第七章 数学中的公理化方法
《数学方法论》数学中的公理化方法与结构方法

第四章数学中的公理化方法与结构方法公理化方法在近代数学的发展中起着基本的作用,它的思想对各门现代数学理论的系统形成有着深刻的影响,而数学结构方法则是全面整理和分析数学的一种十分合理的方法,其观点曾导致一场几乎席卷世界的数学教学改革运动,即“新数学”运动。
两种方法均是用来构建数学理论体系的,一个是局部,一个是整体。
本章将概括介绍这两种思想方法,从中领略数学理论构建的一般思想方法。
§4.1公理化方法的历史概述众所周知,在长达一千多年的光辉灿烂的希腊文化中,哲学、逻辑学、几何学得到了很大的发展,特别是哲学家和逻辑学家亚里斯多德,总结了前人所发现和创立的逻辑知识,以完全三段论作为出发点,用演绎的方法推导出其余十九个不同格式的所有三段论,创立了人类历史上第一个公理化方法,即逻辑公理化方法,从而为数学公理化方法创造了条件。
数学家欧几里德以亚里斯多德演绎逻辑为工具,总结了人类长期以来所积累的大量几何知识,于公元前300年代完成了他的名著《几何原本》,《几何原本》是演绎逻辑与几何相结合的产物,因此,它的出现使演绎逻辑第一次成功地应用于数学。
反过来也推动了形式逻辑的大发展。
欧几里德《几何原本》是有史以来用公理化思想方法建立起来的第一门演绎数学,在数学史上被树为划时代的里程碑。
而且成为以后很长时期严格证明的典范,人们还把严密的逻辑推理和完善的逻辑结构看成是古典几何成熟的标志。
当然,现在看来由于受当时整个科学水平的限制,这种公理化方法还是很原始的。
所以后来称它为公理化方法的初期阶段。
在公理化方法的初期阶段,它的“严格性”也只是相对当时的情况而言的。
譬如,有些基本概念的定义不够妥当,有些证明只不过是借助于直观等等。
特别是第五公设的陈述从字面上看很不自明,所以人们从两个方面对它产生了怀疑:第一,第五公设是否正确地反映了空间的性质;其二、它本身很可能是一个定理。
对于这两个问题,人们从以下几个方面进行了探讨:一是它能否从其他公理推出;二是换一个与它等价而本身却又是很自明的公设;三是换一个与它相反的公设。
中学几何公理体系公理化方法与中学几何

中学几何公理体系_公理化方法与中学几何公理化方法与中学几何一、公理化方法的意义和作用所谓数学公理化方法,就是从尽可能少的无定义的原始概念(基本概念)和一组不证自明的命题(基本公理)出发,利用纯逻辑推理法则,把一r一J数学建立成为演绎系统的一种方法。
这里所说的基本概念,是不加定义的,是真正基本的,它不能用比其更简单、更原始的概念来确定它的含义,只能用描述的方法来确定其范围,如点、线、面等等。
公理是对基本概念间的相互关系和基本性质所做的一种I }}述和规定,不是随意可以选定的。
一个良好的公理系统,设置公理应当满足三个条件:相容性、独立性和完备性。
一般认为,公理化的历史发展,大致可分为三个阶段:公理化方法的产生、公理化方法的完善和公理化方法的形式化。
从其发展史去考察,公理化方法的作用,至少概括出如下三点:①这种方法具有分析、总结数学知识的作用。
②公理化方法把一门数学的基础分析得清清楚楚,这就有利于比较各门数学的实质性异同,并能促使和推动新理论的创立。
③数学公理化方法在科学方法论上有示范作用。
二、中学几何中的公理化方法中学几何教材大体上是按照下面的逻辑结构、采用演绎方式展开的基于学生的认识规律和接受能力等方面的考虑,各章节教材在具体展开时增添了便于理解教材的实例。
