数值分析整理版试题及答案
数值分析期末考试和答案

数值分析期末考试和答案一、单项选择题(每题2分,共20分)1. 在数值分析中,下列哪个方法用于求解线性方程组?A. 插值法B. 迭代法C. 直接法D. 拟合法答案:C2. 以下哪个数值方法是用于求解非线性方程的?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 拉格朗日插值法答案:B3. 在数值积分中,梯形法则的误差与下列哪个因素无关?A. 被积函数的二阶导数B. 积分区间的长度C. 积分区间的划分数量D. 被积函数的一阶导数答案:D4. 以下哪个数值方法是用于求解常微分方程的?A. 欧拉方法B. 牛顿迭代法C. 拉格朗日插值法D. 高斯消元法答案:A5. 在数值分析中,下列哪个方法用于求解特征值问题?A. 高斯消元法B. 幂迭代法C. 牛顿迭代法D. 梯形法则答案:B6. 以下哪个数值方法是用于求解线性最小二乘问题的?A. 高斯消元法B. 梯形法则C. 正交分解法D. 牛顿迭代法答案:C7. 在数值分析中,下列哪个方法用于求解非线性方程组?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 欧拉方法答案:B8. 在数值分析中,下列哪个方法用于求解偏微分方程?A. 有限差分法B. 牛顿迭代法C. 线性插值法D. 梯形法则答案:A9. 在数值分析中,下列哪个方法用于求解优化问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 单纯形法答案:D10. 在数值分析中,下列哪个方法用于求解插值问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 拉格朗日插值法答案:D二、填空题(每题2分,共20分)1. 在数值分析中,求解线性方程组的直接法包括______消元法和______消元法。
答案:高斯;LU2. 牛顿迭代法的收敛速度是______阶的。
答案:二3. 梯形法则的误差与被积函数的______阶导数有关。
答案:二4. 欧拉方法是一种求解______阶常微分方程的数值方法。
答案:一5. 幂迭代法是求解______特征值问题的数值方法。
数值分析试题及答案

数值分析试题及答案一、选择题1. 下列哪个方法不适合用于求解非线性方程的根?A. 二分法B. 牛顿法C. 弦截法D. 正割法2. 当使用二分法求解非线性方程的根时,需要满足的条件是:A. 函数f(x)在区间[a, b]上连续B. 函数f(x)在区间[a, b]上单调递增C. 函数f(x)在区间[a, b]上存在根D. 函数f(x)在区间[a, b]上可导3. 数值积分是通过将定积分转化为求和的方法来近似计算积分值的过程。
下列哪个方法是常用的数值积分方法?A. 矩形法则B. 辛普森规则C. 梯形规则D. 高斯-勒让德法则4. 龙格-库塔法是常用于求解常微分方程的数值解法。
以下哪个选项是描述龙格-库塔法的特点?A. 该方法是一种多步法B. 该方法是一种多项式插值法C. 该方法是一种单步法D. 该方法是一种数值积分法5. 用有限差分法求解偏微分方程时,通常需要进行网格剖分。
以下哪个选项是常用的网格剖分方法?A. 多边形剖分法B. 三角剖分法C. 矩形剖分法D. 圆形剖分法二、解答题1. 将函数f(x) = e^x 在区间[0, 1]上用复化梯形规则进行数值积分,分为6个子区间,求得的近似积分值为多少?解:将区间[0, 1]等分为6个子区间,每个子区间的长度为h = (1-0)/6 = 1/6。
根据复化梯形规则的公式,近似积分值为:I ≈ (1/2) * h * [f(0) + 2f(1/6) + 2f(2/6) + 2f(3/6) + 2f(4/6) + 2f(5/6) +f(1)]≈ (1/2) * (1/6) * [e^0 + 2e^(1/6) + 2e^(2/6) + 2e^(3/6) + 2e^(4/6) +2e^(5/6) + e^1]2. 使用二分法求解方程 x^3 - 3x + 1 = 0 在区间[1, 2]上的根。
要求精确到小数点后三位。
解:首先需要判断方程在区间[1, 2]上是否存在根。
数值分析习题和答案解析(最新整理)

(1)
要使
应满足().
