定态薛定谔方程的解法 一维无限深势阱与线性谐振子

合集下载

量子力学2.6一维无限深势阱

量子力学2.6一维无限深势阱

2008.5
Quantum Mechanics
a、偶宇称态 由于这里内外解
(
2 (x)
x)和 '(
~ cos kx
x)在 | x | a
| x | a 2
处是连续的,
2
更方便的方法是取 ' 连续或 (ln )' 连续。
因此在x
a 处,有 2
ln(cos
kx)
' x a
2
ln(
ex
)
' x
a
,得
2
k tan ka
2
(5)
在x a 处,结果同上。 2
2008.5
Quantum Mechanics
令 则(5)式化为
ka, a
2
2
tan
(6)
(7)

2m(V0
E)
,
k
2mE

2mV0 2k 2
再利用(6)式,有
2
2
mV0 a 2 2 2
2008.5
(8)
2008.5
Quantum Mechanics
写出分区定态方程 在阱外(经典禁介区)
d2 dx 2
1
2m 2
(V0
E ) 1
0
(1)

方程(1)变为
其解为
2m(V0 E)
(2)
1'' 21 0
1 ~ ex
都是方程的解?
2008.5
Quantum Mechanics
考虑到束缚态边界条件:| x | 时 0,有
2008.5
Quantum Mechanics

16-4一维谐振子问题

16-4一维谐振子问题

)
2.微分性质:
dH
d
2nH n1( )
3.正交归一性:
e
2
H
n
(
)H
n
'
(
)
d
2n n!
nn
4.完备性:
f ( ) cnHn ( ) 0
式中的展开系数为:
cn
1 2n n!
e 2
f
( )Hn ( )d
由式(2.7.1)即可得能量本征值 E为:
En
(n
1 )h
2
n 0,1, 2,3,L
U (x) 1 2 x2
2
粒子受到的势不随时间变化,这是一个定态问题!
2
2
2
U
(r)
(r)
E
(r)
————定态薛定谔方程
U (x) 1 2 x2
2
2
2
d2 dx 2
1 2
2 x2
(x)
E
(x)
————一维谐振子的定态薛定谔方程 ————一维谐振子的能量本征值方程
2
2
d2 dx 2
2 px
vx 2a
p
2 x
mea
将算符

2 x
(i
)2 x
2
x 2
代入上式,得
F
2 me a
2 x2
A A (r) Aˆ (r)d
一维无限深势阱的基态波函数为
1(x)
2 a
sin
x
a
1
(
x
)
电子对阱壁的平均冲力为
F
a
0
1

1dx
2π 22 me a 4

6-4-7一维线性谐振子

6-4-7一维线性谐振子

6-4-7 定态薛定谔方程的应用(三)线性谐振子其能量是振幅的连续函数一、经典线性谐振子在势场中运动的质量为的微观粒子2221)(x m x U m 二、量子线性谐振子xU 当时,势能谐振子的势能曲线亦为无限深势阱,只不过不是方势阱而已,所以粒子只能作有限的运动,即处于束缚态。

221E m A 2 谐振子在运动中能量守恒定态薛定谔方程1.谐振子的能量, )21()21( h n n E n n = 0, 1, 2, (22)222()1()()22d x m x x E x m dx (1) 能量量子化经典:能量连续(2) 最低能级01E h 2经典:的态对应00 E 0p x 零点能零点能不等于零是量子效应,是微观粒子波粒二相性的表现。

不可能静止E n nh 普朗克谐振子的能量:n = 1, 2, …(3) 能级间隔均匀E h假想存在许多虚构的粒子,其每个的能量为h 这种粒子叫做量子(Quantum )在晶体中,这种量子叫做声子phonon(4) 当n 时,符合玻尔对应原理。

能量量子化 能量连续, 0Δ nE E(1)在E <U 区,概率密度不为0——隧道效应2. 概率密度例如基态位置概率分布在x =0处最大,经典振子在x = 0处概率最小。

(3) n 小时,概率分布与经典谐振子完全不同xn 很大E n E 1E 2E 00U (x )21 2n 22 20 (2) 波函数有n 个零点,在零点处概率为零。

n 为奇数时,x =0处,概率为零。

经典:无零点。

当n 时,符合玻尔对应原理。

量子概率分布 经典概率分布,简谐振子n =11 时的概率密度分布:211 11n x虚线是经典结果(4)只有在n 较大的情况下,有与经典相似。

谐振子的定态薛定谔方程谐振子的能量量子化线性谐振子势函数2221)(x m x U 小结22222()1()()22d x m x x E x m dx , )21()21( h n n E n ,2,1,0 n。