从总体上看,教材体现出公理化方法的基本思想,其结构框图如下:(见下页) 甚本元案和甚本圈形中学几何课本中提到:y,线、面或丁古干个点、线、面组合在一起,就成为几何图中学数学教材中的公理系统中学数学知识有一定的系统,原则上应按公理化思想方法展开.特别是平面几何、立体几何内容,应明确地列出公理组.在一般的中学数学教材中,大体_n是按照下面的逻辑结构,采用演绎方法展开的: 原始概念的描述) 定义的叙述公理的叙述命题定理--一推论公式各章节教材在具体展开时,为便于学生接受,一般都增添了便于理解教材内容的实例,采用如下的块状结构: 感性材料实例、背景设置公理、定义、概念引进并证明定理、公式从逻辑结构和具体内容看,总体上体现了公理化的基本思想,但就其公理系统而论,由于考虑到中学生接受能力和教材的精简,因而对公理独立性的要求不是那么严格,而且公理系统也不完备,有时还要借助于直观.例如,平面几何教材,从它的逻辑结构和具体内容看,基本上沿用了欧氏的不完善的公理系统.首先选定一批基本元素和一批关系(包括基本关系)作为基本概念,采用扩大公理体系,然后以此为出发点,用形式逻辑方法定.义有关概念,推导一系列定理,把有关的几何知识贯穿起来.其中公理之间是相容(不矛盾)的,但所选取的公理既过剩又不足,是不独立和不完备的.20世纪末我国的平面几何教材中共引进几何公理16条,等量公理5条,不等量公理6条。
公理化方法

公理化方法
公理化方法简介如下:
公理化方法公理化思想任何真正的科学都始于原理,以它们为基础,并由之而导出一切结果来随着假设演绎模型法的进一步发展,经济学日益走向公理化方法。
公理化是一种数学方法。
最早出现在二千多年前的欧几里德几何学中,当时认为“公理’(如两点之问可连一直线)是一种不需要证明的自明之理,而其他所谓“定理”(如三对应边相等的陌个三角形垒等)则是需要由公理出发来证明的,18世纪德国哲学家康德认为,欧几里德几何的公理是人们生来就有的先验知识,19世纪末,德国数学家希尔伯特在他的几何基础研究中系统地挺出r数学的公理化方法。
浅谈数学公理化方法

方法 。首 先 , 作为探索新 知识 的手段 , 常从一组假 设的公理 出发 , 由逻辑推 理建立新 的体 系 , 能否得 出新 的结 果 , 看 若 有新结果 出现 , 则最终经 实践 检验而发展 数学 , 至建立新 甚 的学科 , 从欧 氏几何 到非 欧氏几何 的发展 , 便是一 个典型 的 例子 。抽象代数 中的全部开拓工作 , 都是依靠公理化方法实
4 公理 化 方法 的作 用
从现代数学和 自然科 学与技术 的发 展来看 ,公理 化方 法 有 着 重要 的作 用 。 第 一,公理化方 法是整 理数学知 识为一个严 格逻辑 体 系、 建立数学逻辑基础的方法 。首先 , 作为整理 材料 的作用 , 《 几何原本》 中的公 理 、 皮亚诺 自然数公 理 、0世纪 初概率公 2 理的建立 、 近代 数学 中群论 的公理 系统 的建立 , 都充 分显示 了公 理方 法整理数学知识 的功能 。用公理方法建构 的体系 , 条理 清楚 、 简明扼要 , 命题之 间有机联系 , 便于流传 与推广 。 其次 ,形式化公理方法 在数理逻辑 的一 个基本领域——元 数学 ( 即证 明论 ) 中得 到 充分 的研 究 与 发 展 。 目前 , 是研 究 它 数学 基 础 问题 的一 个 十分 重 要 和 广 泛 使 用 的工 具 。再 有 , 通 过形 式化公理方法建立 的形 式系统 ,对 于计 算机科学有重 要 意义 ,因为它提供 的形式语 言和算法构成 了计算机科学 的必 要 前 提 和 逻 辑 基 础 。 第二 , 数学公理 化方法是探 索新知 识 , 发展数学 的一种
现的 。
3公 理化 方 法的基 本 内容
为了把某一 门数 学表达为演绎 系统 ,需要选择 一组基 本概念和公 理作 为出发点 , 因此 , 如何 选择一组基本 概念和 公 理便 是运 用公 理 化 方 法 的 关 键 所 在 ,这 也 是 公 理 化 方 法
公理化思想

k+ 1
( k +1) x
2
+1
- ( k +1) xk +1(x > 0) ,则 hk ( x) k (k 1) x k k k 1 x k 1 k k 1 x k 1 (x 1)
( x) 0 , hk ( x) 在 (0,1) 上递减; 当 x > 1 , hk ( x) 0 , hk ( x) 在 (1, ) 所以当 0 < x < 1 , hk
是等差数列,设其公差为 d 。
所以数列 {an } 是等差数列.
