浅谈电涡流传感器的安装及应用

浅谈电涡流传感器的安装及应用
浅谈电涡流传感器的安装及应用

浅谈电涡流传感器的安装及应用

发表时间:2017-06-13T08:57:59.167Z 来源:《电力设备》2017年第6期作者:朱雪莲

[导读] 摘要:能动中心TRT机组、汽轮机、离心式压缩机等机组机械运动状态的检测,特别是大型轴运动的监测又非常关键,轴运动状态的检测通常是通过电涡流传感器来实现的。

(攀钢能源动力中心设备室四川省 617062)

摘要:能动中心TRT机组、汽轮机、离心式压缩机等机组机械运动状态的检测,特别是大型轴运动的监测又非常关键,轴运动状态的检测通常是通过电涡流传感器来实现的。本文主要介绍了电涡流传感器的测量原理、安装及故障分析,在实际工作中如何正确维护、检修,确保振动检测的准确性、可靠性,为机组稳定运行打下坚实的基础。

关键词:振动检测电涡流传感器安装

1 引言

机械振动是机械或机械部件的前后运动,并一般由作用在机械上的往复力,松动的零件以及机械上的共振引起,机械振动可以呈现出各种形式,一个机械部件可能产生大位移或小位移的振动,快或慢的振动,可感知或不可感知的热或声音的振动。怎样测量机械振动,我们常用电涡流传感器来测量振动。

2 电涡流传感器工作原理

2.1电涡流式传感器是一种建立在涡流效应原理上的传感器。

根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。

2.2振动检测基本工作系统构成及原理

探头、(延伸电缆)、前置器以及被测体构成基本工作系统。电涡流探头的线圈和被测金属体之间距离的变化,可以变换为线圈的等效电感、等效阻抗和品质因素三个电参数的变化,再配以相应的前置放大器,把这三个电参数变换成电压信号,即可实现对振动的测量。输出信号的大小随探头到被测体表面之间的间距而变化,电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。机械振动检测过程框图如下:

其工作过程是:当被测金属与探头之间的距离发生变化时,探头中线圈的Q值也发生变化,Q值的变化引起振荡电压幅度的变化,而这个随距离变化的振荡电压经过检波、滤波、线性补偿、放大归一处理转化成电压(电流)变化,最终完成机械位移(间隙)转换成电压(电流)。

3 电涡流传感器的应用

轴的振动及轴的轴向位移均是利用涡流传感器的输出电压与其被测金属表面的垂直距离在一定范围内成正比的关系,将位移信号转换成电压信号送至监测器,从而实现监测和保护的目的。在测轴振时,常常把探头装在轴承上,探头与轴承壳变成一体,因而所测结果是轴相对于轴承壳的振动;轴向位移是指机组内部转子沿轴心方向,相对于推力轴承二者之间的间隙而言,通过对轴向位移的测量,可以指示旋转部件与固定部件之间的轴向间隙或相对瞬时的轴向变化。

4 电涡流传感器的安装

对于振动、转速探头,进行静态调整时,探头与被测轴面的间隙一般调整为传感器线性范围的中点,间隙电压通常为-10V,这样当机组热态运行时,不至于超出线性范围;对于轴位移、胀差等转轴轴向位置的测定,由于所测的是转轴转动部件与静止部件位置的相对变化量,因此需要先将转轴推至零点位置才能进行探头静态间隙的调整。

4.1探头的安装

①探头插入安装孔之前,应保证孔内无杂物,探头能自由转动而不会与导线缠绕;②为避免擦伤探头端部或监视表面,可用非金属测隙规(塞尺)测定探头的间隙,对于没有条件使用塞尺的,也可用连接探头导线到延伸电缆及前置器的电气方法整定探头间隙;③当探头间隙调整合适后,旋紧防松螺母。此时应注意,过分旋紧会使螺纹损坏。

4.2延伸电缆的安装

延伸电缆作为连接探头和前置器的中间部分,是涡流传感器的一个重要组成部分,所以延伸电缆的安装应保证在使用过程中不易受损坏,应避免延伸电缆的高温环境。探头与延伸电缆的连接处应锁紧,接头用热缩管包裹好,这样可以避免接地并防止接头松动。在盘放延伸电缆时应避免盘放半径过小而折坏电缆线。一般要求延伸电缆盘放直径不得小于55mm。

4.3前置器的安装

前置器是整个传感器系统的信号处理部分,要求将其安装在远离高温环境的地方,其周围环境应无明显的蒸汽和水珠、无腐蚀性的汽体、干燥、振动小、前置器周围的环境温度与室温相差不大的地方。安装时前置器壳体金属部分不要同机壳或大地接触。安装时必须避免有其他干扰信号影响测量电路,采用适当的隔离和屏蔽接地,将信号所受的干扰降至最低限度。

4.4转速传感器安装间隙的锁定

转速传感器可采用塞尺测量安装间隙的方法进行安装。在探头端面和被测面之间塞入设定安装间隙厚度的塞尺,常规的安装间隙约为1.3mm左右。当探头端面和被测面压紧塞尺时,紧固探头即可。

