自动化监测技术在地铁隧道中的应用

合集下载

自动化监测系统在昆明地铁4号线下穿既有地铁中的应用

自动化监测系统在昆明地铁4号线下穿既有地铁中的应用

都市快轨交通·第33卷 第6期 2020年12月123土建技术URBAN RAPID RAIL TRANSITdoi: 10.3969/j.issn.1672-6073.2020.06.019自动化监测系统在昆明地铁4号线下穿既有地铁中的应用陈 红,刘明光(深圳市勘察测绘院(集团)有限公司,广东深圳 518028)摘 要: 自动化监测系统主要由硬件系统及软件系统构成,具有自动化数据采集、连续监测、变形数据分析、成果评价、远程控制、信息发布管理等优点。

在昆明地铁4号线东大盾构区间下穿既有地铁3号线盾构区间工程中,监测系统对施工进行实时监测、监测数据实时分析、快速反馈信息,指导盾构下穿施工,并且保障了新建盾构区间的顺利贯通和既有地铁3号线的运营安全。

关键词: 地铁盾构;自动化监测;下穿既有地铁;数据分析;自动化数据采集 中图分类号: U231 文献标志码: A 文章编号: 1672-6073(2020)06-0123-04Application of Automatic Monitoring in Under-passing of the Existing Linefor the Construction of Kunming Metro Line 4CHEN Hong, LIU Mingguang(Shenzhen Survey and Mapping Institute (Group) Co., Ltd., Shenzhen 518028)Abstract: An automatic monitoring system is mainly composed of a hardware system and software system and has the advantages of automatic data acquisition, continuous monitoring, deformation data analysis, result evaluation, remote control, and information release management. Under the shield section of Kunming Metro Line 4, the real-time monitoring of the shield section project of the existing Metro Line 3 and the real-time analysis of the monitoring data are conducted, and rapid feedback information is given to guide the construction of shield tunneling. The smooth passage of the newly built shield section and the operation safety of the existing subway line 3 are guaranteed.Keywords: subway shield; automatic monitoring; underpass existing subway; data analysis; automatic data acquisition随着中国城市化进度的加快, 城市人口迅速增长,地上公共交通已不能满足人口增长带来的交通压力,发展以地铁为主导的轨道交通工程势在必行。

自动化监测系统在地铁隧道保护中的应用

自动化监测系统在地铁隧道保护中的应用

自动化监测系统在地铁隧道保护中的应用目录1. 内容简述 (2)1.1 研究背景 (3)1.2 研究意义 (3)2. 自动化监测系统概述 (5)2.1 系统定义 (6)2.2 系统组成 (7)2.3 工作原理 (7)3. 地铁隧道概述 (8)3.1 隧道结构特点 (10)3.2 隧道安全风险 (10)4. 自动化监测系统在地铁隧道保护中的应用场景 (11)4.1 地质灾害监测 (13)4.2 结构健康监测 (14)4.3 环境监测与应急响应 (15)5. 自动化监测系统的关键技术 (16)5.1 传感器技术 (17)5.2 数据采集与传输技术 (18)5.3 数据处理与分析技术 (20)6. 自动化监测系统的应用案例分析 (21)6.1 国内外典型案例介绍 (22)6.2 成功因素分析 (23)6.3 改进措施探讨 (24)7. 自动化监测系统的优势与挑战 (26)7.1 优势分析 (27)7.2 挑战与对策 (28)8. 结论与展望 (30)8.1 研究成果总结 (31)8.2 未来发展趋势预测 (32)1. 内容简述随着城市交通需求的日益增长,地铁作为大容量公共交通工具,在城市地下空间中的地位愈发重要。