评析:证明 {an } 为等差数列的方法:(1)用定义证明: an1 an d (d 为常数) ; (2)用等差中项证明: 2an1 an an2 ;( 3)通项法: an 为 n 的一次函数; (4)前 n 项和法: Sn An2 Bn
f ( x) 有三个不同零点的充分条件。因此 a 2 3b 0 是 f ( x) 有三个不同零点的必要而不充分条件。
评析:1.证明不等式问题可通过作差或作商构造函数,然后用导数证明. 2.求参数范围问题的常用方法:(1)分离变量;(2)运用最值. 3.方程根的问题:可化为研究相应函数的图象,而图象又归结为极值点和单调区间的讨论.
2 得 3x 8 x 4 0 ,解得 x 2 或 x
2 2 .于是 , 2 时, f ( x) 递增, 2, 时, 3 3
2 32 2 , f ( x) 递减, f ( x ) 时, 递增。 当 存在 x1 4, 2 , f ( 2) c 0, f ( ) c 0 时, 3 27 3
《数学公理化方法》PPT课件

About Elements
������ The Elements have been studied for over 20 centuries in many languages starting, in its original Greek form, then in Arabic, Latin, and then to modern languages of the present time.
《几何原本》的问世,在数学的发 展史上树立了一座不朽的丰碑,对 数学乃至科学的发展起了巨大的推 动作用。
它也成为公认的、历史上第一部巨 大的科学典籍。
它奠定了数学这门科学必须依照逻 辑要求论述其规律的基础。
它基本上完善了初等几何的体系, 这正如黑格尔所说:“初等几何 就欧几里得所遗留给我们的内容 而言,已经可以看作相当完备了, 不可能有更多的进展”。
数学上的所谓公理,是数学需要 用作自己出发点的少数思想上的 规定
格斯
——恩
������ 公理化方法能系统地总结数 学知识、清楚地揭示数学的理论 基础,有利于比较各个数学分支 的本质异同,促进新数学理论的 建立和发展。
现代科学发展的基本特点之一,就 是科学理论的数学化,而公理化是 科学理论成熟和数学化的ห้องสมุดไป่ตู้个主要 特征。
它所体现的演绎美对数学美学思想 的发展也起到了不可低估的作用, 它让“世界第一次目睹了一个逻辑 体系的奇迹,这个逻辑体系如此精 密地一步一步推进……,推理的这 种可赞叹的胜利,使人类理智获得 了为取得以后的成就所必须的信心。 (爱因斯坦语)。
几何的辉煌之处就在于只用很少的 公理而得到如此之多的结果。
亚里士多德首创造公理化思想,提 出了逻辑学的“三段论公理体系”。
公理化方法(精)

现代公理法的意义与作用
公理化方法是加工、整理知识,建立科学理论的工 具,公理系统的形成是数学分支发展的新起点。 公理化方法有助于发现新的数学成果,可以探索各 个数学分支的逻辑结构,发现新问题,促进和推动 新理论的创立和发展。 公理化方法是建立某些抽象学科的基础。 公理化方法对各门自然科学的表述具有积极的借鉴 作用。 公理化方法对于学生理解和掌握数学知识、数学方 法及培养学生逻辑思维能力具有重要作用。
进一步的工作