4.5轴位移的零位锁定

由于轴位移检测位置选择不同,检测方式不同(两个检测探头测同一个推力面,或者两个探头分别测推力面的正反两面)其零点锁定安装方法也存在差异,常用的轴位移传感器零位锁定须参考的因素:

a)大轴推力瓦的间隙△值

b)大轴所在位置(即大轴推力盘已靠在推力瓦的工作面或非工作面)

c)位移监测器(量程)及传感器的校验数据

5 维护及故障处理

振动与位移的准确测量对于稳定运行至关重要,一般振动和位移探头都是成对安装的,如果其中一个不正常,若该点处的温度以及其

电涡流传感器的研究与探讨汇总

档案编号: 毕业设说明书题目:电涡流传感器的研究与探讨 系别:电气工程系 专业:生产过程自动化 班级: 姓名: 指导教师: (共18 页) 年月日

摘要:电涡流传感器是基于涡流效应的新型传感器。由于它具有结构简单、抗干扰能力强、测量精度高、非接触、响应速度快、不受油污等介质影响等优点,因而得到了广泛的应用。但目前的电涡流位移传感器存在着测量范围小,传感器存在非线性问题,这给传感器的应用造成了一定的影响。 本文首先通过对实验室所用的电涡流传感器实验模板的电路进行研究和优化,进而提高电路的抗干扰能力使测量结果的更加准确。其次针对电涡流位移传感器存在的测量范围小,传感器存在非线性问题的改善提出设想即:先对电涡流位移传感器用于位移检测的工作原理及应用进行分析,研究了线圈截面形状及参数变化对涡流传感器线性测量范围和灵敏度的影响;再从电路设计方面提高传感器的稳定性及抗干扰能力,从而为位移测量扩展量程打下基础;最后通过对电涡流传感器测位移实验进行分析处理得出电涡流传感器位移测量范围的扩展方法和改善电涡流传感器非线性问题的方法。 关键词:电涡流传感器; 位移测量; 非线性; 测量范围 Abstract: the eddy current sensor is a new type of sensor based on eddy current effect. Because it is simple in structure, strong anti-jamming capability, high accuracy, non-contact, fast response, not polluted advantages such media influence, and been widely used. But the current electricity eddy displacement sensor measurement range small, there exist nonlinear problem, the sensor to a sensor applications has caused some influence. This paper firstly eddy current sensor used in the laboratory experiment template circuit research and optimization, and improve the anti-interference ability of the circuit more accurate measurement results. Secondly according to the eddy current displacement sensor measurement range small, there exist nonlinear problem of sensor to improve it puts forward the idea of the eddy current is: first displacement detection sensors for displacement of the working principles and applications, research analyzed the coil cross-section

电涡流位移传感器的原理

电涡流位移传感器的工作原理: 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。 在高速旋转机械和往复式运动机 械状态分析,振动研究、分析测 量中,对非接触的高精度振动、 位移信号,能连续准确地采集到 转子振动状态的多种参数。如轴 的径向振动、振幅以及轴向位置。 电涡流传感器以其长期工作可靠 性好、测量围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。

前置器中高频振荡电流通过延伸电缆流入探头线圈, 在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定围不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。输出信号的大小随探头到被测体表面之间的间距而

电涡流传感器的典型应用

电涡流传感器的典型应用 电涡流传感器系统广泛应用于电力、石油、化工、冶金等行业和一些科研单位。对汽轮机、水轮机、鼓风机、压缩机、空分机、齿轮箱、大型冷却泵等大型旋转机械轴的径向振动、轴向位移、键相器、轴转速、胀差、偏心、以及转子动力学研究和零件尺寸检验等进行在线测量和保护。 轴向位移测量 对于许多旋转机械,包括蒸汽轮机、燃汽轮机、水轮机、离心式和轴流式压缩机、离心泵等,轴向位移是一个十分重要的信号,过大的轴向位移将会引起过大的机构损坏。轴向位移的测量,可以指示旋转部件与固定部件之间的轴向间隙或相对瞬时的位移变化,用以防止机器的破坏。轴向位移是指机器内部转子沿轴心方向,相对于止推轴承二者之间的间隙而言。有些机械故障,也可通过轴向位移的探测,进行判别: ●止推轴承的磨损与失效●平衡活塞的磨损与失效 ●止推法兰的松动●联轴节的锁住等。 轴向位移(轴向间隙)的测量,经常与轴向振动弄混。轴向振动是指传感器探头表面与被测体,沿轴向之间距离的快速变动,这是一种轴的振动,用峰峰值表示。它与平均间隙无关。有些故障可以导致轴向振动。例如压缩机的踹振和不对中即是。 振动测量 测量径向振动,可以由它看到轴承的工作状态,还可以看到转子的不平衡,不对中等机械故障。可以提供对于下列关键或基础机械进行机械状态监测所需要的信息: ·工业透平,蒸汽/燃汽·压缩机,空气/特殊用途气体,径向/轴向 ·膨胀机·动力发电透平,蒸汽/燃汽/水利 ·电动马达·发电机 ·励磁机·齿轮箱 ·泵·风扇 ·鼓风机·往复式机械 振动测量同样可以用于对一般性的小型机械进行连续监测。可为如下各种机械故障的早期判别提供了重要信息。 ·轴的同步振动·油膜失稳 ·转子摩擦·部件松动 ·轴承套筒松动·压缩机踹振 ·滚动部件轴承失效·径向预载,内部/外部包括不对中 ·轴承巴氏合金磨损·轴承间隙过大,径向/轴向 ·平衡(阻气)活塞磨损/失效·联轴器“锁死” ·轴弯曲·轴裂纹 ·电动马达空气间隙不匀·齿轮咬合问题 ·透平叶片通道共振·叶轮通过现象 偏心测量 偏心是在低转速的情况下,对轴弯曲程度的测量,这种弯曲可由下列情况引起: ·原有的机械弯曲·临时温升导致的弯曲·在静止状态下,必然有些向下弯曲,有时也叫重力弯曲。

电涡流传感器

电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械的状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 一、电涡流传感器的基本原理 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。 前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定范围内不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z 的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。输出信号的大小随探头到被测体表面之间的间距而变化,电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。 其工作过程是:当被测金属与探头之间的距离发生变化时,探头中线圈的Q值