一维无限深势阱

一维无限深势阱

n*dx
=
a −a
A sin ⎢⎣⎡
nπ 2a
(x
+
a)⎥⎦⎤dx
= aA2 = 1
A= 1 a
ψn =
1 a
sin
⎡ ⎢⎣
nπ 2a
(
x
+
a)⎥⎦⎤
ψ
n
( x, t )
=
ψ
− i Et
ne h
=
1 a
sin
⎡ ⎢⎣
nπ 2a
(x
+
a)⎥⎦⎤

−i
eh
Et
En
=
n2π 2h 2 8μA2
ΔEn
=
En +1
§2.6 一维无限深势阱 (1) 序
一维运动 相互作用用势函数 U 表示
势场
⎧散射场 ⎩⎨束缚态
势垒
方形势阱
⎧方形势阱 ⎪⎪谐振子势阱 ⎪⎨δ 阱 ⎪⎩周期阱
一维无限深势阱,图 2.1 所示
Fig 2.1 一维无限深势阱
(2) 一维无限深势阱 在一维空间中运动的粒子,粒子在一定区域内(x=-a 到 x=a)为零,而在此区域外,势能为无
a −a
⎢⎣⎡cos
n
+ n′ 2a
(
x
+
a)

cos
n
− n′ 2a
(
x
+
a)⎥⎦⎤
dx
=0
——此即为波函数的正交条件。
8.波函数可视为两波波函数的迭加
ψ = c e + c e i h
(
nπh 2a

Ent
)

清华大学物理-量子物理.第27章.薛定谔方程

清华大学物理-量子物理.第27章.薛定谔方程

第二十七章薛定谔方程§27.1 薛定谔方程§27.2 无限深方势阱中的粒子§27.3 势垒穿透§27.4 一维谐振子*§27.5 力学量算符§27.1 薛定谔方程薛定谔方程是决定粒子波函数演化的方程。

薛定谔方程是量子力学的基本动力学方程,在量子力学中的地位如同牛顿方程在经典力学中的地位。

和牛顿方程一样,薛定谔方程不能由其它的基本原理推导得到,是量子力学的一个基本的假设,其正确性也只能靠实验来检验。

▲薛定谔方程是线性的,满足解的叠加原理。

▲薛定谔方程关于时间是一阶的,经典波动方程关于时间是二阶的。

▲薛定谔方程是量子力学的一个“基本假定”,是非相对论形式的方程。

若和是方程的解,),(1t r Ψ ),(2t r Ψ 则也是方程的解。

),(),(2211t r Ψc t r Ψc ▲方程含有虚数i ,其解是复函数,不可直接测量,是概率密度,可直接测量。

Ψ2||Ψ一. 一维无限深方势阱模型极限理想化U (x )U =U 0U =U 0E U =0x 0§27.2 无限深方势阱中的粒子表面电子运动限于区间aa金属无限深方势阱U =0EU →∞U (x )x 0U →∞-a /2a /2n 很大时,阱内粒子概率分布趋于均匀| n|2E n-a/2a/2玻尔对应原理:大量子数极限下,量子体系行为向经典过渡。

§27.3 势垒穿透一.粒子进入势垒⎩⎨⎧>≤=)0( , )0( ,0 )(0x U x x U 金属与半导体接触处,势能隆起形成势垒。

势垒的物理模型:xII 区I 区U 0U (x )1.一维势垒模型粒子从x = - 处以特定能量E (E < U 0) 入射,xII 区0I 区U 0U (x )2.问题经典图像:量子图像:粒子无法跃上台阶,只能反射。

