几何中的公理化方法
中学几何公理体系公理化方法与中学几何

中学几何公理体系_公理化方法与中学几何公理化方法与中学几何一、公理化方法的意义和作用所谓数学公理化方法,就是从尽可能少的无定义的原始概念(基本概念)和一组不证自明的命题(基本公理)出发,利用纯逻辑推理法则,把一r一J数学建立成为演绎系统的一种方法。
这里所说的基本概念,是不加定义的,是真正基本的,它不能用比其更简单、更原始的概念来确定它的含义,只能用描述的方法来确定其范围,如点、线、面等等。
公理是对基本概念间的相互关系和基本性质所做的一种I }}述和规定,不是随意可以选定的。
一个良好的公理系统,设置公理应当满足三个条件:相容性、独立性和完备性。
一般认为,公理化的历史发展,大致可分为三个阶段:公理化方法的产生、公理化方法的完善和公理化方法的形式化。
从其发展史去考察,公理化方法的作用,至少概括出如下三点:①这种方法具有分析、总结数学知识的作用。
②公理化方法把一门数学的基础分析得清清楚楚,这就有利于比较各门数学的实质性异同,并能促使和推动新理论的创立。
③数学公理化方法在科学方法论上有示范作用。
二、中学几何中的公理化方法中学几何教材大体上是按照下面的逻辑结构、采用演绎方式展开的基于学生的认识规律和接受能力等方面的考虑,各章节教材在具体展开时增添了便于理解教材的实例。
从总体上看,教材体现出公理化方法的基本思想,其结构框图如下:(见下页) 甚本元案和甚本圈形中学几何课本中提到:y,线、面或丁古干个点、线、面组合在一起,就成为几何图中学数学教材中的公理系统中学数学知识有一定的系统,原则上应按公理化思想方法展开.特别是平面几何、立体几何内容,应明确地列出公理组.在一般的中学数学教材中,大体_n是按照下面的逻辑结构,采用演绎方法展开的: 原始概念的描述) 定义的叙述公理的叙述命题定理--一推论公式各章节教材在具体展开时,为便于学生接受,一般都增添了便于理解教材内容的实例,采用如下的块状结构: 感性材料实例、背景设置公理、定义、概念引进并证明定理、公式从逻辑结构和具体内容看,总体上体现了公理化的基本思想,但就其公理系统而论,由于考虑到中学生接受能力和教材的精简,因而对公理独立性的要求不是那么严格,而且公理系统也不完备,有时还要借助于直观.例如,平面几何教材,从它的逻辑结构和具体内容看,基本上沿用了欧氏的不完善的公理系统.首先选定一批基本元素和一批关系(包括基本关系)作为基本概念,采用扩大公理体系,然后以此为出发点,用形式逻辑方法定.义有关概念,推导一系列定理,把有关的几何知识贯穿起来.其中公理之间是相容(不矛盾)的,但所选取的公理既过剩又不足,是不独立和不完备的.20世纪末我国的平面几何教材中共引进几何公理16条,等量公理5条,不等量公理6条。
几何公理体系

几何公理体系是指一组基本的几何公理,它们是几何学中最基本的规则和假设。
这些公理是几何学中所有其他定理和推论的基础,因此被认为是几何学的基础。
几何公理体系有多种形式,其中最著名的可能是欧几里得几何公理体系。
它包括五个基本的公理,以及一些其他的推论和定理。
这些公理是:
1.结合公理:给定直线上的两点,存在一条且仅存在一条通过这
两点的直线。
2.顺序公理:在同一条直线上,如果两点A和B被另一点C所分
隔,那么A、C两点间的距离小于C、B两点间的距离。
3.合同公理:给定两个三角形,如果它们的两边及夹角相等,则
这两个三角形是全等的。
4.平行公理:通过直线外的一点,有且仅有一条直线与已知直线
平行。
5.连续公理:所有给定的点都在同一直线上。