集合论悖论的出现,又一次引起了数学基础的危机。 希尔伯特的元数学(证明论):(1)证明古典数学 的每一个分支都可以公理化;(2)证明每一个这样 的系统都是完备的、相容的;(3)证明每一个这样 的系统所应用的模型都是同构的;(4)寻找这样一 种方法,借助于它,可以在有限步骤内判断任一命 题的可证明性。 元数学理论的研究使公理化方法进一步精确化,把 公理化方法发展到一个新的阶段。形式化公理法不 仅推动了数学基础的研究,而且为计算机的广泛应 用开辟了广泛的前景。
公理化方法的思想源流
历史上第一个给出公理系统的学者是亚里士多德,他 在其《工具书》中,总结了古代积累起来的逻辑知识, 并以数学及其它学科为例,把完全三段论作为公理, 由此推出了别的所有三段论。 第一个在“知其然”的同时提出“知其所以然”的学 者是古希腊哲学家和数学家泰勒斯,他第一个证明了 下面定理(1)一个圆被它的一个直径所平分;(2)三 角形内角和等于两直角之和;(3)等腰三角形的两底 角相等;(4)半圆上的圆周角是直角;(5)对顶角 相等;(6)全等三角形的ASA定理。所以泰勒斯被称 为论证之父。
自然数
在N上定义加法:f:N×N→N (n,m) →n+m 满足:(1)n+1 = n ( n m ) m (2)n+ = 在N上定义乘法:f:N×N→N (n,m) →n·m 满足:(1)n·1=n (2)n· m =n·m+n
数学中的公理化方法(下)

數學中的公理化方法(下)吳開朗四、數學公理系統的美學標準美國數學家F.S.梅里特在其所著《工程中的現代數學方法》一書中曾經說過:“每一模型都是由一組公理定義的,···公理自身必須無矛盾且相互獨立”[11]。
所謂一組公理,即是一個公理系統。
關於公理系統的無矛盾性,是指借助於演算不可能在一個公理系統中推出兩個相互否定的命題。
關於公理系統的獨立性,是指在該系統中任何一條公理都不可能作為其餘各公理的邏輯推論。
如果一個公理系統具備無矛盾性(即相容性)和獨立性,那麼,這個公理系統(或者說這個理論體系)就是優美的。
因此,相容性和獨立性也就是公理系統的美學標準。
獨聯體維林金等編著的《中學數學現代基礎》一書中曾指出:“可以由給定的公理系統導出的全部不同的命題,一般說來有無窮多個。
因此,為了證明給定的公理系統的相容性,要想由這一公理系統作出全部可能的推論,並且指出其中沒有相互矛盾的命題,這是不可能的。
為了解決這個難題,曾經創造一種特殊的方法,它的名稱叫做模型法”。
[12]所謂模型法,即是欲證明某一新數學理論的無矛盾性(一致性),或者欲證明某一新數學理論與某一已知的(舊)數學理論的相容性(相對一致性),可以設法為它在古典數學中構造一個模型,並且進而證明這個新數學理論的公理系統在該模型中都能夠得以實現,這樣,即可以把這個新理論的相容性,化歸為新理論與建造它的模型(新理論的模型)時所需要的古典數學理論的相容性(相對一致性)。
因此,這種模型法,又可稱之為化歸法。
例如,我們利用龐卡萊(Poincar´e)模型和球面模型,可以把非歐幾何的相容性,化歸為歐氏幾何的相容性,再利用算術模型,又可進一步把歐氏幾何的相容性,化歸為算術理論的相容性。
[13]然而,對於一個新理論而言,並不需要如此逐步化歸,一般地說,只要是在古典數學中,能夠為其構造一個數學模型已足,因為古典數學已經過億萬群眾長期的科學實踐檢驗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