粒子具有波动性,波不仅被反射,而且能透射进入势垒区,只要U 0有限。

量子力学概论第2章 定态薛定谔方程

量子力学概论第2章 定态薛定谔方程
E0=12ћω(2.60) 现在我们安全地站在梯子的最底部(量子谐振
子的基态),从而我们可以反复应用升阶算 符生成激发态,20 每升一步增加能量ћω ψn(x)=An(a+)nψ0(x),和En=n+12ћω, (2.61)
例题2.4 求出谐振子的第一激发态。 解:利用式2.61
ψ1(x)=A1a+ψ0=A12ћmω-ћddx+mωxmωπћ1/4emω2ћx2=A1mωπћ1/42mωћxe-mω2ћx2.(2.62)
我们可以直接用“手算”对它进行归一化:
∫ψ12dx=A12mωπћ2mωћ∫+∞-∞x2e-mωћx2dx=A12, 恰好,A1=1。 我们不想用这种方法去计算ψ50(那需要应用升阶算符
(式2.5)称为定态(time-independent)薛定谔方程; 如果不指定V(x)我们将无法继续求它的解。
Ψ(x,t)=∑∞n=1cnψn(x)e-iEnt/ћ=∑∞n=1cnΨn(x, t).(2.17)
尽管分离解自身是定态解,
Ψn(x,t)=ψn(x)e-iEnt/ћ,(2.18)
即,概率和期望值都不依赖时间,但是需要强调的 是,一般解(式2.17)并不具备这个性质;因为不同 的定态具有不同的能量,在计算Ψ2的时候,含时指 数因子不能相互抵消
f(x)=∑∞n=1cnψn(x)=2a∑∞n=1cnsinnπax.(2.32)
例题2.2 在一维无限深方势阱中运动的粒子,其初始波函数 是Ψ(x,0)=Ax(a-x), (0≤x≤a),A是常数(如图2.3)。设在势阱外 Ψ=0。求Ψ(x,t)。
解:首先需要归一化波函数Ψ(x,0)求出A 1=∫a0Ψ(x,0)2dx=A2∫a0x2(a-x)2dx=A2a530, 所以A=30a5. 第n项的系数(式2.37)是 cn=2a∫a0sinnπax30a5x(a-x)dx

量子物理 第二章 薛定谔方程

量子物理 第二章 薛定谔方程

v v Ψ ( r , t ) = ψ ( r ) f (t )
ih df 1 ⎡ h2 2 v ⎤ (1) ⇒ = − ⎢− ∇ + U ( r ) ⎥ψ = E f dt ψ ⎣ 2μ ⎦
(2)
⎡ h2 2 v ⎤ v v ∇ + U ( r ) ⎥ψ ( r ) = Eψ ( r ) ⎢− ⎣ 2μ ⎦

A≠0 B=0 nπ αn =
2a
,有
sin αa = 0
(6)
(n为偶数) ,有

A=0 B≠0
nπ αn = 2a
cos αa = 0
(7)
(n为奇数)
(6)和(7)两式统一写成
nπ αn = , 2a
n = 1,2,3, L
(8)
22
2.3 一维无限深势阱 The infinite potential well
(3)
10
2.2 定态薛定谔方程 Time independent Schrödinger equation
df ih = Ef (t ) dt
(4) (2) 令 则 (4)
i − Et h

f (t ) = Ce
(5)
i − Et h
v ⇒ Ψ ( r , t ) = ψ ( r )e
(6)
ω = E/ h E =hω
9
2.2 定态薛定谔方程 Time independent Schrödinger equation
1.定态,定态波函数 v ∂Ψ(r , t ) ⎡ h 2 2 v ⎤ v = ⎢− ∇ + U (r , t )⎥ Ψ(r , t ) ih ∂t ⎣ 2μ ⎦ 若
(1)

§3-2薛定谔方程 一维谐振子问题

§3-2薛定谔方程 一维谐振子问题

度为a。则冲力为
F
2px
vx 2a
p
2 x
me a
将算符

2 x
(i )2 x
2
x 2
代入上式,得
F
2 me a
2 x2
因电子是处于基态,则
1
1
2 sin x aa
6
电子对阱壁的平均冲力为
F
a
0
1

