数学建模微分方程模型
数学建模实验二:微分方程模型Matlab求解与分析

实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
微分方程的经典模型

模型分析
问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重 (记为W)关于时间t的函数。如果我们把体重W看作是时间t的连续可微函数, 我们就能找到一个含有的
dW 微分方程。 dt
模型假设
W0 ; 1.W ( t ) 表示 t 时刻某人的体重,并设一天开始时人的体重为 2. W ( t ) 关于 t 连续而且充分光滑;
模型建立
游击作战模型的形式:
,
(t) f (x, y) x (t) g(x, y) y x(0) x , y(0) y 0 0
, 由假设2、3,甲乙双方的战斗减员率分别为
f(x ,y ) c x y
g (x ,y )dxy
结合以上两表达式,并代入 c、d 的值,可得游击作战的数学模型
或被歼灭)的一方为败。因此,如果 K K0 ,则乙的兵力减少到
甲方兵力降为“零”,从而乙方获胜。同理可知, K0
K0 胜。而当
a
时
时,甲方获
时,双方战平。
2 2 bx ay 0 甲方获胜的充要条件为 0 0
代入a 、b 的表达式,进一步可得甲方获胜的充要条件为
2 2 r p x r p y x x 0 y y 0
模型建立 根据假设得到一般的战争模型
x ( t) f( x ,y ) x u ( t) y ( t) g ( x ,y ) y v ( t) x ( 0 )x , y ( 0 )y 0 0
正规作战模型
模型假设
1.不考虑增援,并忽略非战斗减员;
得:
其解为:
i(t) i0e
k0t
模型分析与解释
这个结果与传染病初期比较吻合,但它表明病人人数将按指数规律 无限增加,显然与实际不符
数学建模-微分方程模型-饮酒驾车问题

和 x0 ,将体重 70kg 的某人在快速喝下 2 瓶啤酒之后一段时间内他血液中酒精含量的
测量值进行处理后,得到附录 1 所示的 y0 0 时的一组数据,并采用非线性最小二乘法 拟合算法对系数进行求解,得出参数如下。 x0 5193
=2.00796
=0.1855
同时可以看到,每瓶啤酒含酒精量为 2596.5mg。 所以,得出的血液中酒精含量关于时间的函数如下。
0.1855 t e 2.00756t ) 2860.78604(e y (t ) 0.1855( t 6) 2860.8028e 2.00756(t 6) 3800.7595e
0t 6 6 t 12
利用 matlab 对以上模型进行求解。 图 3 大李血液中酒精含量随时间变化图像
y (t ) ( y0 +5721.57208)e 0.1855t 5721.57208e 2.00796t
拟合效果如图。 图 1 函数的拟合效果
图 2 残差分析图
残差分析图
600 500 400 300 200 100 0 10 11 12 13 14 15 0.5 1.5 2.5 3.5 0.25 ‐100 ‐200 ‐300 ‐400 残差 0.75 4.5 16 1 2 3 4 5 6 7 8 9
时刻为 t 时胃肠道中的酒精含量。
y (t ) 时刻为 t 时血液中的酒精含量。
胃肠道中的酒精进入血液的转移率与胃肠道中酒精量的比值。 血液中的酒精的排除率与血液中酒精量的比值。
五、模型的建立与求解
5.1 问题一 根据题目叙述,大李的实际情况符合快速饮酒的模型。为了确定函数中的系数 ,
微分方程建模(溶液浓度)

Vanmeegren在狱中作的画实在是质量太差,所 找理由都不能使怀疑者满意。直到20年后,1967
年,卡内基梅隆大学的科学家们用微分方程模型
解决了这一问题。
原理
著名物理学家卢瑟夫(Rutherford)指出:
物质的放射性正比于现存物质的原子数。
设 t 时刻的原子数为N (t ) ,则有
dN dt N
测定结果与分析
画名 Emmaus的信徒们 洗足 钋210衰变原子数 镭226衰变原子数
8.5 12.6
0.82 0.26
读乐谱的妇人
弹曼陀林的妇人 做花边的人 欢笑的女孩
10.3
8.2 1.5 5.2
0.3
0.17 1.4 6.0
若第一幅画是真品, t t 0 300
y 0 y (t )e
衰减(放射性/污染物的净化) “边际的”(经济学)
应注意题目的 这些词: 改变/变化/增 加/减少
如何建立微分方程?
根据规律列方程
利用数学、力学、物理、化学等学科中的定理或经过实验检验
的规律等来建立微分方程模型。
微元分析法
利用已知的定理与规律寻找微元之间的关系式,与第一种方法
不同的是对微元而不是直接对函数及其导数应用规律。
d x C 1V 1 d t C 2V 2 d t
dx C 1V 1 C 2V 2 dt x (0) x0
该模型还适用于 讨论气体的混合
以上两个简单例子的启示:
关键是建立一个 yˊ 、y、t 的方程.
可以表示为导数的最常见的量:
速率
增长(生物学/ 人口问题)
从处于放射性平衡状态的矿中提取出来时, Pb210 的绝大多数来源被切断,因而要迅速蜕变,直到 Pb210与少量的镭再度处于放射平衡,这时Pb210 的蜕变正好等于镭蜕变所补足的为止。
数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
常微分方程数学建模案例分析