希尔伯特对元数学的研究,使公理 化方法进一步精确化:
• 把数学理论中的定理及数学中使用的逻辑 规则排成演绎的体系,并使用数学符号和 逻辑符号把数学命题变成公式,这样,全 部数学命题便变成了公式的集合,公理化 的数学理论便变成了演绎的形式系统。元 数学思想的提出,标志着数学的研究达到 了新的、更高的水平,数学的研究对象已 不是具体的、特殊的对象,而是抽象的数 学结构。从而,公理化被推向一个新阶段 即纯形式化阶段。
• • • • • • • • • (1)各与同一个第三个量相等的量必相等。 (2)相等的量加上相等的量仍为相等的量。 (3)相等的量减去相等的量仍为相等的量。 (4)不等的量加上相等的量获不相等的量。 (5)相等的量的两倍仍为相等的量。 (6)相等的量的一半仍为相等的量。 (7)能互相重合的是一定是相等的量。 (8)整体大于部分。 (9)过任意两点只能引一条直线。
• 直到19世纪,俄国数学家罗巴切夫斯基吸 取了前人两千多年来在证明第五公设中的 失败教训,认识到第五公设与其他几何公 理是互相独立的,除掉第五公设成立的欧 氏几何外,还可以有第五公设不成立的新 几何系统存在。于是他在剔除第五公设而 保留欧氏几何其余公理的前提下,引进了 一个与第五公设相反的公理:“过平面上 一已知直线外的一点至少可引两条直线与 该已知直线平行”,由此构成了一个新的 几何系统与欧氏几何系统相并列。
1.相容性
• 公理的相容性也称无矛盾性或和谐性,是 指同一公理系统中的公理,不能自相矛盾; 由这些公理推出的一切结果,也不能有丝 毫矛盾。即不允许既能证明某定理成立, 又能证明它的反面也成立的情况存在。
2.独立性
• 公理的独立性,是指一个公理系统中的所 有公理,不能互相推出。这就是要求该系 统中公理的数目减少到最低限度,不允许 公理集合中出现多余的公理,这也是对数 学的“简单美”的一种追求。
§2 欧几里得几何公理系统简介
• 欧几里得的《几何原本》是公理化方法的 雏形。它的主要内容包括以下几个方面。
一、23条定义
• • • • (1)点是没有部分的。 (2)线是有长度而没有宽度的。 (3)线的界是点。 (4)直线是这样的线,它对于它的任何点 来说,都是同样的放置着的。 • (5)面是只有长度和宽度的。
• 在欧氏《几何原本》的公理系统中,概念 直接反映着数学实体的性质,而且那些概 念、定义、公理的表述以及定理的论证往 往受到直觉观的束缚。因而,欧氏公理系 统的公理化可称为“实体公理化”。
然而在希氏《几何学基础》中,
• 不仅在公理的表述或定理的论证上已摆脱 了空间观念的直觉成分,而且还为几何对 象及其关系进行更高一级的抽象提供了基 础。
四、467条定理
• 欧几里得从上述公设和定理出发,运用演 绎方法,将当时所知的几何知识全部推导 出来,共有467条几何命题。
但是,欧几里得几何公理系统是不够完 善的,比如:
• (1)有些定义是不自足的。 • 在给某些概念下定义时,使用了一些未加 定义的概念。 • (2)有些定义是多余的。 • 缺少它们,并不影响后面的论证。 • (3)有些定理的证明是不严格的。
§1 公理化方法概述
• 数学公理化方法,是数学发展到一定阶段 的产物.它在近代数学发展中曾起过巨大 的作用,而且对于现代数学的发展也有着 极其深刻的影响.即使在数学教学中,公 理化方法也是一个十分重要的方法.