然而,地铁隧道在运营过程中面临着地质灾害、结构损伤等多种安全威胁。

为了确保地铁隧道的长期稳定与安全,自动化监测系统应运而生,并在地铁隧道保护中发挥了重要作用。

自动化监测系统通过高精度的传感器、先进的监控设备和智能化的数据处理技术,实时采集并分析地铁隧道内部的各项关键数据,如应力、应变、温度、湿度等。

这些数据为隧道结构的健康状况提供了直观且实时的反馈,有助于及时发现潜在的安全隐患。

此外,自动化监测系统还具备强大的预警功能。

一旦监测数据出现异常波动或达到预设阈值,系统会立即发出警报,通知相关部门采取相应的应急措施。

这种前瞻性的安全保障方式,极大地提升了地铁隧道的安全管理水平。

在地铁隧道保护的实际应用中,自动化监测系统不仅能够简化人工监测的复杂性和工作量,还能显著提高监测的准确性和时效性。

隧道施工自动化监测技术应用研究

隧道施工自动化监测技术应用研究

应用技术与设计2018年第18期131监控量测作为隧道新奥法施工的关键要素,对隧道施工具有重要的作用。

当前,在隧道施工监测中,大多采用人工量测的方法,其操作简单,但对测量人的身体健康与安全都产生了不利的影响。

自动化监测技术,不仅工作效率高、数据传输速度快,而且还能带来较好的社会效益与经济效益。

1 自动化监测系统隧道自动化监测系统包括主控制器、数据采集系统、数据库服务终端、传感器组、网络无线通讯系统等。

主要是由数据采集系统对传感器组自动采集进行控制,同时将所采集到的监测数据传送到数据传输系统中进行一定的处理,并将其储存。

最后,在数据库服务终端的指令下,将传输数据提供给决策人员进行处理。

2 隧道自动化监测技术应用2.1 监测传感器隧道自动监测传感器比较类似于人工手段的监测传感器。

围岩变形监测的传感器主要有测量机器人、巴塞特收敛系统、静力水准仪、激光测距仪、自动隧道断面扫描系统等。

而压力盒、钢筋计、锚杆轴力计、多点位移计是支护结构力学特性监测的传感器,通常情况下,主要以电阻式与振弦式这两种类型为主。

2.2 监测数据的自动采集技术当前传感器类型及隧道施工监测输出信号类型主要有振弦数据信号、压电数据信号、电流数据信号、电压数据信号等,在对隧道施工进行自动监测过程中,首先需要对各类传感器输出信号进行自动采集,与此同时,还要向外输出可识别信号。

依据支护施作时机,并在考虑隧道开挖进度的基础上,设置接触压力与钢拱架受力监测元件,并保护该监测元件及导线,同时将其接入数据采集器。

此外,还需要在隧道口安装无线传输模块。

在调试后采集相关监测元件的初始值。

2.3 数据分析数据分析需要借助计算机才能够顺利实现,通过软件开发将前端数据进行深入分析和探究。

以洞口浅埋段地表下沉数据为例,洞口地表布置的静力水准仪每分钟传回一次数据,根据实时位移和时间,绘制出洞口浅埋段地表下沉测点时程曲线图,通过相关软件可得到浅埋段地表下沉变化速率。

自动化监测技术在地铁中的应用

自动化监测技术在地铁中的应用

要点二
创新发展
鼓励企业和研究机构进行创新研究,探索新的监测技术和 方法,为地铁行业的发展提供新的动力和支持。
THANKS
谢谢您的观看
自动化监测技术可以提高监测效率和 准确性,降低人工成本,为地铁运营 提供更加全面和准确的数据支持。
02
自动化监测技术在地铁中的应 用场景
地铁隧道结构监测
结构变形监测
通过自动化监测技术,对地铁隧 道结构进行实时监测,及时发现 结构变形和异常情况,确保隧道
结构安全。
地质信息采集
利用自动化监测设备,采集地铁隧 道周边的地质信息,为地质分析和 灾害预警提供数据支持。
06
未来发展趋势与展望
智能化、自适应监测技术发展
智能化监测设备
随着人工智能技术的发展,未来地铁监 测设备将更加智能化,能够自动识别和 判断异常情况,提高监测效率和准确性 。
VS
自适应监测算法
通过不断学习和优化算法,未来地铁监测 系统能够自适应地调整监测参数和策略, 以适应不同环境和条件下的变化。
自动化监测技术还可以通过数据挖掘和 分析,预测设备的使用寿命和维护需求 ,为地铁运营提与运营风险
自动化监测技术可以减少人工巡检和监测的频率,降低人力成本和劳动强度,提高工作效率 。
自动化监测技术可以实现对地铁设备的远程监控和管理,减少现场作业人员的数量和风险, 提高运营的安全性和稳定性。
04
自动化监测技术在地铁中的优 势与挑战
提高监测效率与准确性
自动化监测技术可以连续、实时地收集 地铁系统的各种数据,如位移、速度、 加速度、温度、湿度等,避免了人工监
测的间断性和误差。
自动化监测技术采用高精度传感器和先 进的算法,能够准确地捕捉和识别异常 数据,及时发现潜在问题,提高监测效