这些公理是几何学的基础,所有的其他几何定理和推论都可以从这些公理推导出来。
欧几里得几何公理体系是第一个系统地使用公理化方法的科学体系,对后来的数学和其他学科产生了深远的影响。
欧氏几何的公理化方法A

和结构和谐性确实符合数学美的要求。
xn + yn = zn xn + yn = zn xn + yn = zn xn + yn = zn
xn+yn=zn xn+yn=zn xn+yn=zn
xn+yn=zn xn+yn=zn xn+yn=zn
xn+yn=zn xn+yn=zn xn+yn=zn
xn+yn=zn xn+yn=zn xn+yn=zn
xn + yn = zn xn + yn = zn xn + yn = zn xn + yn = zn 公理化思想方法的作用
(1)这种方法具有分析、总结数学知识的作用。 (2)公理化方法有利于比较各门数学的实质性
xn+yn=zn xn+yn=zn xn+yn=zn
xn+yn=zn xn+yn=zn xn+yn=zn
xn + yn = zn xn + yn = zn xn + yn = zn xn + yn = zn
二、直观公理化时期——几何原本
《几何原本》 公元前3世纪, 1607年 前6卷译成中文 “ 此书有四不必:不必疑,不必揣,不必试, 不必改。有四不得:欲脱之不可得,欲驳之 不可得,欲减之不可得,欲前后更之不可得。 有三至三能:似至晦实至明,故能以其明明 他人之至晦;似至繁实至简,故能以其简简 他人之繁;似至难实至易,故能以其易易他 人之难。易生于简,简生于明,综其妙在明 而已”——徐光启
立几中的存在性命题与公理化方法

形 的 观 察分 析 , 定 推 理 思路 , 渐 找 出 确 逐 交 点 与交 线 , 命题 获 得证 明. 使
侧 1 如 果 两 条 平 行 线 中的 一 条 与 一 个 平 面 相 交 , 么 另 一 条 也 和 这 个 平 面 那 相交.
个公 理 , 中第 三 个 公 理 是 : 果 两 个 不 其 如
投 邮 :j v,3o 稿 箱sk i 6cm…………………… 一 x@ p . 1 数学教学通讯( 教师版 ) ……………………… … 试 堕 ! {
立几中的存在性命题 与公理化方法
李 银成
一 一 一 一 ~ ~ 一
,● r ,. ,
山 西 大 同大 学 大 同师 范分校
0 7 3 309
的证 明.
个 严 密 的系统 中 , 就是 几 何 中 的逻 辑 这
演 绎 系 统.这 里 运 用 的 方 法 就 是 公 理 化
方法 . 从原 始 概念 和不 加 证 明 的原 始命 即 题( 理、 设 ) 公 公 出发 . 用 严 格 的 逻 辑 推 应 理 , 出 尽 可 能 多 的命 题 , 之 成 为 一种 推 使
的 自主 探索 。 学 生理 解 数 学 概 念 、 论 使 结
以公 理 为 推 理 基 础 . 构 成 空 间几 何 体 对 的基 本 元 素 点 、 、 的位 置 关 系 与 性 质 线 面
按 “ 交 ” “ 行 ” 类 展 开 讨 论.其 中 相 与 平 分
形成 的过程 , 会蕴 含在其 中的思 想方法 , 体 追 寻数 学发 展 的历 史足 迹 . 终 把数 学 的 最
古希 腊 数 学 家 欧 几 里 得 在 他 的 巨 著 《 何原 本 》 几 里第 一 次给 出 了 公理 化 方 法 ,
《几何学》辅导纲要总结