一、公理化方法的含义
• 公理化方法是从尽可能少的基本概念和基 本公理出发,应用严格的逻辑推理,使一 门数学建成为演绎系统的一种方法.在理 论形式上,这些基本概念和基本公理,是 逻辑推理的前提,是数学需要作为自己出 发点少数思想上的规定.
三、公理化方法的作用
• 数学公理化方法在整理数学知识,促使新 理论的创立,以及对整个科学理论的表述 都有着重要的作用。
1.公理化方法是整理分析、加工总结数学经 验资料,建立科学理论体系的基本工具。
• 利用公理化方法,可以把零散的数学知识, 用逻辑的链条串连起来,使之形成完整的 有机整体。这样,不但能使人们容易掌握, 而且也便于应用。
2.完整阶段——由罗巴切夫斯基的非欧几何 到希尔伯特《几何基础》的问世。 • 欧几里得几何公理系统的意义十分巨大, 影响极为深远,但它是不完善的,特别是 第五公设问题,当时大多数人认为它很像 一条定理,企图用《几何原本》中其余的 公设和公理加以证明,但在证明中所用的 论据,要么是不知不觉地利用一直观明显 性,要么是利用了一个与第五公设等价的 命题。因此,所有这些证明实质是无效的。
二、5条公设
• (1)从一点到另一点必可引直线。 • (2)任一直线均可无限地延长。 • (3)以任一点为中心,均可以任意长的半 径画圆周。 • (4)所有的直角都是相等的。 • (5)若两直线与第三条直线相交,其一侧 的两个内角之和小于两直角时,则把这两 条直线向该侧充分地延长后一定相交。
三、9条公理
由公理化方法把一个数学分支建成为演绎体 系,关键是引进基本概念,设置基本公理.
• 基本概念是一些不需定义的或隐约地受到公理制 约的原始概念,它们必须是真正基本的,无法用 更原始、更简单的概念去定义的概念,必须是对 数学实体的高度纯化的抽象。 • 基本公理是无条件的、相互制约的规定,是作为 对各个基本概念的相互关系和基本性质的阐述和 规定,是一些不证自明的命题。基本公理不是可 以随意选定的,一个良好的公理系统,所设置的 公理应当满足下列三项基本要求:
诚然,公理化方法具有重大作用,但也不能将它绝
对化,必须辩证地看到它的不足之处。
• 公理化方法如果不与实验方法相结合,则 可能陷入错误;如果不与认识论的科学方 法相结合,则也不会更好地发现问题;公 理系统的相容性、独立性和完备性的要求, 不仅在理论上难以全部满足,而且对于一 些新兴的数学分支或与生产实际关系密切 的科学的发展,反而是一种障碍。而且, 用公理化方法建立起来的理论体系,最终 还需受实践的检验,以判定其真伪。
• 因为一个公理系统如果违反了相容性的要求,那 么以这个系统中的公理作为逻辑推理的大前提, 所推出的结果必然矛盾百出,造成逻辑上的混乱, 因而这样的公理系统难以帮助人们认识现实世界 的空间形式和数量关系,是毫无实际价值的。独 立性和完备性是第二位的要求,对于一个严谨的 公理系统,这两个要求也应得到满足,但是许多 比较复杂的数学分支,要它的公理系统都能满足 上述三项基本要求,则往往比较困难。 • 公理化方法的意义和作用,与其自身的不断发展 密切相关。
• 非欧几何的创立,大大提高了公理化方法 的信誉,接着便有许多数学家致力于公理 化方法的研究。如德国数学家康托尔与戴 德金不约而同地拟成了连续性公理、德国 数学家巴许拟成了顺序公理。在这个基础 上,希尔伯特于1899年发表了《几何学基 础》一书,改造了欧氏几何系统,完善了 几何学的公理化方法。