常微分方程数学建模案例分析常微分方程是运用微积分中的概念与理论研究变化率的方程。
它是数学建模中常用的方法之一,可用于描述各种实际问题,如经济增长、生物扩散、化学反应等。
本文将通过一个关于人群传染病的数学建模案例,分析常微分方程在实际问题中的应用。
假设地有一种传染病,病毒的传播速度与感染者的接触频率有关。
现在我们要研究传染病的传播速度以及控制措施对传染病传播的影响。
为此,我们可以建立如下的数学模型:设N(t)表示时间t时刻的总人口数,而I(t)表示感染者的人口数,S(t)表示易感者的人口数。
根据该模型,易感者的人数随时间的变化率可表示为:dS/dt = -βSI其中,β表示感染率,即感染者每接触到一个易感者,会使其发病的概率。
感染者的人数随时间的变化率可表示为:dI/dt = βSI - γI其中,γ表示恢复率,即感染者每天被治愈的人数。
总人口数随时间的变化率可以通过易感者和感染者的变化率求和得到:dN/dt = dS/dt + dI/dt通过对该方程进行求解,我们可以得到感染者和易感者的人数随时间变化的解析解。
进一步,我们可以通过调节β和γ来研究不同的传播速度和控制措施对传染病传播的影响。
例如,如果β较大,表示感染率较高,此时传染速度会加快,可能导致传染病扩散的速度加快。
反之,如果β较小,表示感染率较低,传染病传播的速度会减慢。
另外,如果γ较大,表示恢复率较高,此时感染者的人数会快速减少,传染病传播的速度会减慢。
相反,如果γ较小,传染病传播的速度会加快。
通过对这些参数的调节,我们可以研究不同的控制措施对传染病传播的影响。
例如,我们可以通过降低感染率β或增加恢复率γ来减缓传染病传播的速度,从而控制疫情的爆发。
在实际应用中,常微分方程数学建模方法可以用于预测传染病的传播趋势,评估各种干预措施的效果。
此外,还可以通过引入更多的变量和参数,建立更复杂的模型,以更好地解释实际问题。
总之,常微分方程是数学建模中常用的方法之一,可以用于描述各种实际问题,如传染病的传播、经济增长等。
数学建模 微分方程模型讲解

量在初始阶段的增长情况比较相符。
(2)由(3—19)式推得,t=0 时显然 x=0,这一结果自然与
事实不符。产生这一错误结果的原因在于我们假设产品是自然推
销的,然而,在最初产品还没卖出之时,按照自然推销的方式,
便不可能进行任何推销。事实上,厂家在产品销售之初,往往是
通过广告、宣传等各种方式来推销其产品的。
? 1. 新产品推销模型 ? 一种新产品问世,经营者自然要关心产
品的卖出情况。下面我们根据两种不同 的假设建立两种推销速度的模型。
模型 A 假设产品是以自然推销的方式卖出,换句话说,被卖出的产品
实际上起着宣传的作用, 吸引着未来购买的消费者。 设产品总数与时刻 t 的关
系为 x(t), 再假设每一产品在单位时间内平均吸引 k 个顾客,则 x(t) 满足微
样,从根本上解决了模型 A 的不足。 由(3—20)式易看出, dx ? 0 ,即 x(t) 是关于时刻 t 的单调增
dt
加函数,实际情况自然如此,产品的卖出量不可能越卖越少。另外,
对(3—20)式两端求导,得
d 2x dt 2
?
k(M
?
2 x)
dx dt
故令 d 2x
dt 2
?
0 ,得到 x(t0 ) ?
Nm N0
)e? n
易看出,当t→? 时,当N(t) →Nm。这个模型称为Logistic 模型,其结果 经过计算发现与实际情况比较吻合。上面所画的是 Logistic 模型的的图形。
你也可从这个图形中,观察到微分方程解的某些性态。
捕鱼问题
在鱼场中捕鱼,捕的鱼越多,所获得的经济效益越大。但捕捞的鱼过多,
根据上面的假设,我们建立模型
dS ? P ? A(t) ? ??1 ? S (t) ?? ? ? S(t )
数学建模,第三章-微分方程模型