(2) 已知方程组
,则解此方程组的
Jacobi 迭代法是否收敛().它的渐近收敛速度 R(B)=
公式(6.13)直接计算即可。
对
,取 n=8,在分点处计算 f(x)的值构造函数表。
按式(6.11)求出
,按式(6.13)求得
,
积分
2. 用 Simpson 公式求积分 ,并估计误差 解:直接用 Simpson 公式(6.7)得
由(6.8)式估计误差,因
,故
3. 确定下列求积公式中的待定参数,使其代数精确度尽量 高,并指明求积公式所具有的代数精确度.
专业知识分享
WORD 格式
编辑整理
11. 填空题
(1) 满 足 条 件
的插值多项式
p(x)=( ).
(2)
,则 f[1,2,3,4]=( ),f[1,2,3,4,5]
=( ).
(3) 设
为互异节点, 为对应的四次插值基函
数,则
=( ),
=( ).
(4) 设
是区间[0,1]上权函数为 ρ(x)=x 的最
WORD 格式
编辑整理
误差估计由公式(5.19)得
这里 仍为 0.565 8. 求 一 个 次 数 不 高 于 四 次 的 多 项 式 p(x),使 它 满 足
解:这种题目可以有很多方法去做,但应以简单为宜。此处
可先造 使它满足
,显然 p(x)=x2(2-x)+Ax2(x-1)2
,再令
由 p(2)=1 求出 A= ,于是
5.计算
取 ,利用 :
式计算误差最小。
四个选项: 第二、三章 插值与函数逼近
习题二、三
数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。
答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。
答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。
答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。
答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。
解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。
拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。
数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
(完整版)数值分析整理版试题及答案,推荐文档

9
1
xdx T4
h[ 2
f
1
3
2 k 1
f
xk
f
9]
2[ 1 2 3 5 7 9] 2
17.2277
(2)用 n 4 的复合辛普森公式
由于 h 2 , f x
x
,
xk
1
2k k
1, 2,3,
x
k
1
2
2k k
0,1, 2,3,所以,有
2
3
9
1
xdx S4
h[ 6
f
1
若 span1, x,则0 (x) 1 ,1(x) x ,这样,有
2
1
0 ,0 1dx 1
0
1,1
1 0
x2dx
1 3
0
,1
1,0
1
0
xdx
1 2
1
f ,0 exdx 1.7183
0
1
f ,1 xexdx 1
0
所以,法方程为
1
1
1
2 1
a0
a1
1.7183 1
1 0
1
23
2 1
a0
a1
6 1
12
3
再回代解该方程,得到
a1
4
,
a0
11 6
故,所求最佳平方逼近多项式为
S1*
(
x)
11 6
4x
例 3、 设 f (x) ex , x [0,1] ,试求 f (x) 在[0, 1]上关于 (x) 1 , span1, x的最
佳平方逼近多项式。 解:
1
4
x1
1 5
数值分析整理版试题及答案

例1、 已知函数表求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式. 解:(1)插值基函数分别为()()()()()()()()()()1200102121()1211126x x x x x x l x x x x x x x ----===--------()()()()()()()()()()021*******()1211122x x x x x x l x x x x x x x --+-===-+---+-()()()()()()()()()()0122021111()1121213x x x x x x l x x x x x x x --+-===-+--+-故所求二次拉格朗日插值多项式为()()()()()()()()()()()2202()11131201241162314121123537623k k k L x y l x x x x x x x x x x x x x ==⎡⎤=-⨯--+⨯-+-+⨯+-⎢⎥⎣⎦=---++-=+-∑(2)一阶均差、二阶均差分别为[]()()[]()()[][][]010*********011201202303,11204,41234,,52,,126f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----===----===---故所求Newton 二次插值多项式为()()[]()[]()()()()()20010012012,,,35311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-++++-=+-例2、 设2()32f x xx =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式.解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,且()1x ρ=,这样,有()()()()()()()()1120011011201100012101,11,,3123,,,,32269,324dx x dx xdx f x x dx f x x x dx ϕϕϕϕϕϕϕϕϕϕ========++==++=⎰⎰⎰⎰⎰ 所以,法方程为01123126119234a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦,经过消元得01231162110123a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦再回代解该方程,得到14a =,0116a =故,所求最佳平方逼近多项式为*111()46S x x =+ 例3、 设()xf x e =,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式. 