气敏传感器及其工作原理

气敏传感器及其工作原理 指导老师:雷家珩 汇报者:周华 汇报时间:2011.11.2

目录 ?气敏传感器定义 ?气敏传感器分类 ?气敏传感器工作原理 ?气敏传感器的应用 ?气敏传感器研究现状与发展趋势 ?参考文献

1 气敏传感器定义 气敏传感器是一种将检测到的气体成份和浓度转换为电信号的传感器。它将气体种类及其与浓度有关的信息转换成电信号,根据这些电信号的强弱就可以获得与待测气体在环境中的存在情况有关的信息,从而可以进行检测、监控、报警;还可以通过接口电路与计算机组成自动检测、控制和报警系统。

2 气敏传感器分类半导体式气敏传感器 气敏传感器 绝缘体气敏传感器 电化学气敏传感器 光干涉式气敏传感器 热传导式气敏传感器 红外线吸收散式气敏传感 器电阻型 非电阻型接触燃烧式型电容式恒电位电解式伽伐尼电池式

3 气敏传感器工作原理 3.1 半导体气敏传感器工作原理 ●半导体气敏传感器(见图1,2)由气敏部分、加热丝及防爆网 等构成,它是在气敏部分的SnO 2、Fe 2 O 2 、ZnO 2 等金属氧化物中添 加Pt、Pd等敏化剂的传感器。 ●半导体气敏传感器是利用待测气体与半导体(主要是金属氧化物)表面接触时,产生的电导率等物性变化来检测气体。半导体气敏器件被加热到稳定状态下,当气体接触器件表面而被吸附时,吸附分子首先在表面自由地扩散(物理吸附) ,失去其运动能量,其间的一部分分子蒸发,残留分子产生热分解而固定在吸附处(化学吸附)。

这时,如果器件的功函数小于吸附分子的电子亲和力,则吸附分子将从器件夺取电子而变成负离子吸附。具有负离子吸附倾向 的气体有O 2和NO x ,称为氧化型气体或电子接收性气体。如果器件 的功函数大于吸附分子的离解能,吸附分子将向器件释放电子,而成为正离子吸附。具有这种正离子吸附倾向的气体有H 2 、CO、碳氢化合物和酒类等,称为还原型气体或电子供给性气体。 图1 半导体气敏传感器结构图图2 半导体气敏传感器的符号表示

电涡流式传感器的应用

电涡流式传感器的应用 摘要:随着现代测量、控制盒自动化技术的发展,传感器技术越来越受到人们的重视。特别是近年来,由于科学技术的发展及生态平衡的需要,传感器在各个领域的作用也日益显著。传感器技术的应用在许多个发达国家中,已经得到普遍重视。电涡流传感器已成为目前电测技术中非常重要的检测手段,广泛的应用于工程测量和科学实验中。 关键词:电涡流式传感器传感器技术 引言:电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 一.电涡流传感器的工作原理: 电涡流传感器利用检测线圈与被测导体之间的涡流效应进行测量,具有非接触测量、灵敏度高、频响特性好、抗干扰能力强等优点,其基本原理如图l所示。当线圈l通以交流电I1时,其产生的交变磁场H1会在被测导体2中产生电涡流 I2,而I2又产生一交变磁场H2 来阻碍H1的变化,从而使线圈的 等效电感L发生变化。当被测导 体的电阻率、磁导率都确定,只 有x发生变化时,通过分析提取 等效电感与测量位移间的关系, 就可以建立电涡流位移传感器。 从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子

电涡流传感器基本原理

电涡流传感器 原理图 1、什么是电涡流效应? 电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸。 注意:电涡流传感器要求被测体必须是导体。 传感器探头里有小型线圈,由控制器控制产生震荡电磁场,当接近被测体时,被测体表面会产生感应电流,而产生反向的电磁场。这时电涡流传感器根据反向电磁场的强度来判断与被测体之间的距离。2、电涡流传感器的工作原理与结构

。 传感器线圈由高频信号激励,使它产生一个高频交变磁场φi,当被测导体靠近线圈时,在磁场作用范围的导体表层,产生了与此磁场相交链的电涡流ie,而此电涡流又将产生一交变磁场φe阻碍外磁场的变化。从能量角度来看,在被测导体内存在着电涡流损耗(当频率较高时,忽略磁损耗)。能量损耗使传感器的Q值和等效阻抗Z 降低,因此当被测体与传感器间的距离d改变时,传感器的Q值和等效阻抗Z、电感L均发生变化,于是把位移量转换成电量。这便是电涡流传感器的基本原理 3、电涡流传感器的实际应用 电涡流传感器测量齿轮转速的应用

4、使用电涡流传感器时的注意事项 对被测体的要求 为了防止电涡流产生的磁场影响仪器的正常输出安装时传感器头部四周必须留有一定范围的非导电介质空间,如果在某一部位要同时安装两个以上的传感器,就必须考虑是否会产生交叉干扰,两个探头之间一定要保持规定的距离,被测体表面积应为探头直径3倍以上,当无法满足3倍的要求时,可以适当减小,但这是以牺牲灵敏度为代价的,一般是探头直径等于被测体表面积时,灵敏度降低至70%,所以当灵敏度要求不高时可适当缩小测量表面积。