自动化监测技术在运营地铁隧道中的应用探讨

自动化监测技术在运营地铁隧道中的应用探讨
( C 2 0 , 度05 ,+ p m). T A 0 3精 . l l p 。 以此研 究 自动 化监
测基 准 点及 监测 点布 设情 况 如下 :
结构 顶顶 板城 建 高程 约为 ~ .— 42 地 铁 隧道 主 22 . m。 要处 于 淤泥 和砂 层 地质 环境 中 , 了保 证 施 工过 程 为
因素 , 解社 会交 通 压力 是 政府 发挥 公 共服 务 职能 缓 的关 键性 工作 。 地铁 是 国家 重点投 资 的市政 项 【程 目 , 维 持社会 交 通 运输 活 动期 间发 挥 了重 大 的作 在
日常监 测是 运 营方 管理 的重 点工 作 , 自动 化监 测 而
技术 是 隧道运 营管理 的先 进科技 。
便 , 是 , 存 在很 多不 确定 性 , 但 它 安全 隐患 大 , 解 要
这 种方法 也逐渐 地失去 了意 义 ;再 后来 又有 单位 在
上 述做 法 的启 发下 , 成在 附墙拉 ( ) 外端 管 口 改 撑 杆
决这 个 问题 就 得选 择刷 色标识 的做法 。
参 考文献 :
cnT CO AEY OSR T nSFT UI
建筑鸯 金 22 第 期 0 年 3 1
综合园 地
【 摘
际运 用 。
要】 本文以“ 广州地铁一号线” 为案例 , 分析介绍 自 动化监测技术在地铁 隧道运营中的实
运营 监 测 自动化
【 键词 】地 铁 隧道 关
交 通 问 题 已经 成 为制 约 社 会 经 济 发展 的一 大
铁一 号 线长 寿路 一 陈家祠 区间 隧道 的投 影 中部 距 长 寿 路站 约 lO O m左 右 ,由 于华 贵 路基 坑 东 南 角边 长

基于智能型全站仪的地铁隧道变形自动化监测技术及应用

基于智能型全站仪的地铁隧道变形自动化监测技术及应用

基于智能型全站仪的地铁隧道变形自动化监测技术及应用摘要:在地铁建设和运行的时候,要始终监测隧道结构的变形情况,以往使用的人工监测技术很难达到预期的目标。

为了使地铁既有线路正常运行和在建项目顺利施工,可利用智能型全站仪自动化监测技术,实现对地铁隧道变形情况的实时监测。

文章从全站仪变形监测的原理入手,具体包含三维坐标监测原理、围岩收敛变形监测的目的与原理等内容,并围绕其设计和实现展开探讨,结合实际案例探讨其应用,保证地铁既有工程的正常运行和在建工程施工的顺利实施。

关键词:智能型全站仪;自动化监测;地铁隧道引言由于新建地铁工程工作量大,施工、计量工作繁杂,各种工作过程错综复杂,对邻近运营的轨道交通监控造成了一定的影响,故对已经投入运营的地铁进行实时监控。