解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,这样,有()()()()()()100012110101100100110,111,31,,2, 1.7183,1x x dx x dx xdx f e dx f xe dx ϕϕϕϕϕϕϕϕϕϕ===========⎰⎰⎰⎰⎰所以,法方程为0111 1.7183211123a a ⎡⎤⎢⎥⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎣⎦解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为*1()0.8732 1.6902S x x =+例4、 用4n =的复合梯形和复合辛普森公式计算积分1⎰。
数值分析考试题和答案

数值分析考试题和答案一、单项选择题(每题2分,共20分)1. 在数值分析中,插值法的主要目的是()。
A. 求解线性方程组B. 求解非线性方程C. 构造一个多项式来近似一个函数D. 求解微分方程答案:C2. 线性方程组的高斯消元法中,主元为零时,应采取的措施是()。
A. 停止计算B. 回代求解C. 转置矩阵D. 行交换答案:D3. 以下哪种方法不是数值积分方法()。
A. 梯形规则B. 辛普森规则C. 牛顿法D. 复合梯形规则答案:C4. 以下哪种方法用于求解非线性方程的根()。
A. 欧几里得算法B. 牛顿迭代法C. 高斯消元法D. 线性插值法答案:B5. 在数值分析中,最小二乘法主要用于()。
A. 求解线性方程组B. 求解非线性方程C. 曲线拟合D. 微分方程数值解答案:C6. 以下哪种方法不是数值微分方法()。
A. 前向差分B. 后向差分C. 中心差分D. 欧拉方法答案:D7. 以下哪种方法用于求解常微分方程的初值问题()。
A. 欧拉方法B. 龙格-库塔方法C. 牛顿迭代法D. 高斯消元法答案:B8. 在数值分析中,矩阵的特征值问题可以通过()方法求解。
A. 高斯消元法B. 幂迭代法C. 牛顿迭代法D. 梯形规则答案:B9. 以下哪种方法不是数值稳定性分析中的方法()。
A. 绝对稳定性B. 相对稳定性C. 条件数D. 牛顿法答案:D10. 在数值分析中,条件数用于衡量()。
A. 算法的效率B. 算法的稳定性C. 算法的准确性D. 算法的复杂度答案:B二、填空题(每题2分,共20分)1. 在数值分析中,插值多项式的次数最高为______,其中n是插值点的个数。
答案:n-12. 线性方程组的高斯消元法中,如果某行的主元为零,则需要进行______。
答案:行交换3. 梯形规则的误差与被积函数的______阶导数有关。
答案:二4. 牛顿迭代法中,每次迭代需要计算______。
答案:函数值和导数值5. 最小二乘法中,残差平方和最小化时,对应的系数向量是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1、 已知函数表求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。
解:(1)故所求二次拉格朗日插值多项式为 (2)一阶均差、二阶均差分别为例2、 设2()32f x xx =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式。
解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,且()1x ρ=,这样,有 所以,法方程为01123126119234a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦,经过消元得01231162110123a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 再回代解该方程,得到14a =,0116a =故,所求最佳平方逼近多项式为*111()46S x x =+例3、 设()xf x e =,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式。
解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,这样,有 所以,法方程为解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为例4、 用4n =的复合梯形和复合辛普森公式计算积分1⎰。
解:(1)用4n =的复合梯形公式由于2h =,()f x =()121,2,3k x k k =+=,所以,有 (2)用4n =的复合辛普森公式由于2h =,()f x =()121,2,3k x k k =+=,()12220,1,2,3k xk k +=+=,所以,有例5、 用列主元消去法求解下列线性方程组的解。
解:先消元再回代,得到33x =,22x =,11x =所以,线性方程组的解为11x =,22x =,33x =例6、 用直接三角分解法求下列线性方程组的解。
解: 设则由A LU =的对应元素相等,有1114u =,1215u =,1316u =, 2111211433l u l =⇒=,311131122l u l =⇒=,2112222211460l u u u +=⇒=-,2113232311545l u u u +=⇒=-,3112322232136l u l u l +=⇒=-,31133223333313215l u l u u u ++=⇒=因此,解Ly b =,即12310094108382361y y y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎣⎦,得19y =,24y =-,3154y =- 解Ux y =,即123111456911046045154130015x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦,得3177.69x =-,2476.92x =,1227.08x =-所以,线性方程组的解为1227.08x =-,2476.92x =,3177.69x =-1、若A 是n n ⨯阶非奇异阵,则必存在单位下三角阵L 和上三角阵U ,使LU A =唯一成立。