1dx
2π22 me a 4
a
0
sin
2
πx dx
a
2π 2 me a3
π
0
sin
由图可见,量子数n较小时,粒子位置的概率密度 分布与经典结论明显不同。随着量子数n的增大,概 率密度的平均分布将越来越接近于经典结论。
5
例1 一个电子被束缚在一维无限深势阱内,势阱宽度 为1.011010m。求当电子处于基态时对阱壁的平均冲 力。
解 设电子的质量为me,速度为vx,动量为px,势阱宽
§3-2 薛定谔方程
一维谐振子问题
一、一维谐振子的定态薛定谔方程
经典力学中,简谐振动为 x Acos(t )
系统的势能为 U( x) 1 kx2 1 2 x2
2
2
简谐振子的能量为 E 薛定谔方程,得
[
2
2
d2 dx 2
1 2
2 x2 ] ( x)
(
x)
n
( x)dx
1
,得
Nn
( 1
2 2n
)1 n!
2
时间因子的一维谐振子的定态波函数为
n (x,t) n (x)eiEnt/
Nn (x)e2x2 2Hn (x)eiEnt/
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用莱布尼兹公式 : uv u v 2u v uv
厄米方程: H - 2H - 1H 0
(2)用幂级数解法求解厄米方程的 H
0是方程的常点,方程的 解表示为泰勒级数
H av
当k=0;
nx 代入, x A sin kx 得: n x A sin , n 1,2, a
当n<0时,得到的解与n>0的线性相关,舍去
由0 0 0 c得 x Bx
由0 0 a Ba得B 0
0 x (舍去) 0
E0
1 0 2
(4)线性谐振子的能级是无简并的;
(5)谐振5.30)式可得, n 1 1 n x ,可见 波函数 n x 的奇偶性由n决定,通常称谐振子 n 波函数 n x 的宇称为 - 1
(6)与经典谐振子的比较
2
(1.5.21)
3.由波函数标准条件确定 方程 - 0
2
在- ,的解
( 1 )把求 的问题转化为求 H 的问题.
令 H e
-
2
2
代入
- 2 0
线性谐振子的哈密顿量
d 当, p i 时, dx
p2 1 H 2 x 2 2 2
线性谐振子的哈密哈密顿算符
2 d 2 1 2 2 x H 2 2 dx 2

故,定态薛定谔方程为
2 d 2 1 2 2 - 2 dx2 2 x x E x
薛定谔方程的解题步骤: 1.引入参数简化方程
ax,a
2 d d d d d 2 2 d a , 2 a dx d dx d dx d 2
引人 2 E 则,定态薛定谔方程可化为
- 0


1. 单调性;
2. 有限性; 3. 连续性;
这是指 x, t 应该是 x ,t 的单值函数。因为 x, t 是t 时刻在 x处发现粒子的概率密度,即要求 x, t 为单 值函数,但不要求 x, t 是单值函数。
2
1. 单调性;
2. 有限性;
在有限的空间范围内发现粒子的概率有限
5. 解的物理意义
(1)谐振子的能量取离散值;
1 En n 2
因为
lim U ( x) lim
x x
1 2 x 2 2
(2)谐振子相邻能级的间隔 E 均匀分布;
(3)谐振子的基态能量 是一个量子 效应,当原子发生自发辐射,从高能态跃迁到 地能态,实际上是电磁场的真空态与电子相互 作用结果;
(5)薛定谔方程的解的线性组合
n x,t cn n x e
n 1

i En t
在一维无限深势阱中粒子可能的态: 定态: n x e E nt
i
线性叠加态: n x,t cn n x e
n 1

i En t
粒子处于定态的概率为:
2
(3)波函数的有限性要求级数 H a v v v 0 中断为多项式。 由于级数在无穷远的行为取决于级数相邻两 项系数之比在 时的极限为:
a 2 2 1 2 lim lim a 2 1

3. 连续性;
V0
x, t

2
d 有限值
定态薛定谔方程包含 x, t 对坐标的二阶导数, 要求 x, t 及其对坐标的一阶导数连续。
1.5.2 一维无限深势阱 设质量为 的粒子在势场中运动
0,0 x a (势阱内) U x (1.5.1) , x 0, x a(时间外)
2 d E ,0 x a 2 2 d x 2
2 d U 0 E , x 0, x a 2 2 d x 2
当势壁无限高是,不可能 在势阱外发现能量有限的 粒子,故阱外波函数为0
2. 引入参数简化方程,得到含待定系数的解;