智能全站仪的自动监控技术能够实现地下隧道的实时数据采集,从而准确、及时地掌握和了解隧道的变形情况,因此,采用智能全站仪对地下隧道的变形进行自动监控有着十分重要的意义。

地铁隧道变形监测精度高、频次高、时效性强,但是隧道变形监测环境复杂,天窗时间段,存在着一定的安全风险,常规的手工操作方式很难适应地铁监控的需要。

采用全天候自动化的变形监测方法,是目前地铁隧道监控的最佳方法。

全站仪自动化变形监控系统能够全天候、高精度、高频率、安全稳定地进行变形监测,并能实时、准确、快速、安全、稳定地进行变形监测,并产生变形曲线、变形报告,对安全事故进行预测,消除隐患,确保地铁的安全施工和运行。

1.地铁隧道施工监测现状目前国内隧道工程监测主要采用手工监测,其优点是简单、技术成熟可靠,但其缺点是时间短、监测效率低、成本高、危险性大。

采用自动监控技术对地铁隧道施工进行实时监控,是目前地铁隧道工程监控发展的必然趋势,通过自动监控技术,可以实现对隧道工程的实时监控,并对其进行快速、高效的分析,对解决人工测量弊端具有很强的实际意义。

目前,我国隧道工程监测的重点是隧道纵向变形监测、隧道横向变形监测、隧道管径收敛变形监测。

多台全站仪实现隧道自动化监测应用与分析

多台全站仪实现隧道自动化监测应用与分析

多台全站仪实现隧道自动化监测应用与分析
谢智剑
【期刊名称】《测绘科学技术》
【年(卷),期】2024(12)1
【摘要】为了监测地铁保护区内大型基坑施工对临近地铁隧道造成的变形,可以使用多台全站仪组成联测系统。

实施方案是在独立工作的全站仪之间设置偏置棱镜和背靠背棱镜,保持偏置棱镜与设站点之间的相对位置关系以及背靠背的两个棱镜之间的相对位置关系不变。

通过这些相对关系作为限制条件进行间接平差计算,将所有全站仪的测量统一至同一坐标系下,实现多台全站仪的联测。

监测实例表明,这种多台自动化全站仪联测系统稳定可靠,并能真实反映隧道的变形情况。

【总页数】6页(P10-15)
【作者】谢智剑
【作者单位】深圳市交通工程试验检测中心有限公司深圳
【正文语种】中文
【中图分类】U45
【相关文献】
1.基于全自动全站仪的地铁隧道自动化变形监测系统的设计与实现
2.多台测量机器人在地铁隧道自动化监测中的开发与应用
3.智能全站仪在地铁隧道工程自动化监测的应用
4.智能型全站仪在地铁隧道变形中的自动化监测技术与应用
5.多台自动化全站仪联测系统在地铁保护监测中的实践
因版权原因,仅展示原文概要,查看原文内容请购买。

现代测绘技术在地铁隧道变形监测中的应用研究

现代测绘技术在地铁隧道变形监测中的应用研究

区域治理交通规划与工程现代测绘技术在地铁隧道变形监测中的应用研究罗子端浙江华东工程安全技术有限公司,浙江 杭州 310000摘要:全站仪自动化监测系统及三维激光扫描技术在现代化隧道变形监测中的应用,并在测量平差理论的基础上,对实测数据进行了精度分析。

结果表明,现代化变形监测技术较比传统变形监测方法在精度、效率以及自动化水平上有了明显的提高,是当今地铁隧道施工及运营维护中可靠的地保监测手段。

关键词:三维激光扫描技术;全站仪;地铁隧道;变形监测城市轨道交通是城市公共交通的骨干。

其中,地铁系统以其运量大、空间利用率高、安全节能等特点,成为当今城市化进程中优化城市交通的有效手段。

地铁建设和运营会带动沿途经济及城市建设的发展同时,会因地铁施工及沿线城市建设所造成的土体应力状态变化导致建筑物、构筑物及地铁结构的变形,从而产生安全隐患。

一、全站仪自动化监测系统全站仪自动化监测系统是集电磁波测距技术、数据库技术、移动互联网通讯及自动目标识别技术等,利用计算机语言开发,基于服务器、控制器、客户端等硬件的C/S架构的自动化测量系统。