3.形式化阶段——集合悖论出现后,希尔伯特在 其形式化研究方法,特别是元数学(证明论)中, 将公理化方法推向的一个新阶段。
在证明过程中,常常依赖于图形的直观。
• 例如《几何原本》中一个命题的证明:
• 命题 三角形的外角大于每一个不相邻的内 角。
2.公理化方法有利于比较数学各个分支的实 质性异同,促进数学探索与基础研究,推动 数学新理论的产生。 • 从前面所述,可以看出,非欧几何就是在 研究和使用公理化方法的过程中产生的。
3.数学公理化方法在科学方法论上, 对各门自然科学起着示范作用。
• 由于数学公理化方法表述数学理论的简洁 性、条理性和结构的和谐性,为其他科学 理论的表述起到了示范作用。于是其他科 学纷纷效仿数学公理化的模式,出现了各 种理论的公理化系统,如理论力学公理化、 相对论公理化及伦理学公理化等等。
于是,
• 只要满足公理系统中各个公理的要求,那 么所涉及的对象就可以是任何事物,并且 在公理中表述事物或对象间的关系时,其 具体意义也可以是任意的。所以,在《几 何学基础》问世以后,公理化方法不仅进 入了数学的其他各个分支,而且它本身也 被推向了形式化的阶段。
• 后来希尔伯特将将某种数学理论(如自然 数理论、几何理论等)作为一个整体加以 研究,提出了希尔伯特规则,即:证明古 典数学的每个分支都可以公理化;证明每 个这样的系统都是完备的; 证明每个这样 的系统都是相容的;证明每个这样的系统 所相应的模型都是同构的;寻找一种可以 在有限步骤内判定任一命题的可证明性的 方法。希尔伯特为具体实施这个规划而创 立了证明论即元数学理论。
• 希腊著名数学家欧几里得在泰勒斯、毕达哥拉斯、 柏拉图等学派工作的基础上,运用亚里士多德提 供的逻辑方法,写出了数学史上的重要著作《几 何原本》。这是古代数学公理化方法的一个光辉 成就。 • 《几何原本》的问世,标志着公理化方法的诞生, 《几何原本》的贡献倒不在于发现了几条新定理, 而主要在于它把原先零乱的、互不相关的几何知 识,按公理系统的方式进行妥切安排,使得反映 几何事实的公理和定理都能与论证联系起来,组 成一个有条不紊的有机整体。
• (6)面的界是线。 • (7)平面是这样的面,它对于它的任何直 线来说,都是同样的放置着的。 • 接着15条是关于角、平角、直角和垂线、 钝角、锐角;圆、圆周和中心、直径、半 圆、直线形、三角形、四边形、多边形、 等边三角形、等腰三角形、不等边三角形、 直角三角形、钝角三角形、锐角三角形、 正方形、菱形、梯形的定义。 • (23)平行线是在同一平面上而且向两侧 延长总不相交的直线。
二、公理化方法的产生和发展
• 综观公理化方法发展的历史,大致可以分 为三个阶段:
1.产生阶段——由亚里士多德的完全三段论 到欧几里得《几何原本》的问世。
• 公元前三世纪,希腊哲学家亚里士多德在 其逻辑著作《工具论》一书中,总结了古 代积累起来的逻辑知识,以数学及其他演 绎的学科为例,把完全三段论作为公理, 由此推出其他的三段论。因此,亚里士多 德是历史上第一个正式给出公理系统的作 者。
完备性
• 公理的完备性,是要求对一个公理系统中 所有基本概念的性质,都作出明确的规定, 使得这个系统中的全部命题都能毫无例外 地在本系统中被证明,而在推理证明过程 中,无需再用到直觉,因此,必要的公理 不能省略。否则,将有某些真实命题得不 到理论的证明或在证明过程中理由不充分。