一元回归线性模型

合集下载

计量经济学:一元线性回归模型

计量经济学:一元线性回归模型

一、变量间的关系及研究方法基本概念
1. 变量间的关系
(1)确定性关系或函数关系:研究的是确定现 象非随机变量间的关系。
圆面积 f ,半径 半径2
(2)统计依赖或相关关系:研究的是非确定现 象随机变量间的关系。
农作物产量 f 气温, 降雨量, 阳光, 施肥量
2、研究方法
对变量间统计依赖关系的考察主要是通过 相关分析(correlation analysis)或回归分析 (regression analysis)来完成的
称为(双变量)总体回归函数(population regression function, PRF)。
三、随机扰动项与总体回归模型
❖ 总体回归函数说明在给定的收入水平Xi下,该社 区家庭平均的消费支出水平。
❖ 但对某一个别的家庭,其消费支出可能与该平均 水平有偏差。
1、随机干扰项
(1) i Yi E(Y | X i )
935 1012 1210 1408 1650 1848 2101 2354 2860 968 1045 1243 1474 1672 1881 2189 2486 2871
1078 1254 1496 1683 1925 2233 2552 1122 1298 1496 1716 1969 2244 2585 1155 1331 1562 1749 2013 2299 2640 1188 1364 1573 1771 2035 2310 1210 1408 1606 1804 2101
§2.2 一元线性回归模型的参数估计
一、线性回归模型的基本假设 二、参数的普通最小二乘估计(OLS) 三、参数估计的最大或然法(ML)* 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干扰 项方差的估计

一元线性回归模型

一元线性回归模型
2
1 n ˆ xi )2 = 1 ( Lyy − bLxy ). ˆ ˆ 即 σ = ∑ ( yi − a − b ˆ n i =1 n
2
n σ 2. 而σ 的无偏估计是 ˆ n−2
2
∴σ ˆ
*2
n 1 2 ˆ σ = ( Lyy − bLxy ). = ˆ n−2 n−2
ex1. 设有一组观察值如下,求回归方程 设有一组观察值如下,求回归方程.
ˆ ˆ ˆ 对于x0可得 y0 = a + bx0 , 称其为 Y0的点预测.
( 2) Y0的区间估计 : 选取 T =
σ* ˆ
ˆ Y0 − y0 ~ t ( n − 2) 2 1 ( x0 − x ) 1+ + n Lxx
对于任意给定的 0 < α < 1, 有 P { T < tα ( n − 2)} = 1 − α .
研究变量间的相关关系,确定回归函数, 研究变量间的相关关系,确定回归函数,由此预测和控 制变量的变化范围等就是回归分析。 制变量的变化范围等就是回归分析。 研究两个变量间的相关关系,称为一元回归分析; 研究两个变量间的相关关系,称为一元回归分析; 研究多个变量间的相关关系,称为多元回归分析; 研究多个变量间的相关关系,称为多元回归分析; 若回归函数为线性函数,则称为线性回归分析。 若回归函数为线性函数,则称为线性回归分析。
所以y与 之间显著地存在线性关系 之间显著地存在线性关系. 所以 与x之间显著地存在线性关系
四、一元线性回归模型的应用—预测与控制 一元线性回归模型的应用 预测与控制 1. 预测问题
(根据 = a + bx + ε , 研究 = x0时如何估计 0 ) Y x Y
(1) Y0的点估计 :

一元线性回归模型

一元线性回归模型

Yi Xi i
(i 1,, N)
(3.1)
第3章 一元线性回归模型
如果回归模型满足: ⑴X与Y之间的关系是线性的; ⑵X是非随机变量,它的取值是确定的; (i 1,, N) ⑶误差项的期望为0; E(i ) 0 ⑷对于所有的观测值,误差项ε i具有相同的 方差;即 Var ( ) E(2 ) 2 (i 1,, N) i i ⑸随机变量ε i之间统计上是独立的。 ⑹误差项ε i服从正态分布N(0,σ 2)。(i 1,, N) 则 Y X 称为古典线性回归模型。
R