烟雾传感器原理介绍

烟雾传感器 一、烟雾传感器介绍 1、(1) 烟雾传感器的分类 烟雾传感器种类繁多,从检测原理上可以分为三大类: (a)利用物理化学性质的烟雾传感器:如半导体烟雾传感器、接触燃烧烟雾传感器等。 (b)利用物理性质的烟雾传感器:如热导烟雾传感器、光干涉烟雾传感器、红外传感器等。 (c)利用电化学性质的烟雾传感器:如电流型烟雾传感器、电势型气体传感器等。 (2) 烟雾传感器应满足的基本条件一个烟雾传感器可以是单功能的,也可以是多功能的;可以是单一的实体,也可以是由多个不同功能传感器组成的阵列。但是,任何一个完整的烟雾传感器都必须具备以下条件: (a)能选择性地检测某种单一烟雾,而对共存的其它烟雾不响应或低响应; (b)对被测烟雾具有较高的灵敏度,能有效地检测允许范围内的烟雾浓度; (c)对检测信号响应速度快,重复性好; (d)长期工作稳定性好; (e)使用寿命长; (f)制造成本低,使用与维护方便。 2、检测原理: 在探测器的电离室内放一α放射源Am241,其不断地持续放射出α粒子射 线,以高速运动撞击空气中的氮、氧等分子,在α粒子的轰击下引起电离,产 生大量的带正负电荷的离子,从而使得原来不导电的空气具有导电性,当在电离 室两端加上一定的电压后,使得空气中的正负离子向相反的电极移动,形成电离 电流。具体电流的大小与电离室本身的几何形状、放射源活度、α粒子能量、 电极电压的大小及空气的密度、温度、湿度和气流速度等因素有关。

当烟雾粒子进入电离室后,由于气熔胶吸附大量的正负离子,使其中和。烟雾越浓,导致离子复合几率加快,从而使空气中电离电流迅速下降,电离室阻抗增加,因此根据R值变化可以感受到烟雾浓度的变化,从而实现对火灾的探测。 二、工作原理及结构特征 1、工作原理: 传感器的感烟时当火灾场所发生的烟雾进入到监测电离室,位于电离室中的检测源镅241放射a射线,使电离室内的空气离成正负离子。当烟雾进入时,内外电离室因极性相反,所产生的离子电流保持相对稳定,处于平衡状态;火灾发生初期释放的气溶胶亚微粒子及可见烟雾大量进入检测电离室,吸附并中和正负离子,使电离电流急剧减少,改变电离平衡状态而输出检测电信号,经后级电路处理识别后,发出报警,并向配套监控系统输出报警开关信号。 2、结构特征: 整机电路由稳压、信号检测、信号处理、比较触发、信号输出及声光报警等电路组成。 3、主要用途: 烟雾传感器用于煤矿井下有瓦斯和煤尘爆炸危险及火灾危险的场所,能对烟雾进行就地检监测、遥测和集中监视,能输出标准的开关信号,并能与国内多种生产安全监测系统及多种火灾监控系统配套使用,亦可单独使用于带式输送机巷火灾监控系统;具有抗腐蚀能力强、高灵敏度、结构简单、功耗小、成本低、维护简便等特点。对火灾初期各类燃烧物质阴燃阶段产生的不可见及可见烟雾,检测稳定可靠,且能有效地防止粉尘干扰所引起的非火灾误报。

电涡流位移传感器的原理及其静态标定方法

电涡流位移传感器的原理及其静态标定方法电涡流是20世纪70年代以后发展较快的一种新型传感器,它广泛的应用在位移震动检测、金属材质鉴别,无损探伤等技术领域。 实验目的: 了解电涡流位移传感器的结构和工作原理。 了解电涡流位移传感器的静态标定方法。 实验原理 结构:变间隙式是最常用的一种电涡流传感器形式,它的结构很简单,由一个扁平线圈固定在框架上构成。线圈用高强度漆包铜线或银线绕成,用粘结剂粘在框架端部或是绕指在框架槽内。线圈框架应采用损耗小、电性能好、热膨胀系数小的材料,常用高频陶瓷、聚四氟乙烯等。由于激励频率较高,对所用的电缆和插头也要充分重视,一般使用专用的高频电缆和插头。 工作原理:在传感器线圈中通以高频电流,则在线圈中产生高频交变磁场。当到点被测金属板接近线圈,并置于线圈的磁场范围内,交变磁场在金属板的表面层内产生感应电流,即电涡流。电涡流又产生一个反向的磁场,减弱了线圈的原磁场,从而导致线圈的电感量、阻抗和品质因素发生变化,这些参数的变化与导体的几何形状、电导率、线圈的几何参数、电流的频率以及线圈与被测导体间的距离有关。如果控制上述参数的变化,在其他条件不变的情况下,仅是线圈与金属板之间距离的单值函数,从而达到测量位移间隙的目的。 测量电路 当传感器接近被测导体时,损耗功率增大,回路失谐,输出电压相应变小。这样,在一定范围内,输出电压幅值与间隙呈近似线性关系。由于输出电压的频率始终恒定,因此称为定频幅式。这种电路采用适应晶体振荡器,旨在获得高稳定度频率的高频激励信号,以保证

稳定的输出。 实验仪器与材料 电涡流位移传感器静态标定系统 Hz-8500探头前置器 8511型电涡流探头 电涡流传感器测量装置 高精度数字万用表。 实验内容: 实验一:被测金属板采用铝质板,测量U-x 关系曲线。 实验二:被测金属板仍采用铝质板,但直径较小,测量U-x 关系曲线。 实验三:被测金属板采用铁板,测量U-x 关系曲线。 5、实验数据: 实验一数据: 6、实验要求: 1、画出(实验一)中的U-x 关系曲线,确定传感器的线性工作范围计算传感器的灵敏度。答:线性工作范围:由画出的U-X关系曲线可以看出其线性工作范围在0~13 灵敏度:(15.4-1.78)/13=1.048