2E k
2 势阱内定态薛定谔方程为: x k x 0
(1.5.11)
6. 解的物理意义。
(1)束缚态与离散能级 由
2 nx sin ,0 x a n x a a 0, x 0, x a
可以知道,粒子不可能达到无穷远处 粒子被束缚在有 限的空间区域的 状态称为束缚态 粒子可达到无 限远处的状态 称为非束缚态
用波函数标准条件和归一化条件求解上述势 场的定态薛定谔方程这类问题的求解步骤:
1. 写出分区的定态薛定谔方程;
2. 引入参数简化方程,得到含待定系数的解; 3. 有波函数标准条件确定参数k; 4. 有波函数的归一化条件确定归一化常数A; 5. 由参数k得粒子的能量E;
6. 解的物理意义。
1. 写出分区的定态薛定谔方程;
1.5.4 一维束缚定态无简并定理
定理:若U x 在x有限处无奇点,则一维 的束缚态无简并。
证:设 1, 2是任意两个能量为 E的一维束缚态,若能 证明 1 C( 1, 2只差一个常数因子), 2 C为常数, 这就证明 1与 2描述同一束缚态,即无 简并。
d 2 x 2 薛定谔方程, 2 2 E U x x 0, U x 无奇点,则 dx
x
量子力学中把在势 1 2 U x kx 场 中运 2 动的微观粒子称为 线性振子 ,其势能 曲线为抛物线
讨论谐振子的意义:
(1)许多物理体系的 势能曲线可以近似看 作抛物线,双原子分 子的势能曲线在稳定 平衡点a附近的势能曲 线。 (2)复杂的振动可以 分解为相互独立的谐振 动动;
(3)处理线性谐振子的方法适用于:坐标表象、 粒子表象和电磁场量子化。
由此得到0<x<a区间内的解:
x Asinkx
3. 有波函数标准条件确定参数k;
x A sinkx
由势阱外波函数:
0 a A sinkx , 0
n k , n 1,2, a
x 0

2 2 2n 1 En 2 2a
当量子n数很大时,能级可以看作是连续的, 量子效应消失,并过渡到经典情况。
当n
En 2n 1 时, E n 2 0 n
(4)激发态的能级
2 nx n x sin a a
n x 0
n x
当 2n 1, n 0,1,2, 时, H 为n次多项式,若最高次幂 系数为an 2 n , 则
1 n! 2 n2 s 是取整数的符号 H n ! s 0 s! n 2 s
s
n 2
(a)令a0 0, a1 0得只含偶次幂的多项式; (b)令a0 0, a1 0得只含寄次幂的多项式 。
4. 有波函数的归一化条件确定归一化常数A;
1 n x dx
2

a
0
nx a 2 A sin dx A a 2
2 2
取A为实数,则 A
a ,则 2
2 nx sin ,0 x a n x a a 0, x 0, x a
经典力学里,粒子在 x范围内出现的概率
x x W ~ v a2 x2
X=0速度最小, 出现概率最大
量子谐振子空间位置概率分布特点: a、在原点发现粒子的 概率要么极大(n为偶) b、可以在经典禁区发 现粒子(势垒穿透效 应)。
经典禁区 (虚抛物线以外的区域
2
d、当量子数n越大时, 1.11 其概率分布与经典概率 0) 图 分布越接近(b)图

级数 e 系数之比在
2
k 0

2k
k! 2! 0

相邻两项 的极限也为:
2
H 的行为与 e 相同 当 很大时,
1 (
2
2 2
lim

)!

lim

1
2 2 2 ! 2 2
1 x 2 x 2 2 E U x 1 x 2 x


取有限值。得, 0 1 2 1 2 2 1 1 2 积分得, 1 2 1 2 常数
cn
2
1.5.3 线性谐振子
1 2 1 2 2 势场, U x kx x 2 2
(1)许多物理体 系的势能曲线可以 近似看作抛物线, 双原子分子的势能 曲线在稳定平衡点 a附近的势能曲线。
经典力学中,粒子 受到弹力F=-kx作 用时的势能
1 2 U x - F x dx kx 0 2
1.5 定态薛定谔方程的解 一维无限深势阱与线性谐振子
本节首先讨论波函数的标准条件,然后利用
(1)定态薛定谔方程; (2)波函数归一化条件; (3)波函数的标准条件;
一维无限深势阱中 运动的粒子与线性 谐振子的能级和波 函数。
最后介绍 “一维束缚定态的无简并定 理”
1.5.1 波函数的标准条件
波函数的条件解释指出,归一化的波函数是概 率波的振幅。在数学上应满足:


v
v 0
代入方程,得

v 2 v 1 v av v v 1 2 av v 1 av v 0 v 0
0
其系数递推公式 av 2
2v 1 av v 2v 1
-
相关文档
最新文档