《几何学》辅导纲要第一章 公理化方法与非欧几何主要内容:1.几何学公理化方法的构造和原理及其作用、意义 2.希尔伯特公理体系的结构3.公理系统的相容性、独立性和完备性 4.罗氏几何和黎曼几何的数学模型 重点掌握:1.公理法的三个基本问题是相容性问题、独立性问题、完备性问题。
2.公理法的结构是原始概念的列举;定义的叙述;公理的叙述;定理的叙述和证明. 3.三角形内角和等于180度与欧氏平行公理等价。
4.欧氏几何与非欧几何的本质区别为平行公设不同。
5.公理系统的完备性: 如果公理系统的所有模型都是同构的,则称这个公理系统是完备的,或称其具有完备性。
6.几何公理: 公理是作为几何基础而本身不加证明的命题,是建立一种理论体系的少数思想规定。
在几何演绎体系里,每条定理都要根据已知定理加以证明,而这些作为依据的定理又要根据另外的已知定理加以证明,如此步步追寻起来,过程是无止境的,必须适时而止。
因此,需要选取一些不加证明的原始命题作为证明一切定理的基础,这就是公理。
7.公理系统的相容性: 一个公理系统及其一切推论不含有矛盾命题时,称这个公理系统是相容的或无矛盾的。
8.欧几里得的第五公设:在一平面上如果直线l 与另外两条直线b a ,相交,有一侧的两个同侧内角βα,的和小于两直角,则直线a 与b 在同侧内角的和小于两直角的那一侧相交。
baαβl9.公理法的基本思想:若干个原始概念(包括元素和关系)、定义和公理一起叫做一个公理体系,构成了一种几何的基础。
全部元素的集合构成了这种几何的空间。
在这个公理体系的基础上,每个概念都必须给出定义,每个命题都必须给出证明,原始概念、定义、公理和定理按照逻辑关系有次序地排列而构成命题系统——逻辑结构,这就是公理法思想。
10.公理系统的独立性:如果一个公理系统中的某条公理不能由其余公理证明,即不时其余公理的推论,则称这条公理在公理系统中是独立的。
如果一个公理系统中的没一条工理都是独立的,则称这个公理系统是独立的。
几何学:第五公设——公理化方法

公理:1.等于同量(thing)的量彼此相等。 2.等量加等量,其和相等。 3.等量减等量,其差相等。 4.彼此能重合的物体(thing)是全等的。 5.整体大于部分。
公设:1.由任意一点到任意一点可作直线。 2.一条有限直线可以继续延长。 3.以任意点为心任意距离可以画圆。 4.凡直角都相等。 5.平面内一条直线与另外两条直线相交,若在某侧的
十部著作:《原本》,《数据》,《二次曲线》, 《辩伪术》,《论剖分》,《衍论》,《曲面轨迹》, 《光学》,《镜面反射》,《现象》。
二.《原本》:(Elements )
版本:888年希腊文抄本, 1294年拉丁文手抄本, 1350年阿拉伯文手抄本, 1480年最早拉丁文印刷本, 1570年英译本, 1607年、1857年、1990年中译本, 1655年Barrow拉丁文译本, 1925年T.LHeath英译本。
两个内角和小于二直角,则这二直线延长后在该侧相交。
• 第五公设——从欧几里得到兰伯特 用现代数学公理化方法的标准来衡量,《原本》的公理
体系存在严重缺陷。例如: 《原本》第1卷 命题16:在任意三角形中,若延长一边,
则外角大于任何一个内对角。
鉴于此,有人把第 5 公设也作为一个缺陷,试图用其他 公理,公设或定理证明它,以至将它取消。
设直线 a 不通过不在一条直线上的三点A,B,C ,当 a 与
AB 相交时;a 与 AC 或 BC 相交,二者必居其一。 引理:
1°任意 ABC的两个内角和小于 . 2°对于 ABC的B,DBC,能使(ABC )= (DBC), 且存在一个内角 (1/2)B.