常见传感器原理介绍

Pellistoren Pellistors使用催化燃烧来测量可燃气体或蒸气在空气的含量直到达到该气体的LEL*。 标准传感器包括一对元件,主要指典型地指探测器和平衡器(参照元件)。探测器包括一颗催化材料的小珠子和其中埋置的铂金导线卷。平衡器和探测器很类似,但小珠子不具有催化作用所以是惰性的。 Figure 1 - Pellistors 两个元件通常被管理在Wheatstone桥梁电路中,如果探测器的阻力与平衡器不同,将导致产品只有输出。 500-550°C的恒定直流电压通过搭桥对元件加热,只有在探测器元件上可燃气体才被氧化,增加的热量会加大电阻,产生的信号与可燃气体的浓度成比例。平衡器帮助平衡四周温度、压力和湿度。 大多数pellistors中的元件被分开放置在金属罐中。在一台完整的气体探测器中(被用于可能爆炸的大气),金属罐通常被放在耐火封套中,这种耐火封套通常由金属多孔状淀土和外套组成。这种封套可以保证气体能到达传感器,但热的传感器元件不会点燃该易爆的气体混合物。因为这种设计十分重要,所以这种封套通常经符合国家标准的特许测试机构检验合格。在不同的国家,这种检测很可能费时及相当昂贵的过程。作为另一种选择,我们提供的完整的探测器将两个元件放入了耐火封套,并符合最新的欧洲(ATEX)并且北美(CSA & UL)标准。 对易爆大气的测量依赖于对可燃气体低于LEL浓度的精确测量。所以在该安全应用中,通常不考虑气体浓度。该测量通常被表示为气体LEL浓度的百分比(%LEL)。

多数可燃气体检测技术用于检测多种气体,理想化的传感器应该是不同的气体有不同的测量结果。但实际上不同的化学形态影响了测量的结果,催化氧化传感器也没有例外。因此,pellistor对不同气体的相同浓度做出的判断是不同的,但当暴露在相同%LEL 浓度的不同气体中时,输出信号的变化相对小于其它检测技术。但因为此安全应用重视%LEL测量也使其成为主要优势。 我们将不同气体产生同样%LEL浓度命名为“相对敏感性”。我们进行了许多实验为CiTipeLs确定一定范围内可燃气体“相对敏感性”的实验价值。 催化毒 某些物质对催化传感器负面影响,有两种可能性: 毒 一些化合物会分解在催化剂并在催化剂表面形成坚实的屏障,这种分解是逐渐形成的,而长时期的曝光会导致传感器的敏感性发生无法恢复的减退。典型的毒物是有机铅和硅化合物。 被抑制 某些其他化合物,特别是硫化氢和被卤化的碳氢化合物,会被被吸收、或形成由催化剂吸收的化合物。这种吸收作用很强大,会使得催化剂的反应点被封闭而造成正常反应被迫停止。由于这种原因造成的传感器敏感性损失是暂时的,大多数情况下放在干净的空气中一段时间后,传感器将恢复工作。 大多数化合物属于上述两类中的一个,可能有些表现出更大或更小的程度。在毒化或被抑制可能存在的应用中,CiTipeLs产品应该被避免暴露于它们不能抵抗的所有化合物中。 LEL说明 * 气体的LEL是指用火源使空气中的该气体爆炸的最低气体浓度。

电涡流传感器应用设计实验

电涡流传感器应用设计实验 一、创新实践目的 熟悉和掌握电涡流传感器测量原理,及其位移测量电路、设计方法和应用。 二、器件与仪器 1、主要器件:电涡流传感实验模板、电涡流传感器、振动台(2000型)、直流稳压电源、 低通滤波模板、螺旋测微头、不同面积的铝被测体、铜和铝的被测体圆盘、铁圆片、导线若干。 2、主要仪器:数显表、频率表、示波器、电压表。 三、基础设计与实践 1、设计内容 (1)设计一种利用电涡流传感器检测到不同金属静态位移的系统; (2)设计一种电涡流传感器测量振动的方法。 2、研究内容 (1)研究不同的被测体材料对电涡流传感器性能的影响; (2)研究电涡流传感器在实际应用中其位移特性与被测体的形状和尺寸的关系; (3)研究电涡流传感器的动态性能及测量原理与方法。 3、设计提示 (1)电涡流传感器的原理参考教材《检测与转换技术》(童敏明、唐守锋编); (2)电涡流传感器测量电路框图如图7所示,其中涡流线圈L和测量电器中的电容C 组成谐振电路,谐振频率为: f= 图7 电涡流传感器测量电路框图 (3)电涡流传感器的变频调幅式测量电路原理如图8所示;

图8 变频调幅式测量电路原理 (4)电涡流传感器的位移检测电路如图9所示。 图9 电涡流传感器位移检测电路 (5)电涡流传感器的静态位移测量安装如图10(a)所示,振动测量安装如图10(b)所示; (a)静态位移测量安装图;(b)振动测量安装如图 图10 电涡流传感器的安装示意图

四、基础实践注意事项 (1)被测体与电涡流传感器测试试头平面必须平行并将测头尽量对准被测体中间,以减少涡流损失; (2)传感器在测铁材料初始时可能会出现一段死区; (3)振动幅度不宜过大,以免撞击机壳,损坏仪器。 五、创新设计与实践 题目一、根据所掌握的传感器知识,设计一个金属零件计数分装系统。 1、设计要求: (1)选用合适的传感器了类型,将传感器探头安装在适当的位置上; (2)金属零件陆续从落料管中落到正下方的零件盒中时,能够有效地检测下落零件的个数; (3)当零件盒中的数量达到设定值N时停止落料,传送机构动作,将下一个空盒传送到落料管的正下方。 2、设计提示: 如下图所示为金属零件自动装箱检测控制系统示意图。 金属零件分装、计数系统 根据要求不能采用电涡流接近开关,而只能采用输出模拟电压的电涡流传感器及配套的测量转换电路(应考虑下落物体位置的随机性)。 3、创新实践要求: (1)依据设计思路画出传感器安装简图,测量转换电路图,并说明其工作原理及优缺点; (2)进行硬件电路连接测试,实现设计功能要求。 4、设计报告要求: (1)画出传感器安装图、测量转换电路图; (2)传感器原理说明和电路工作原理说明; (3)各元器件的选择与计算; (4)实践结果。