TSS
第3章 一元线性回归模型
R2也称为判定系数,它是一个描述性统计量, 通常认为R2的值高则回归直线拟合的好。值得 注意的是在截面数据的研究中,即使模型令人 满意,R2值仍可能很低,原因是各观测值之间 存在较大的变差。书中第46页的例3.5,公立 和私立学校的入学人数的回归模型说明了这一 点。与此不同的是在时间序列分析中,人们经 常会得到高的R2值,这是因为随着时间增长的 变量都有可能很好地解释另一个随时间增长的 变量。
第3章 一元线性回归模型
如在回归模型中斜率β 和截距α 的估计量
i i 2 i i i i
2、高斯-马尔可夫定理:如果回归模型(3立,估计量 小方差的线性无偏估计。
x y x ˆ c y , 其中c x x 1 ˆ ˆ Y X d Y , 其中 d Xc N
i
i i i
2 i
i
第3章 一元线性回归模型
ˆ 和 ˆ 的分布 3、估计量 因为它们都是Yi的线性组合,也服从正态分布。
ˆ ~ N(,
2
X 2 1 ˆ ~ N , ( ) 2 N xi

第三章 一元线性回归模型

第三章 一元线性回归模型

第三章一元线性回归模型第一节一元线性回归模型及其基本假设一元线性回归模型第二章回归分析的基本思想指出,由于总体实际上是未知的,必须根据样本回归模型估计总体回归模型,回归分析的目的就是尽量使得样本回归模型接近总体回归模型,那么采取什么方法估计样本回归模型才使得估计出的样本回归模型是总体回归模型的一个较好估计值呢?这里包括两个问题:一是采用什么方法估计样本回归模型;二是怎样验证估计出的样本回归模型是总体回归模型的一个较好估计值。

这些将在接下来的内容中讲到。

这一章介绍最简单的一元线性回归模型,下一章再扩展到多元线性回归模型。

一元线性回归模型及其基本假设一、一元线性回归模型的定义一元线性回归模型是最简单的计量经济学模型,在该一元模型中,仅仅只含有一个自变量,其一般形式为:yi = β0 + β1xi + μi(3.1.1)其中yi是因变量,xi是自变量,β0、β1是回归参数,μi是随机项。

由于式(3.1.1)是对总体而言的,也称为总体回归模型。

随机项μ代表未被考虑到模型中而又对被解释变量y有影响的所有因素产生的总效应。

二、一元线性回归模型的基本假设由于模型中随机项的存在使得参数β0和β1的数值不可能严格计算出来,而只能进行估计,在计量经济学中,有很多方法可以估计出这些参数值,但采用什么方法能够尽可能准确地估计出这些参数值,取决于随机项μ和自变量x的性质。

因此,对随机项μ和自变量x的统计假定以及检验这些假定是否满足的方法,在计量经济学中占有重要的地位。

估计方法中用得最多的是普通最小二乘法(Ordinary Least Squares),同样为了保证利用普通最小二乘法估计出的参数估计量具有良好的性质,也需要对模型的随机项μ和自变量x 提出若干种假设。

当模型中的随机项μ和自变量x满足这些假设时,普通最小二乘法就是适合的估计方法;当模型中的随机项μ和自变量x不满足这些假设时,普通最小二乘法就不是适合的方法,这时需要利用其他的方法来估计模型。