8小时20分-2小时57分=5小时23分
即死亡时间大约在下午5:23,因此张某不能被 排除在嫌疑犯之外。
理学院
3.2 目标跟踪模型
例1 饿狼追兔问题 黑 龙 现有一直兔子,一只狼,兔子位于狼的正西100米处,假 江 科 设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的 技 巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度 学 是兔子的2倍。兔子能否安全回到巢穴? 整理得到下述模型: 院 解:设狼的行走轨迹为y=f(x),则有:
理பைடு நூலகம்院
本章将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
在许多实际问题中,当直接导出变量之间的函数关系 较为困难,但导出包含未知函数的导数或微分的关系式较 为容易时,可用建立微分方程模型的方法来研究该问题,
黑 龙 江 科 技 学 院 数 学 建 模
数 学 建 模
B
60
2 2xf' ' x 1 f' x y' x 0 , y 0 100 x 100 解得狼的行走轨迹为: 100 0 100 (0,h) 0, f' f 假设在某一时刻,兔子跑到 处,而狼在 (x,y)处,则有:
理学院
y y0 g e
g
车间空气中CO2浓度y 与时间t的数学模型
黑 龙 江 科 技 学 院 数 学 建 模
3.4 学习模型
一般认为,对一项技术工作,开始学得较快,但随着学 得越来越多时,内容也越来越复杂,学员学得就会越来越慢。
员学习的速度,则随y的增长而下降。
dy 设y%表示已经掌握了这项工作的百分数, dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
每个劳动 力的产值
z
Q L
每个劳动 力的投资
y
K L
模型假设 z 随着 y 的增加而增长,但增长速度递减
z Q / L f0g( y) g(y) y , 0 1
Q f0L(K / L)
g(y)
Q(K, L) f0K L1 Douglas生产函数
Q , Q 0 K L
2Q 2Q K 2 , L2 0
di i
dt i(0) i0
i(t) i0et
ti ?
若有效接触的是病人, 则不能使病人数增加
必须区分已感染者(病 人)和未感染者(健康人)
模型2
假设
建模
区分已感染者(病人)和未感染者(健康人)
1)总人数N不变,病人和健康
人的 比例分别为 i(t), s(t)
SI 模型
2)每个病人每天有效接触人数 ~ 日
• 药物在房室间转移速率及向体外排除速率, 与该室血药浓度成正比
模型建立
x (t) ~ 药量 i
c (t) ~ 浓度 i
V ~ 容积 i
i 1,2
f (t) 0
给药
中心室
c1 (t), x1 (t) V1
k12
k21
周边室 c2 (t), x2 (t)
V2
k13 排除
x1(t) k12 x1 k13 x1 k21x2 f0 (t)
f (t) 0 V1
x (t) D ek01t
0
0
f (t) k x (t) D k ek01t
0
01 0
0 01
c (t) Aet Bet Eek01t 1
• 建立房室模型——药物动力学的基本步骤 • 房室——机体的一部分,药物在一个房室内均匀 分布(血药浓度为常数),在房室间按一定规律转移
• 本节讨论二室模型——中心室(心、肺、肾等)和 周边室(四肢、肌肉等)
模型假设
• 中心室(1)和周边室(2),容积不变
• 药物从体外进入中心室,在二室间 相互转移,从中心室排出体外
si
消去dt
/
di
ds
1
s
1
i
s s0
i 0
相轨线
i(0) i0 , s(0) s0 相轨线 i(s) 的定义域
i(s)
(s0
i
i0 )
s
1
ln
s s0
D {(s,i) s 0, i 0, s i 1} 1
在D内作相轨线 i(s)
的图形,进行分析
D 0
s
1
模型4 相轨线 i(s) 及其分析
问题
5.1 传染病模型
• 描述传染病的传播过程 • 分析受感染人数的变化规律 • 预报传染病高潮到来的时刻 • 预防传染病蔓延的手段
• 按照传播过程的一般规律, 用机理分析方法建立模型
模型1 已感染人数 (病人) i(t)
假设
• 每个病人每天有效接触
(足以使人致病)人数为
建模 i(t t) i(t) i(t)t
SIR模型
di dt
si
i
ds dt
si
di
ds
1
s
1
i
1
i(s)
(s0
i0
)
s
1
ln
s s
i
s s0
i 0
D
0
i(0) i0 , s(0) s0
P4
s(t)单调减相轨线的方向 im s 1/ , i im t , i 0
P2
P1
P3
s满足
s0
i0 s