欧几里得原本与公理化方法公设5的证明

【题目】欧几里得原本与公理化方法公设5的证明【正文】1. 欧几里得几何原本是古希腊数学家欧几里得所著的一部几何学著作,被认为是古代几何学的集大成之作。
其中,欧几里得的公设5引起了数学界的广泛讨论和争议。
2. 公设5,即平行公设,是欧几里得几何原本中的一个公设,它表述为“通过外一点,有且只有一条与给定直线平行的直线”。
这一公设在几何学中扮演着重要的角色,但在数学发展的过程中,曾经引发了一场反思和重构的运动。
3. 公理化方法的提出为数学领域带来了一场革命。
公理化方法的核心思想是将数学基础建立在一系列不需要证明的公设上,通过这些公设推导出更加复杂的数学定理。
公理化方法的出现,使得数学的逻辑性和严密性得到了极大的提升。
4. 那么,欧几里得的公设5是否真的需要成为基础的公设呢?这个问题一直困扰着数学家们。
在公设5的基础上,我们可以建立出完善的几何体系,但是也存在一些几何体系不满足公设5的情况。
那么,是否可以通过修改公设5或者找到替代的公设来构建更加完善和广泛适用的几何体系?5. 对于公设5的证明,数学家们做出了各种不同的尝试和探索。
有人试图使用反证法来证明公设5的必然性,也有人尝试构建基于非欧几里得几何的几何体系来证明公设5的可替代性。
这些努力都为我们提供了深刻的思考和启示。
6. 个人观点:在我看来,公设5的证明是数学领域一个非常有趣和挑战性的问题。
无论是从欧几里得的原本还是公理化方法的角度出发,都可以发现这个问题的深刻意义和价值所在。
我认为我们应该从不同角度和方法出发,去思考和探索这个问题,以寻求更加严密和丰富的几何体系。
7. 总结回顾:通过对欧几里得原本与公理化方法公设5的证明的讨论,我们不仅能够了解数学发展历程中的重要里程碑,还能够思考数学基础和逻辑推演的本质。
这个问题的探讨和解决,将为数学领域带来丰富的思想碰撞和新的发展方向。
【结尾】通过本文的探讨,相信读者对欧几里得原本与公理化方法公设5的证明有了更加深入和全面的了解。
几何公理和公理系统

几何公理和公理系统1.几何公理公理是作为几何基础而本身不加证明的命题,是建立一种理论体系的少数思想规定.在几何演绎体系里,每条定理都要根据已知定理加以证明,而这些作为根据的定理又要根据另外的已知定理加以证明,如此步步追寻起来,过程是无止境的,必须适时而止.因此,需要选取一些不加证明的原始命题作为证明一切定理的基础,这就是公理.数学区别于其他学科的主要特征之一是它的推理论证的演绎性质.为了建立某种理论或得出某个结论,天文学家必须借助观察,化学家必须借助于实验,但数学却不行.三角形内角之和等于180°不是通过测量得出和证明的,它的真实性是经事先假定为真实的命题,按逻辑的原则推证出来的.几何的其他命题也是如此.公理是怎样选定的呢?有的是从历史上延续下来的,它们是人们经过反复实践从客观世界总结出来的规律,是人们公认的,如“两点确定惟一直线”这条公理;有的就是为了建立某种理论体系的需要,作为出发点而被规定下来的,它们不甚直观显然,甚至暂时不被人们接受,如罗巴切夫斯基几何中的平行公理.公理总是直接或间接地来源于实践,绝非科学家随心所欲的空想.譬如罗氏平行公理的出现,它首先是以欧氏几何的某些事实(概念、理论、方法)作为基础,受试证欧氏第五公设的启示;其次是受科学认识论的支配,克服认为公理是先验的唯心主义思想,承认公理的正确性必须靠实践来验证;再次是生产力和科学技术的不断革命所决定的,这些都为罗氏平行公理的出现做了必要的准备.这就是为什么到19世纪才产生罗氏几何的原因.理论的产生以实践为基础,但随着实践的发展和水平的提高,它也往往走在实践的前头,“虚数”和“非欧几何”等等都是这样.判断一个理论或公理是否正确,不是依据主观上觉得如何而定,而是依据客观上社会实践的结果如何而定.只有实践才是检验真理的惟一标准.2.几何公理系统用公理化方法建立一门几何学演绎体系时,最根本的是确立该几何学的公理体系.作为一门集合学基础的原始概念和全部公理称该几何学的公理系统,满足公理系统的几何图形的集合称为几何空间.例1欧几里得几何学中的几种不同的公理系统.(1)希尔伯特(D.Hilbert,公元1862年~1943年,德国人)给出的公理系统.希尔伯特公理系统纲要:几何基础五组公理计20条,其中连续公理组和平行公理组与希尔伯特给出的顺序不同,根据需要这里把他们的顺序作了对调.