一元线性回归模型的参数估计

一元线性回归模型的参数估计
感谢您的观看
斜率(β1)
表示 x 每变化一个单位,y 平均变化的数量。
一元线性回归模型的假设
线性关系
因变量 y 和自变量 x 之间存在线性关系。
误差项独立
误差项 ε 之间相互独 立,且与 x 独立。
误差项的正态性
误差项 ε 的分布是正 态的。
误差项的无偏性
误差项 ε 的期望值为 0,即 E(ε) = 0。
有限的方差
回归分析的分类
一元回归分析
研究一个自变量和一个因变量之间的关系。
多元回归分析
研究多个自变量和一个因变量之间的关系。
线性回归模型
线性回归模型是一种常用的回归分析方法,它假设自变量和因变量之间存在线性关系,即可以用一条 直线来描述它们之间的关系。
在一元线性回归模型中,自变量和因变量之间的关系可以表示为一条直线,即 y = ax + b,其中 a 是斜 率,b 是截距。
确定样本数据
收集用于估计参数的样本数据。
构建估计量
根据模型和样本数据构建用于估计参数的统计量。
计算估计值
通过计算统计量的值得到参数的估计值。
评估估计质量
通过统计检验和图形方法评估估计的质量和可靠性。
05 模型的评估与检验
模型的拟合度评估
决定系数(R^2)
衡量模型解释变量变异程度的指标,值越接 近1表示模型拟合度越好。
数据整理
将数据整理成适合进行统计分析 的格式,如表格或图形,以便后 续分析。
建立一元线性回归模型
确定自变量和因变量
根据研究问题选择合适的自变量和因变量,确 保它们之间存在一定的关联性。
散点图分析
绘制散点图,观察自变量和因变量之间的关系, 初步判断是否适合建立一元线性回归模型。

第八章8.2一元线性回归模型及其应用PPT课件(人教版)

第八章8.2一元线性回归模型及其应用PPT课件(人教版)

三、非线性回归
例3 下表为收集到的一组数据: x 21 23 25 27 29 32 35 y 7 11 21 24 66 115 325 (1)作出x与y的散点图,并猜测x与y之间的关系;
解 作出散点图如图,从散点图可以看出x 与y不具有线性相关关系,根据已有知识可 以发现样本点散布在某一条指数函数型曲线 y=c1ec2x的周围,其中c1,c2为待定的参数.
年份
2015 202X 202X 202X 202X
时间代号t
1
2
3
4
5
储蓄存款y(千亿元) 5
6
7
8
10
(1)求 y 关于 t 的经验回归方程y^=b^ t+a^ ;
n
tiyi-n t y
i=1
参考公式:b^ =
n
t2i -n
t2
,a^ =
y
-b^
t
i=1
解 由题意可知,n=5, t =1nn ti=155=3, i=1
来比较两个模型的拟合效果,R2 越 大 ,模型
n
yi- y 2
i=1
拟合效果越好,R2 越 小 ,模型拟合效果越差.
思考 利用经验回归方程求得的函数值一定是真实值吗? 答案 不一定,他只是真实值的一个预测估计值.
思考辨析 判断正误
SI KAO BIAN XI PAN DUAN ZHENG WU
知识点四 对模型刻画数据效果的分析
1.残差图法
在残差图中,如果残差比较均匀地集中在以 横轴为对称轴的水平带状
区域内 ,则说明经验回归方程较好地刻画了两个变量的关系.
2.残差平方和法
n
(yi-y^i)2
残差平方和 i=1

经典单方程计量经济学模型:一元线性回归模型

经典单方程计量经济学模型:一元线性回归模型
Yi 0 1Xi i
设由获得的样本观测值 (yi , xi ) ( i 1,2,, n) 去估计计量经济模型中的未知参数,
结果为
Yˆi ˆ0 ˆ1Xi 其能够很好的拟合样本数据。 Yˆi 为别 解释变量的估计值,它是由参数估计 量和解释变量的观测之计算得到的。 那么,被解释变量的估计值与观测值 应该在总体上最为接近。
ˆ i
~
N
(
i
,
c2
ii
)
(ˆ ) /
i
i
c2 ii
~
N (0,1)

ˆ 2 (n k 1) / 2 ee / 2 ~ 2 (n k 1)