该系统在待测区域内布设控制网,于各断面布设小棱镜,基于全站仪免棱镜测距及ATR技术实现自动化空间信息获取,其位移精度可达±0.3mm。

在实际工程应用中,以高精度电子水准仪观测沉降数据为准,对比该系统在沉降监测中的实际成果。

二、三维激光扫描技术相比传统监测方式和自动化监测技术而言,三维激光扫描技术作为变形监测领域的前沿技术,利用高速激光测距技术配合精密时钟编码器量测隧道实体空间离散矢量距离点即点云。

在扫描仪独立坐标系下的斜距、水平方向及距离、天顶距、反射强度等信息,配合CCD传感器解算空间实体拓扑信息,经过对点云数据的配准、抽稀、去噪及滤波等过程,最终实现对空间实体线、面、体等空间信息数字化高还原度重构。

三维激光扫描技术以其观测快速、主动式非接触测量、抗干扰能力强、数据精度高、成果直观等特点,适用于现代地铁高效施工及高频率运营维护中隧道变形监测工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动化监测系统的主要仪器设备
表1
序号 1 2 3 4 5 6
仪器设备
徕卡 TS30 自动化全站仪 反射棱镜
计算机及其他设备 SmartMonitor 监测软件 GPRS / CDMA / EDGE 数据链及模块
供电设备
( 1) 徕卡 TS30 全站仪 地铁自动化监测使用仪器为徕卡 TS30 全站仪,该 仪器标称精度为: 测距精度 ± ( 0. 6 mm + 1 ppm × D) mm,测角精度 0. 5″。并可通过专用的 SmartMonitor 监 测软件来控制监测目标及设定监测时间。徕卡 TS30 自动化全站仪实现了整平、调焦、正倒镜观测、记录观 测数据等的全自动化,并且具备自动目标识别与照准 ( ATR) 功能,只需操作人员粗略的瞄准棱镜,TS30 全 站仪就可以自动搜寻到目标棱镜,并自动瞄准,不再需 要人工干预精确瞄准和调焦,这在很大程度上提高了 监测的工作效率。
2012 年 12 月 第6 期
城市勘测 Urban Geotechnical Investigation & Surveying
文章编号: 1672 - 8262( 2012) 06 - 143 - 05
中图分类号: P258
Dec. 2012 No. 6
文献标识码: B
自动化监测技术在地铁隧道中的应用
1引言
深圳市“卓 越 梅 林 基 坑 支 护 工 程 项 目 ”与 正 在 运 营的深圳地铁 4 号线上民区间毗邻,场地西侧为上民 区间隧道,其他侧为临建及待建道路。根据深圳市政 府和深圳 地 铁 公 司 的 有 关 规 定,位 于 地 铁 周 边 两 侧 50 m范围的区域为地铁保护区,保护区内实施基坑开 挖支护不得破坏地铁结构及相关构筑物,对地铁的影 响必须满足相关规定。
144
城市勘测
的道床、拱腰及拱顶,使棱镜反射面指向工作基点,以 便徕卡 TS30 全站仪能自动搜寻锁定作为监测标志的 反射棱镜,如图 3 所示。
2012 年 12 月
图 3 反射棱镜
( 3) 计算机及其他设备 全站仪与计算机利用 GPRS / CDMA / EDGE 数据链 进行连接,利用专用监测软件以实现自动化监测,其他 设备包括连接电缆、外接电源等,进行自动变形监测, 自动存储各个观测周期的监测数据,并自动对监测数 据进行处理,生成监测报表。
图 6 SmartMonitor 监测分析软件
3 施工监测
3. 1 自动化监测点布置 ( 1) 监测点布置 监测断面是受测处的隧道正交横断面,并在该断