电涡流探头原理与安装

电涡流传感器探头的原理以及实际应用和安装 一、概述 我公司#1、#2小汽轮机TSI(汽轮机监视系统)使用美国本特立.内华达公司生产的3500 电涡流传感器系统,本系统为我公司#1、#2小机TSI系统提供准确可靠的监测数据。 在#1、#2小机TSI系统中主要使用了本特立.内华达公司的3500 XL 8 mm 电涡流传感器,这种电涡流传感器提供最大80 mils (2 mm)线性范围和200 mV/mil 的输出。它在大多数机械监测应用中用于径向振动、轴向位移、转速和相位的测量。 二、工作原理 电涡流传感器可分为高频反射式和低频透射式两类,我公司主要使用高频反射式电涡流传感器,下面将对其工作原理作以阐述: 电涡流传感器是基于电磁感应原理而工作的,但又完全不同于电磁感应,并且在实际测量中要避免电磁感应对其的干扰。电涡流的形成:现假设有一线圈中的铁心是由整块铁磁材料制成的,此铁心可以看成是由许多与磁通相垂直的闭合细丝所组成,因而形成了许多闭合的回路。当给线圈通入交变的电流时,由于通过铁心的磁通是随着电流做周期性变化的,所以在这些闭合回路中必有感应电动势产生。在此电动势的作用下,形成了许多旋涡形的电流,这种电流就称为电涡流。电涡流传感器的工作原理如下图所示:

当线圈中通过高频电流i时,线圈周围产生高频磁场,该磁场作用于金属体,但由于趋肤效应,不能透过具有一定厚度的金属体,而仅作用于金属表面的薄层内。在交变磁场的作用下金属表面产生了感应电流Ie,即为涡流。感应电流也产生一个交变磁场并反作用于线圈上,其方向与线圈原磁场方向相反。这两个磁场相互叠加,就改变了原来线圈的阻抗Z,Z的变化仅与金属导体的电阻率ρ、导磁率u、激励电磁强度i、频率f、线圈的几何形状r以及线圈与金属导体之间的距离有关。线圈的阻抗可以用如下的函数式表示:Z=F(ρ、u、i、f、d)。当被测对象的材料一定时,ρ、u为常数,仪表中的i、f、d也为定值,于是Z就成为距离d的单值函数。 三、实际应用 电涡流传感器以其测量线性范围大,灵敏度高,结构简单,抗干扰能力强,不受油污等介质的影响,特别是非接触测量等优点,而得到了广泛的应用。在火电厂中主要应用在以下几个监测项目: 1、转子转速:在机组运行期间,连续监视转子的转速,当转速高于给定值时 发出报警信号或停机信号。其工作原理:根据电涡流传感器的工作原理可知,趋近式电涡流探头和运行的转子齿轮之间会产生一个周期性变化的脉冲量,测出这个周期性变化的脉冲量,即可实现对转子转速的监测。