1
ln
s s0
0
f Ly Z (t) 0 f
y f ( K )
L
0
0L
dZ dt
f y1 0
dy dt
dZ dt
0
dy dt
0
1
K 0 / K0
e(1 )t
0
(B)
0 B成立
0
当
K
0
/
K
0
1时,
B成立
劳动力增长率小于初始投资增长率
5.2 药物在体内的分布与排除
• 药物进入机体形成血药浓度(单位体积血液的药物量) • 血药浓度需保持在一定范围内——给药方案设计 • 药物在体内吸收、分布和排除过程 ——药物动力学
0
s S0 1/ s0
1s
P1: s0>1/
0 P2: s0<1/
i(t)先升后降至 i(t)单调降至0
传染病蔓延 1/ 传染病不蔓延 ~阈
值
模型4
预防传染病蔓延的手段
SIR模型
传染病不蔓延的条件——s0<1/ • 提高阈值 1/ 降低 (=/)
,
(日接触率) 卫生水平
(日治愈率) 医疗水平
x2 (t) k12 x1 k21x2
f0 ~ 给药速率
模型建立
xi (t) Vici (t), i 1,2
c1 (t) (k12 k13 )c1
c2 (t)
V 1
V 2
k12 c1
k c 21 2
V 2
V 1
k c 21 2
f0 (t) V
1
线性常系数 非齐次方程
对应齐次 方程通解
V2 V1
k c 21 2
f0 (t) V1
的药物进入中心室,血 药浓度立即为D0/V1
D
f0 (t)
0, c1 (0)
0
V1
, c2 (0)
0
c (t)
D 0
[(k )et ( k )et ]
1
V ( ) 21
21
1
c (t)
Dk 0 12
(et et )
2
V2 ( )
k12 k k21 13
k21
k13
2.恒速静脉滴注 0 t T 药物以速率k0进入中心室
f (t) k , c (0) 0, c (0) 0 c1(t)
(k 12
k )c 13 1
c2 (t)
V1 V2
k12c1
k c 21 2
V2 V1
kc 21 2 0
f (t) 0 V1
0
1
2
c1 (t)
A et 1
3.口服或肌肉注射
相当于药物( 剂量D0)先进入吸收室,吸收后进入中心室
吸收室
x0 (t)
中心室
f0 k01x0
x0 x0
(t ) (0)
k01 D0
x0
吸收室药量x0(t)
c1 c2
(t ) (t )
(k 12
V1 V2
k12c1
k )c 13 1
k c 21 2
V2 V1
kc 21 2
• 调节资金与劳动力的增长率,使经济(生产率)增长
1. 道格拉斯(Douglas)生产函数
产值 Q(t)
资金 K(t) 劳动力 L(t) 技术 f(t) = f0
Q(t) f0F (K (t), L(t)) F为待定函数
1. 道格拉斯(Douglas)生产函数
静态模型 Q(K, L) f F(K, L) 0
dt
L(t) L0et
Q f Lg( y) g(y) y 0
dK f Ly
dt
0
y K , K Ly L
dK L dy Ly
dt dt
dK f Ly
dt
0
dK L dy Ly
dt dt
dy y f y
dt
0
Bernoulli方程
1
y(t)
f 0
( y1
0
f 0
)e (1 ) t
t
tm
1
ln
1 i0
1
tm~传染病高潮到来时刻 t i 1 ?
(日接触率) tm
病人可以治愈!
模型3
传染病无免疫性——病人治愈成 为健康人,健康人可再次被感染 SIS 模型
增加假设 3)病人每天治愈的比例为 ~日治愈率
建模 N[i(t t) i(t)] Ns(t)i(t)t Ni(t)t
K w L 1 r
w , r ,
K/L
3) 经济(生产率)增长的条件 (动态模型)
要使 Q(t) 或 Z(t)=Q(t)/L(t) 增长, K(t), L(t)应满足的条件
模型 • 投资增长率与产值成正比 假设 (用一定比例扩大再生产)
dK Q, 0
dt
• 劳动力相对增长率为常数
dL L
x<<s0
x(1
1
s0
x
2s02
)
0
x
2s0
(s0
1
)
P1
0 s 1/
s 0
s
s0 - 1/ = x 2
小, s0 1
提高阈值1/ 降低 被传染人数比例 x
5.2 经济增长模型
增加生产 发展经济 增加投资 增加劳动力 提高技术
• 首先建立产值与资金、劳动力之间的关系
• 研究资金与劳动力的最佳分配,使投资效益最大
2)资金与劳动力的最佳分配(静态模型)
资金来自贷款,利率 r 劳动力付工资 w
资金和劳动力创造的效益 S Q rK wL
求资金与劳动力的分配比例K/L(每个 劳动力占有的资金) ,使效益S最大
S 0, S 0
K
L
KQK , LQL 1
Q
Q
QK r QL w QK L QL K 1
N[s(t t) s(t)] Ns(t)i(t)t