面上布置有多个监测点。监测断面尽可能在测量范围 内的隧道段中均匀分布。本项目根据设计图纸,被监 测地铁隧道长约 500 m,每 10 m一个监测断面,设计 监测 28 个监测断面。每个断面布置 5 个监测点,包括 1 个拱顶沉降监测点、2 个道床沉降观测点和 2 个拱腰 沉降及水平位移监测点。自动化监测断面布置如图 7、图 8 所示。
图 5 SmartMonitor 监测软件
图 4 计算机及供电设备
( 4) SmartMonitor 监测软件 SmartMonitor 监测软件是与 TS30 全站仪配套的专 门用于监 测 的 变 形 测 量 软 件,并 将 监 测 数 据 存 储 在 SQLServer 数据库中,它可以按操作者预先设定的测量 时间和周期次数进行相应的监测。根据需要也可以添 加多个循环,如果是一台仪器测量,那么各个循环之间 的时间不能交叉,最好保证一个循环的开始时间在另 一个循环的结束时间之后。也可以实时显示图形、三 维坐标以及较差。 ( 5) 数据处理及分析 对测量数据进行处理分 析,采 用 的 是 SmartAnalyzer 监测分析软件以及自己编制的软件和武汉大学 测 绘 学 院 商 用 平 差 软 件“科 傻 ”系 统 。 在 数 据 处 理 时 对 测 量 数 据 进 行 人 工 干 预 ,删 除 粗 差 数 据 ,取 平 均 值 作为此时间 段 测 量 的 最 终 值,并 按 施 工 方 要 求 的 格 式 绘 制 位 移 曲 线 图 、制 作 监 测 报 表 ,及 时 汇 报 隧 道 的 变化情况。
第6 期
付丽丽等 . 自动化监测技术在地铁隧道中的应用
145图 7Leabharlann 基坑地铁隧道自动化监测断面布置示意图
图 8 自动化监测点位布置示意图及现场图
( 2) 基准点布置 测区共布置 4 个基准点,分别布置于远离变形区的大里程方向和小里程方向,各 2 个。
图 9 监测线路布置图
( 3) 全站仪安装位置 全站仪安装位置里程为 YK7 + 205,后视点里程为 YK7 + 316( 位于非变形区) ,如图 10 所示。
图 1 深圳地铁 4 号线平面图
2 自动化监测系统
自动化监测系统的主要仪器设备如表 1 所示。
图 2 徕卡 TS30 全站仪
( 2) 反射棱镜 在地铁隧道内,利用膨胀螺丝将棱镜固定在隧道
* 收稿日期: 2012—04—19 作者简介: 付丽丽( 1986—) ,女,助理工程师,主要从事精密工程测量与变形监测研究工作。
因此,在基坑开挖支护过程中,保护好正在运营的 地铁 4 号线是本基坑工程监测工作的重点。为保证地 铁的安全运行,必须在基坑开挖过程中对运行中的隧 道变形进行不间断监测。
因在地铁 运 行 期 间 绝 对 不 允 许 测 量 人 员 进 入 隧 道,为此,须采用远程监控管理、无人值守、连续、自动 的动态监测方法,以便随时提供监测数据信息,及时掌 握地铁隧道的变化情况,确保地铁的安全运行。
付丽丽* ,叶亚林,陈昊,程险峰,张斌
( 深圳市勘察研究院有限公司,广东 深圳 518026) 摘 要: 深圳市“卓越梅林基坑支护项目”工程变形监测方案,对受紧邻基坑施工扰动影响的运行中的地铁隧道变形 的自动化监测方法进行了分析,采用徕卡测量机器人 TS30 与 SmartMonitor 监测软件与 SmartAnalyzer 监测分析软件进 行全自动监测,可以 24 h无人值守,连续监测运行中的地铁隧道变形,且每次监测可在地铁运行间隔内迅速完成。监 测到的数据可以实时提供给施工方,以指导当前及下一步的施工,在工程应用中取得了良好的效果。 关键词: 自动化监测; 地铁隧道变形; 测量机器人
相关文档
最新文档