其中平行公理是:欧氏平行公理平面上通过已知直线外一点最多有一条直线与已知直线不相交.(2)欧几里得《几何原本》和学几何中的公理系统.(3)别列标金著《初等几何教程》(上卷马忠林译,下卷赵慈庚等译,高等教育出版社)中的公理系统.(4)科士青著《几何学基础》(苏步青译,商务印书馆)中的公理系统.该公理系统以运动公理组代替希尔伯特公理系统中的合同公理组,原始概念采用“运动”,用运动关系定义“合同”关系.(5)伯克霍夫(G.Birkhoff,1884年~1944年,美国人)在1932年提出以“距离”和“角度”作为原始概念的公理系统.其欧氏平面几何的公理系统大意如下:原始元素为“点”“直线”;原始关系为“距离”:两点A、B的距离是一个非负的实数,记做d(A,B);“角度”:三个不同的有序点A、O、B的角度是一个实数,记做,其值域为≤≤公理1(刻度尺公理)任意直线上的点与实数一一对应,任意两点A、B所对应的数、之差的绝对值称为A、B两点间的距离,即d(A,B)=公理2通过两已知点有且只有一条直线公理3(量角器公理)通过一点O的射线l、m…与实数α一一对应,≤α≤.若异于O的点A、B,分别在l、m上,则l、m 所对应的数、之差就是,即变动.公理4(相似公理)若与,对于某一常数k>0,有,,且夹角,则必有,,.这个公理系统不再需要顺序、合同、连续、平行等公理.相似形的存在是与平行公理等价的.例2罗巴切夫斯基(1793年~1856年,俄国人)几何的公理系统.罗氏几何是非欧几何之一,产生于19世纪30年代,主要是围绕着对欧几里得第五公设的研究和证明中逐步形成的.我们在下一章及第五章里将详细地叙述罗氏几何的基本内容.这里仅给出罗氏平面几何的公理系统,其纲要如下罗巴切夫斯基平行公理在平面上,过直线外一点至少有两条直线与已知直线不相交.以上纲要表与欧氏平面几何的希尔伯特公理系统纲要表相比较,绝对公理系统部分完全相同,所演绎出来的全部内容为两种几何所共有,称为绝对几何,所差的是平行公理不同.在罗氏几何产生后不久,又产生了一另一种非欧几何,即黎曼(B.Riemann,1826年~1866年,德国人)几何.它不是完全建立在绝对公理系统之上的,需对合同公理等加以改造,其平行公理是:黎曼平行公理在平面上,过直线外一点不存在直线与已知直线不相交(即平面上任何两条直线都相交).由于欧氏、罗氏、黎氏三条平行公理的差异很大,根据它们所推出的几何命题也有很大的差异,例如欧氏平面上,三角形内角之和等于180°.罗氏平面上,三角形内角之和小于180°.黎氏平面上,三角形内角之和大于180°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何中的公理化方法
定义:所谓公理化方法,就是指从尽可能少的原始概念和不加证明的原始命题(即公理、公设)出发,按照逻辑规则推导出其他命题,建立起一个演绎系统的方法。
公理化方法的意义:公理化方法能系统的总结数学知识、清楚地揭示数学的理论基础,有利于比较各个数学分支的本质异同,促进新数学理论的建立和发展。
公理是对诸基本概念相互关系的规定,这些规定必须是必要的而且是合理的.因此,一个严格完善的公理系统,对于公理的选取和设置,必须具备如下三个基本要求:
相容性:这一要求是指在一个公理系统中,不允许同时能证明某一定理及其否定理.反之,如果能从该公理系统中导出命题A和否命题非A(记作-A),从A与-A并存就说明出现了矛盾,而矛盾的出现归根到底是由于公理系统本身存在着矛盾的认识,这是思维规律所不容许的.因此,公理系统的无矛盾性要求是一个基本要求,任何学科,理论体系都必须满足这个要求.
独立性;这一要求是指在一个公理系统中的每一条公理都独立存在,不允许有一条公理能用其它公理把它推导出来,同时使公理的数目减少到最低限度.
完备性:这就是要求确保从公理系统中能推出所研究的数学分支的全部命题,也就是说,必要的公理不能减少,否则这个数学分支的许多真实命题将得不到理论的证明或者造成一些命题的证明没有充足的理由.
从理论上讲,一个公理系统的上述三条要求是必要的,同时也是合理的.至于某个所讨论的公理系统是否满足或能否满足上述要求,甚至能否在理论上证明满足上述要求的公理系统确实存在等,则是另外一回事了.应该指出的是,对于一个较复杂的公理体系来说,要逐一验证这三条要求相当困难,甚至至今不能彻底实现。