电涡流传感器的设计

引言 电涡流传感器具有灵敏度高、分辨力高、线性度高、重复性好、结构简单、抗干扰能力强、线性测量范围宽、安装方便、非接触测量、耐高温、能在油、汽、水等恶劣环境下长期连续工作的特点以及能够实现信息的远距离传输、记录、显示和控制的优势,被广泛应用于工业生产和科学研究等领域的位移、振动、偏心、胀差、厚度、转速等物理量的在线检测和安全保护,为精密诊断系统提供了全息动态特性。因而对于电涡流传感器的研究有着深远的理论和实践意义。 目前,对电涡流传感器的研究,主要集中在电磁学模型机理的研究、线圈几何形状的优化设计、测量精度的提高、非线性的线性化和应用范围的拓展等方面。本文提出了一种新型的电涡流传感器设计方案,具有速度快、功耗低、稳定性好等诸多优点,并已广泛应用于电力、石化、冶金、钢铁、航空航天等领域,取得了非常好的效果,得到了用户的一致好评。 1 电涡流传感器的基本工作原理[1-2] 电涡流传感器的基本工作原理是基于电涡流效应。根据法拉第电磁感应定律可知:金属导体置于变化的磁场中时,导体表面就会有感应电流产生。电流的流线在金属导体内自行闭合,这种由电磁感应原理产生的旋涡状感应电流称为电涡流,这种现象称为电涡流效应,电涡流传感器就是利用电涡流效应来检测导电物体的各种物理参数的。如图1所示。 理论和实践均证明:电涡流的大小与导体的磁导率ξ、电导率σ、线圈与导体之间的距离D 、激励电流强度I 、激励电流角频率ω、线圈尺寸因子等参数有关。探头线圈的阻抗Z 是上述参数的函数,即Z =F (,ξ, σ, D , I,ω) 。 很显然,如果只改变其中的某一参数,其他参数恒定,阻抗就成为该参数的单值函数。假设被测金属导体材质均匀,且具有线性和各向同性的性能特点,我们可以控制,ξ, σ, I ,ω这几个参数在一定范围内不变,则阻抗就成为距离的单值 函数,再通过前置器电子线路的处理,将探头线圈阻抗的变化,即探头线圈与金属导体之间的距离的变化转化为电压或电流的变化。输出信号的大小随探头到被测体表面之间的距离而变化,电涡流传感器正是基于这样的原理实现对位移、振动、胀差、偏心等的测量。 图1 电涡流传感器的工作原理 2 电涡流传感器电路设计 2.1 测量电路的选择[3-5] 电涡流传感器的测量电路可分为调频式和调幅式两种,调幅式测量电路又可细分为恒定频率的调幅式和频率变化的调幅式两种。 调幅式测量电路是指以输出高频信号的幅度来反映电涡流传感器探头与被测金属导体之间的关系。其特点是:输出可以被调理为直流电压,而对直流电压进行数据采集的速度快、时间短、可以降低功耗。 调频式测量电路是指将探头线圈的电感量与微调电容构成振荡器,以振荡器的频率作为输出量的一种转换电路。其优点是:电路结构简单,抗干扰能力强,性能较稳定,分辨率和精度高,易与计算机连接,频率输出便于数据采集和处理,成本较低。 在本设计中我们采用调幅式电路。2.2 滤波、稳压、同相比例放大电路的设计 该部分电路的作用是消除直流电源中的交流成分以及电源电压的波动所造成的影响。如图2所示。 2.3 振荡电路的设计[6] 电感三点式振荡电路:由于反馈支路是电感,振荡器的输出波形中含有较多的高次谐波,且振荡频率不高,对本设计不适用,故不予采用。 电容三点式振荡电路:由于输出端和反馈支路均为电容,对高次谐波电抗小,反馈电压中高次谐波分量很少,振荡频率稳定度高,因而输出波形好,更接近正弦 波。振荡频率可以较高。符合本设计的要求,故采用。如图3所示。 图3 电容三点式振荡电路 在本设计中,为了保证振荡电路输出信号的稳定和可靠,我们采取了如下措施: 针对电源电压的变化,在电源端添加了稳压环节;针对负载变化,在振荡电路与负载之间插入了缓冲电路以屏蔽负载的影响;针对环境温度变化,采用了温度系数较小的元件,例如云母电容等;针对外界磁场会引起磁性材料磁导率的变化,影响传感器线圈的涡流效应,将振荡器密封在传感器壳体内,起到屏蔽作用,可减少回路与外界发生的电磁耦合。 2.4 检波、滤波电路的设计 检波、滤波电路将电容三点式振荡器的输出信号,经过检波、滤波,将其转换为直流信号。通过对电路的优化设计,对元器件一致性的筛选以及电阻、电容参数的合理选配,使得该电路既能保证独立线性指标的要求,又能满足对动态响应时间指标的要求,同时还要尽可能降低直流信号输出的交流噪声。检波、滤波电路如图4所示。 2.5 对数运算电路的设计[7] 电涡流传感器的设计 伍艮常 株洲职业技术学院,湖南株洲 412001 DOI :10.3969/j.issn.1001-8972.2011.12.076 图2 滤波、稳压、同相比例放大电路

DWQZ电涡流传感器.

DWQZ系列电涡流传感器-上海航振仪器仪表有限公司 .电涡流传感器工作原理及特性 DWQZ系列电涡流传感器的基本工作系统由被测体、探头、延伸电缆、前置器构成。前置器产生高频振荡电流通过延伸电缆流入探头线圈,线圈会产生轴向磁场,当被测金属体靠近这个磁场,在被测金属表面产生涡流(电涡流的强弱随探头与被测体表面之间距离的变化而变化),从而引起线圈Q值变化。距离小时电涡流作用强,线圈Q值小;距离大时电涡流作用弱,线圈Q值大。在实际应用中,将线圈Q值的变化经前置器检波、放大转化成电压的变化。实现将机械位移(间隙)值转换成电压值。 电涡流位移传感器工作原理图 综上,电涡流传感器工作系统中被测体的材质与测量结果密切相关。 ?被测体材料对传感器特性影响: 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 位移(mm) 材料影响数据曲线 订货时用户必须注名被测体材料、形面、尺寸等。如用户没有在合同中约定,出厂校验时均将45#钢作被测体材料,被测体平面直径尺寸以大于或等于3倍探头直径进行校准。

:.DWQZ系列电涡流传感器特点 ▲可靠性: 探头头部体选用PPS工程塑料并通过模具成型。保证探头具有高强度、耐高温(220 C)、抗腐蚀性能;不易碰坏、碰到某些化学药品也不会被腐蚀;保证了探头的可靠性; 探头信号输出使用的同轴电缆和延伸同轴电缆选用进口宽温度范围电缆(-55 C?200C);电缆强度高、电气特性一致性好(有利于减小互换性误差); 电缆接头选用进口军用标准插头座,接触电阻小,可靠性增加; 前置器输出端子有容错和过载保护,即使接错线不会引起前置器的电路损坏; 前置器有防雷击、抑制电网尖峰干扰能力,使前置器更安全; ▲温度的稳定性和精度: 依靠先进的补偿电路使探头线圈和电缆温度变化的影响,在(-22 C?120C)温度范围 内,其最大偏差小于土5 %; 探头灵敏度误差土3% 探头线性误差土0.5%; 频率响应DC?5 kHz 分辨率0.2um 三. DWQZ系列电涡流位移传感器技术参数 DWQ系列电涡流传感器工作环境的基本要求: 探头、延伸电缆在-30 C?120C,前置器在-30 C?80C;相对湿度95%^境中,长期工作不损坏。 电源:-24VDC± 10% 外形尺寸:80 mnrK 60mm< 30mm 安装采用导轨安装或螺钉安装。 技术指标: 在室温25r,被测体材料45#钢,电源-24V ± 10%负载10KQ条件下,满足:

2019年电涡流传感器原理指什么

2019年电涡流传感器原理指什么 篇一:电涡流传感器基本原理 电涡流传感器 原理图 1、什么是电涡流效应? 电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸。注意:电涡流传感器要求被测体必须是导体。 传感器探头里有小型线圈,由控制器控制产生震荡电磁场,当接近被测体时,被测体表面会产生感应电流,而产生反向的电磁场。这时电涡流传感器根据反向电磁场的强度来判断与被测体之间的距离。 2、电涡流传感器的工作原理与结构 。

传感器线圈由高频信号激励,使它产生一个高频交变磁场φi,当被测导体靠近线圈时,在磁场作用范围的导体表层,产生了与此磁场相交链的电涡流ie,而此电涡流又将产生一交变磁场φe阻碍外磁场的变化。从能量角度来看,在被测导体内存在着电涡流损耗(当频率较高时,忽略磁损耗)。能量损耗使传感器的Q值和等效阻抗Z降低,因此当被测体与传感器间的距离d改变时,传感器的Q值和等效阻抗Z、电感L均发生变化,于是把位移量转换成电量。这便是电涡流传感器的基本原理3、电涡流传感器的实际应用 电涡流传感器测量齿轮转速的应用 4、使用电涡流传感器时的注意事项 对被测体的要求 为了防止电涡流产生的磁场影响仪器的正常输出安装时传感器头部四周必须留有一定范围的非导电介质空间,如果在某一部位要同时安装两个以上的传感器,就必须考虑是否会产生交叉干扰,两个探头之间一定要保持规定的距离,被测体表面积应为探头直径3倍以上,当无法满足3倍的要求时,可以适当减小,但这是以牺牲灵敏度为代价的,一般是探头直径等于被测体表面积时,灵敏度降低至70%,所以当灵敏度要求不高时可适当缩小测量表面积。

传感器及其工作原理教案

江苏省淮阴中学06-07年度优秀教学案例 《传感器及其工作原理》的创新教学设计 王刚 教学依据 ①物理(新人教版)选修3-2第六章第1节《传感器及其工作原理》(P56-P60); ②新物理课程标准(实验). 教学流程图

教学目标1.知识与技能:①知道非电学量转换成电学量的技术意义;②通过实验,知道常见传感器的工作原理;③初步探究利用和设计简单的传感器. 2.过程与方法:①通过对实验的观察、思考和探究,让学生了解传感器、熟悉传感器工作原理;②让学生自己设计简单的传感器,经历科学探究过程,学习科学研究方法,培养学生的实践能力和创新思维能力. 3.情感态度与价值观:在理解传感器工作原理的基础上,通过自己设计简单的传感器,体验科技创新的乐趣,激发学习物理的兴趣. 重、难点 1.几种常见传感器的工作原理(演示实验);2.学生自己设计简单的传感器. 教学策略 用几个有趣的传感器实验引入课题,激发学生探究传感器原理的兴趣.给出“传感器就是把非电学量转换为电学量”的概念之后,重点介绍光敏电阻、金属热电阻、热敏电阻.安排音乐茶杯和火警装置两个设计性问题让学生体会传感器的简单应用.结合电容、霍尔效应、电阻定律等知识让学生设计传感器,进一步深化传感器的工作原理.最后在对本节课总结的基础上,结合《思考与讨论》进行教学反馈. 教学程序 教学环节教学内容及师生互动设计情感与方法 一.课题的引入 二.什么是传感器?【演示实验1】干簧管控制电路的通断 如图,小盒子A的侧面露出一个小灯泡,盒外没有开 关,但是把磁铁B放到盒子上面,灯泡就会发光,把磁铁移 走,灯泡熄灭. 师问:盒子里有怎样的装置,才能实现这样的控制? 生猜:(可以自由讨论,也可以请学生回答) 师生探究:打开盒子,用实物投影仪展示盒内的电路 图,了解元件“干簧管”的结构。探明原因:玻璃管内封入 两个软磁性材料制成的簧片。当磁铁靠近干簧管时,两个簧 片被磁化而接通,电路导通。所以,干簧管能起到开关的作 用。 师点拨:这个装置反过来还可以让我们通过灯泡的发 光情况,感知干簧管周围是否存在着磁场。 【演示实验2】声光控开关控制电路的通断 ①先在普通光照条件下, ②在把开关置于黑暗环境中。 师生总结:声光控开关 师:刚才的两个实验,都用了一种元件,这些元件能够 感受某些信息,通过它能实现电路的自动控制,这种元件有 一个专门的名称:传感器。什么是传感器呢?它能够感受诸 如力、温度、光、声、化学成分等非电学量,并能把它们按 照一定的规律转换为电压、电流等电学量,或转换为电路的 通断。我们把这种元件叫做传感器。它的优点是:把非电学 量转换为电学量以后,就可以很方便地进行测量、传输、处 理和控制了。 其实,传感器并不神秘。你家里可能就有很多的传感 器。请大家相互说说看,你家里,或者在你的生活当中,都 (演示实验1: 干簧管传感器) (干簧管的实 物及原理图) 学生对干簧 管并不熟悉,因 此才有了好奇。 声光控开关在 生活中很普及, 所以又有亲切 感

传感器原理及种类介绍

传感器原理及种类介绍 ――年度教育训练 一、传感器的基础知识 1、传感器的定义 国家标准GB7665-87 对传感器下的定义是:“ 能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成” 。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 2、传感器的分类 2.1、按传感器的被测物理量分类,可分为位移传感器、压力传感器、速度传感器、温度传感器等传感器。 2.2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅热电偶等传感器。 2.3、按传感器输出信号的性质分类,可分为:输出为开关量(“ 1” 和“ 0” 或“ 开” 和“ 关” )的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。

二、传感器的原理 1、应变式电阻传感器 电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是应变式电阻传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截

相关文档
最新文档