( )2、当8≥n 时,Newton -cotes 型求积公式会产生数值不稳定性。
( )3、形如)()(1i ni i ba x f A dx x f ∑⎰=≈的高斯(Gauss )型求积公式具有最高代数精确度的次数为12+n 。
( )4、矩阵⎪⎪⎪⎭⎫ ⎝⎛=210111012A 的2-范数2A =9。
( ) 5、设⎪⎪⎪⎭⎫ ⎝⎛=a a a a A 000002,则对任意实数0≠a ,方程组b Ax =都是病态的。
(用∞⋅) ( ) 6、设n n R A ⨯∈,nn RQ ⨯∈,且有I Q Q T =(单位阵),则有22QA A =。
( )7、区间[]b a ,上关于权函数)(x W 的直交多项式是存在的,且唯一。
( )1、( Ⅹ ) 2、( ∨ ) 3、( Ⅹ ) 4、( ∨ ) 5、( Ⅹ ) 6、( ∨ )7、( Ⅹ ) 8、( Ⅹ )一、判断题(10×1′)1、 若A 是n 阶非奇异矩阵,则线性方程组AX =b 一定可以使用高斯消元法求解。
( × )2、 解非线性方程f (x )=0的牛顿迭代法在单根x *附近是平方收敛的。
( ? )3、 若A 为n 阶方阵,且其元素满足不等式则解线性方程组AX =b 的高斯——塞德尔迭代法一定收敛。
( × )4、 样条插值一种分段插值。
( ? )5、 如果插值结点相同,在满足相同插值条件下所有的插值多项式是等价的。
( ? )6、从实际问题的精确解到实际的计算结果间的误差有模型误差、观测误差、截断误差及舍入误差。
( ?)7、解线性方程组的的平方根直接解法适用于任何线性方程组AX=b。
( ×)8、迭代解法的舍入误差估计要从第一步迭代计算的舍入误差开始估计,直到最后一步迭代计算的舍入误差。
( ×)9、数值计算中的总误差如果只考虑截断误差和舍入误差,则误差的最佳分配原则是截断误差=舍入误差。
( ?)10、插值计算中避免外插是为了减少舍入误差。
( ×)1. 用计算机求1000100011nn=∑时,应按照n从小到大的顺序相加。
()2. 为了减少误差,-进行计算。
(对)3. 用数值微分公式中求导数值时,步长越小计算就越精确。
()4. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。
()复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=4114114A,则A的LU分解为A⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。
答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=155614151411541411A2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。
答案:,3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。
答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( );11、 两点式高斯型求积公式⎰10d )(x x f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。
13、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。
14、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 ,1 ,进行两步后根的所在区间为 , 。
15、 计算积分⎰15.0d xx ,取4位有效数字。
用梯形公式计算求得的近似值为 ,用辛卜生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。
16、 求解方程组⎩⎨⎧=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为⎪⎩⎪⎨⎧-=-=+++20/3/)51()1(1)1(2)(2)1(1k k k k x x x x ,该迭代格式的迭代矩阵的谱半径)(M ρ= 121。
17、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿插值多项式为 )1(716)(2-+=x x x x N 。
18、 求积公式⎰∑=≈ba k nk k x f A x x f )(d )(0的代数精度以( 高斯型 )求积公式为最高,具有( 12+n )次代数精度。
19、 已知f (1)=1,f (3)=5,f (5)=-3,用辛普生求积公式求⎰51d )(xx f ≈( 12 )。
20、 设f (1)=1, f (2)=2,f (3)=0,用三点式求≈')1(f ( )。
21、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( 10 )次。
23、)(,),(),(10x l x l x l n Λ是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则 ∑==nk kx l0)(( 1 ),∑==nk k jk x lx 0)((jx ),当2≥n 时=++∑=)()3(204x l x xk k n k k( 324++x x )。
26、改变函数f x x x ()=+-1 (x >>1)的形式,使计算结果较精确()x x x f ++=11。
27、若用二分法求方程()0=x f 在区间[1,2]内的根,要求精确到第3位小数,则需要对分 10次。
29、若用复化梯形公式计算⎰10dxe x ,要求误差不超过610-,利用余项公式估计,至少用 477个求积节点。
30、写出求解方程组⎩⎨⎧=+-=+24.016.12121x x x x 的Gauss-Seidel 迭代公式()()()()Λ,1,0,4.026.111112211=⎩⎨⎧+=-=+++k x x x x k k k k ,迭代矩阵为⎪⎪⎭⎫⎝⎛--64.006.10,此迭代法是否收敛 收敛 。
31、设A =⎛⎝ ⎫⎭⎪5443,则=∞A 9 。
32、设矩阵482257136A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的A LU =,则U = 4820161002U ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦ 。