ,设AB 与CD 交于点N ,连接DF ,如下图所示:由同弧所对的圆周角相等可知:FCD FAD ,∵AB 为O 的直径,且CD AB ⊥,由垂径定理可知:AC AD =,∴ACD ADC ∠=∠,∵点A 关于CD 的对称点为E ,∴FCD ACD ∠=∠,∴FAD FCD ACD ADC ∠=∠=∠=∠,即FAD ADC ∠=∠,∴DP AP =,由同弧所对的圆周角相等可知:ACP DFP ,且CPA FPD , ∴CPA FPD △≌△,∴PC PF =,∵FK AB ⊥,AB 与CD 交于点N ,∴90FKE CNE . ∵KEF NEC ,90FKE CNE , ∴KEF NEC △∽△,∴25KEEFEN CE ,设KE =2x ,EN =5x , ∵点A 关于CD 的对称点为E ,5AN EN x ∴==,10AE AN NE x =+=,12AK AE KE x =+=,又FK PN ∥,∴APN AFK , ∴551212PA ANx AF AK x . ∵FCD CDA ,∴CF AD ∥, ∴57DPAP AP CP PF AF AP ; (3)解:分类讨论如下:解:如图1中,当∥OC AF 时,连接OC ,OF ,设AGF α∠=,则CAG ACD DCF AFG α∠=∠=∠=∠=,∵∥OC AF ,OCF AFC α∴∠=∠=,OC OA =,3OCA OAC α∴∠=∠=,45OAG ∠=︒,490α∴=︒,22.5α∴=︒,OC OF =,OA OF =,22.5OFC OCF AFC ∴∠=∠-∠=︒,45OFA OAF ∴∠=∠=︒,AF ∴==,∵∥OC AF ,AE AF OE OC∴=∴, 1OA =,2AE ∴=2中,当∥OC AF 时,连接OC ,设CD 交AE 点M .设OAC α∠=,∵∥OC AF ,FAC OCA α∴∠=∠=,2COE FAE α∴∠=∠=,AFD D ∠=∠,AGF D ∠=∠,3AGC AFG AEC FAE α∴∠=∠=∠+∠=,90AGC AEC ∠+∠=︒,490α∴=︒,22.5α∴=︒,245α=︒,COM ∴∆是等腰直角三角形,OC ∴,OM ∴=1AM =,22AE AM ∴==如图3中,当AC OF ∥时,连接OC ,OF ,设AGF α∠=,2ACF ACD DCF α∠=∠+∠=,∵AC OF ∥,2CFO ACF α∴∠=∠=,4CAO ACO α∴∠=∠=,180AOC OAC ACO ∠+∠+∠=︒,10180α∴=︒,18α∴=︒,36COE ECO CFO ∴∠=∠-∠=︒,OCE FCO ∴∆∆ 、,2OC CE CF ∴=⋅ 、, ()11CE CE ∴=+ 、,CE AC OE ∴===AE OA OE ∴=-; 如图4中,当AC OF ∥时,连接OC ,OF ,BF .设FAO α∠=,∵AC OF ∥,CAF OFA α∴∠=∠=,2COF BOF α∴∠=∠=,AC AE =,AEC CAE EFB ∴∠=∠=∠,BF BE ∴=,由OCF OBF ∆≅∆,CF BF BE ∴==,E COF ∠=∠,COF CEO ∴∆∆,2OC CE CF ∴=⋅,BE CF ∴==AE AB BE ∴=+=.综上所述,满足条件的AE 的长为22352或 9.(2022·台州)如图1,灌溉车沿着平行于绿化带底部边线l 的方向行驶,为绿化带浇水.喷水口H 离地竖直高度为h (单位:m ).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG ,其水平宽度3m DE =,竖直高度为EF 的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A 离喷水口的水平距离为2m ,高出喷水口0.5m ,灌溉车到l 的距离OD 为d (单位:m ).(1)若 1.5h =,0.5m EF =;①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC ;②求下边缘抛物线与x 轴的正半轴交点B 的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d 的取值范围;(2)若1m EF =.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h 的最小值.【答案】(1)①6m ;②(2,0);③21d ≤≤;(2)6532【解析】(1)①如图1,由题意得(2,2)A 是上边缘抛物线的顶点,设2(2)2y a x =-+. 又∵抛物线经过点(0,1)5., ∴1.542a =+,∴18a =-. ∴上边缘抛物线的函数解析式为21(2)28y x =--+. 当0y =时,21(2)208x --+=,∴16x =,22x =-(舍去).∴喷出水的最大射程OC 为6m .图1②∵对称轴为直线2x =,∴点(0,1)5.的对称点的坐标为(4,1.5). ∴下边缘抛物线是由上边缘抛物线向左平移4m 得到的,即点B 是由点C 向左平移4m 得到,则点B 的坐标为(2,0).③如图2,先看上边缘抛物线,∵0.5EF =,∴点F 的纵坐标为0.5.抛物线恰好经过点F 时,21(2)20.58x --+=.解得2x =±∵0x >,∴2x =+当0x >时,y 随着x 的增大而减小,∴当26x ≤≤时,要使0.5y ≥,则2x ≤+∵当02x ≤<时,y 随x 的增大而增大,且0x =时, 1.50.5y =>,∴当06x ≤≤时,要使0.5y ≥,则02x ≤≤+∵3DE =,灌溉车喷出的水要浇灌到整个绿化带,∴d 的最大值为(231+-=.再看下边缘抛物线,喷出的水能浇灌到绿化带底部的条件是OB d ≤,∴d 的最小值为2.综上所述,d 的取值范围是21d ≤≤.(2)h 的最小值为6532. 由题意得(2,0.5)A h +是上边缘抛物线的顶点,∴设上边缘抛物线解析式为2(2)0.5y a x h =-++.∵上边缘抛物线过出水口(0,h ) ∴40.5y a h h =++=解得18a =- ∴上边缘抛物线解析式为21(2)0.58y x h =--++ ∵对称轴为直线2x =,∴点(0,)h 的对称点的坐标为(4,)h .∴下边缘抛物线是由上边缘抛物线向左平移4m 得到的,∴下边缘抛物线解析式为21(2)0.58y x h =-+++. 当喷水口高度最低,且恰好能浇灌到整个绿化带时,点D ,F 恰好分别在两条抛物线上, ∵DE =3∴设点(),0D m ,()3,0E m +,213,(32)0.58F m m h ⎛⎫+-+-++ ⎪⎝⎭, ∵D 在下边缘抛物线上,∴21(2)0.508m h -+++= ∵EF =1∴21(32)0.518m h -+-++= ∴21(32)0.58m h -+-++-21(2)0.518m h ⎡⎤-+++=⎢⎥⎣⎦, 解得 2.5m =,代入21(2)0.508m h -+++=,得6532h =. 所以h 的最小值为6532.。

相关文档
最新文档