(ˆ ) / c ee /(n k 1) ~ t(n k 1)
i
i
ii
可以用上述统计量检验解释变量系数是否为0,
原假设 H : 0 ,计算统计量
2
exp{
1
2 2
( yi
ˆ0
ˆ1xi )2}
i
1,2,n
联合密度(似然函数)
L(ˆ0, ˆ1, )
f ( y1,,
yn )
1
n
(2
)n
/
2
exp{
1
2
2
( yi
ˆ0
ˆ1xi )2}
或对数似然函数
L* ln(L) n ln(
2
)
1
2
2
( yi
ˆ0
ˆ1xi )2
极大化上式
ˆ0
ˆ1
1430 1650 1870 2112
1485 1716 1947 2200
2002
共计
2420 4950 11495 16445 19305 23870 25025 21450 21285 15510

一元线性回归模型

一元线性回归模型

一元线性回归模型1.一元线性回归模型有一元线性回归模型(统计模型)如下,y t = β0 + β1 x t + u t上式表示变量y t 和x t之间的真实关系。

其中y t 称被解释变量(因变量),x t称解释变量(自变量),u t称随机误差项,β0称常数项,β1称回归系数(通常未知)。

上模型可以分为两部分。

(1)回归函数部分,E(y t) = β0 + β1 x t,(2)随机部分,u t。

图2.1 真实的回归直线这种模型可以赋予各种实际意义,收入与支出的关系;如脉搏与血压的关系;商品价格与供给量的关系;文件容量与保存时间的关系;林区木材采伐量与木材剩余物的关系;身高与体重的关系等。

以收入与支出的关系为例。

假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。

但实际上数据来自各个家庭,来自各个不同收入水平,使其他条件不变成为不可能,所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。

随机误差项u t中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。

所以在经济问题上“控制其他因素不变”是不可能的。

回归模型的随机误差项中一般包括如下几项内容,(1)非重要解释变量的省略,(2)人的随机行为,(3)数学模型形式欠妥,(4)归并误差(粮食的归并)(5)测量误差等。

回归模型存在两个特点。

(1)建立在某些假定条件不变前提下抽象出来的回归函数不能百分之百地再现所研究的经济过程。

(2)也正是由于这些假定与抽象,才使我们能够透过复杂的经济现象,深刻认识到该经济过程的本质。

通常线性回归函数E(y t) = β0 + β1 x t是观察不到的,利用样本得到的只是对E(y t) = β0 + β1 x t 的估计,即对β0和β1的估计。

在对回归函数进行估计之前应该对随机误差项u t做出如下假定。

(1) u t 是一个随机变量,u t 的取值服从概率分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元回归线性模型
一元线性回归模型,又称为简单线性回归模型,是机器学习中常
用的回归模型,它是利用一个自变量X来预测因变量Y的结果。

一元
线性回归模型将样本数据映射为一条直线,如y=ax+b,其中a是斜率,b是截距,也就是说,一元线性回归模型中的参数是斜率和截距,而拟
合的直线就是根据样本数据估计出来的最佳拟合直线。

目标函数是求解参数 a 和 b,使得误差平方和最小,具体来说,
目标函数的表达式为:J(a,b)=Σi(yi-f(xi))^2,其中f(x)=ax+b,yi为观测值,xi为观测值对应的自变量。

对于一元线性回归模型,求解参数 a 和 b 的最优方法要么是直
接用梯度下降法求解,要么是用最小二乘法求解。

梯度下降法求解时,需构造损失函数,使用梯度下降法迭代更新参数,直到获得最优结果;而最小二乘法求解时,通过求解参数关于损失函数的导数,便可解出
模型参数,从而得到最优结果。

一元线性回归模型在实际应用中有很多优点,其中最重要的就是
它易于拟合和解释,它求解简单,可以很大程度上减少了计算复杂度,而且可以很好地预测因变量的值,也可以用来检验变量之间的关系。

相关文档
最新文档