经典力学的建立和发展
力学发展简史

经典力学发展简史姓名:周玉全力学是物理学中最早发展的分支,它和人类的生活与生产关系最为密切。
经典力学是力学的一个分支。
经典力学是以牛顿运动定律为基础,研究宏观、低速状态下物体运动的一门学科。
力学的发展可谓与人类生活与生产息息相关。
早在遥远的古代,人们就在劳动生产中应用杠杆、螺旋、滑轮、斜面等简单机械,促进了静力学的发展。
公元前二百多年,古希腊的阿基米德提出了杠杆原理以及浮力定律。
而我国古代的春秋战国时期,以《墨经》为代表作的墨家,总结了大量力学知识。
虽然这些知识尚属于力学的萌芽,但不妨它在力学发展史中占有一席之地。
在古代,由于人们缺乏经验以及生产水平低下,没有适当科学仪器,导致力学的发展受到抑制。
古希腊时代的亚里士多德主张物体速度与外力成正比、重物下落比轻物快、自然界惧怕真空等,看起来的确与经验没有明显矛盾,因此这些理论长期没人怀疑。
当然力学长期得不到较大发展还与西方教会利用所谓“科学”奴役人们思想有关。
这点最为人所熟知便属“地心说”了。
托勒密的“地心说”因与《圣经》内容相符,再加上按地心说预报的行星位置在当时目测精度下与实际位置相差不多,故被人广泛接受。
首先揭开科学革命序幕、反对一直被奉若圭臬的“地心说”的是天文学领域。
公元1543年,哥白尼发表了《天体运行理论》来具体论述日心体系。
但这一新思想一开始并未能得到世人的广泛认识,因为当时教会仍然占有统治地位,而日心说与《圣经》内容相悖。
科学发展越快,教会越趋极端,凡是不符合教会思想而另有主张的人,都会遭到迫害。
意大利思想家布鲁诺就是一位信仰和宣扬哥白尼体系而英勇献身的科学殉道士。
他认为宇宙是无限的,在太阳系之外还有无数的世界,这比日心说更为有力的冲击了教会的教义,因此被处以火刑。
但科学并不会因惧怕火刑而驻足不前。
德国天文学家开普勒在基于天文学家第谷毕生积累的天文观测资料的基础上,经过计算,得出了开普勒第一和第二定律,并在1609年出版的《新天文学》一书中,公布了这两条行星运动定律。
高中物理 第五章 经典力学与物理学革命 第一节 经典力学的成就与局限性 第二节 经典时空观与相对论时

第一节经典力学的成就与局限性第二节经典时空观与相对论时空观1.了解经典力学的发展历程和伟大成就.2.知道经典力学的局限性和适用范围.3.了解经典时空观及其基本推论. 4.了解狭义相对论的理论基础与相对论时空观的几个推论.一、经典力学的发展历程1.15世纪以后,欧洲文艺复兴时期,各行各业迅速发展,物理学也进入了快速发展的阶段.2.16世纪,波兰的天文学家哥白尼创立了日心说,解放了世人的思想.3.17世纪,伽利略发现了惯性定律、落体定律及力学相对性原理,奠定了动力学的基础.法国的笛卡儿、荷兰的惠更斯、德国的开普勒分别在不同领域作出了重要贡献.在17世纪,最伟大的科学家牛顿在前人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出了力学运动规律——牛顿运动定律和万有引力定律.4.18世纪,很多科学家投入了大量的精力研究物理学问题,从动量、能量角度完善了牛顿力学.5.19世纪,科学家用新的、更简洁的形式重新表述了牛顿运动定律,形成了分析力学.同时,经典力学由单个质点推广到多质点构成的系统,建立了刚体力学、弹性力学、塑性力学、流体力学等.1.(1)伽利略发现了行星运动的规律.( )(2)卡文迪许通过实验测出了引力常数.( )(3)牛顿最早指出力不是维持物体运动的原因.( )(4)笛卡儿对牛顿第一定律的建立作出了贡献.( )提示:(1)×(2)√(3)×(4)√二、经典力学的成就和局限性1.经典力学的伟大成就(1)经典力学把天上物体和地上物体统一起来,实现了人类对自然界认识的第一次理论大综合.(2)使人们认识到了以现象观察和实验研究为基础的自然科学理论的基本特征.(3)建立了以实验和数学相结合的研究方法.(4)推动了其他学科的发展,与其他学科相结合产生了一些交叉性的分支学科.2.经典力学的局限性和适用范围(1)经典力学不适用于研究高速运动(接近光速)的物体.(2)经典力学不适用于微观领域中物质结构和能量不连续的现象.1.牛顿第二定律属经典力学理论,它在高速世界还适用吗?提示:在高速世界中,物体的质量随着速度的增加而变大,物体的加速度不一定与它所受的外力成正比,牛顿第二定律不再适用.三、经典时空观1.惯性系与非惯性系(1)惯性系:牛顿运动定律成立的参考系,相对于惯性系静止或做匀速直线运动的参考系都是惯性系.(2)非惯性系:牛顿运动定律不成立的参考系,相对于惯性系做变速运动的参考系是非惯性系.2.伽利略相对性原理:对于所有惯性系,力学规律都是相同的,或者说,一切惯性系都是等效的.3.经典时空观(绝对时空观):时间永远均匀地流逝,与任何外界无关;空间与任何外界事物无关,从不运动,永远不变.4.经典时空观的几个具体结论(1)同时的绝对性;(2)时间间隔的绝对性;(3)空间距离的绝对性;(4)物体质量恒定不变,即它们与参考系的选择(或观察者的运动状态)无关.2.(1)质量是物体的固有属性,任何时候都不会改变.( )(2)经典力学可以解决自然界中所有的问题.( )提示:(1)×(2)×四、相对论时空观1.光速不变与经典物理学的矛盾:观察和实验事实表明:无论光源和观察者如何运动,光速只能是c,这与经典力学的速度合成法则相矛盾.2.狭义相对论的两条基本假设(1)相对性原理:在不同的惯性参考系中,一切物理规律都是相同的.(2)光速不变原理:不管在哪个惯性系中,测得真空中的光速都相同.3.相对论时空观(1)“同时”的相对性:在一个参考系中同时发生两个事件,在另一个参考系看来是不同时的.(2)运动的时钟变慢:时钟相对于观察者静止时,走得快;相对于观察者运动时,走得慢.运动速度越快,效果越明显.(3)运动的尺子缩短:物体相对于观察者静止时,它的长度测量值最大;相对于观察者运动时,观察者在运动方向上观测,它的长度要缩短,速度越快,缩得越短.(4)物体质量随速度的增加而增大.2.在“时间延缓效应”中,钟表走快走慢应如何理解?提示:每个惯性系中的观测者都是使用静止于该参考系中的时钟进行有关时间的观测,对同一物理过程经历的时间,在不同惯性系中观测,测得的结果不同,并不是时钟走快了或走慢了,而仅仅是一种观测效应.对经典时空观与相对论时空观的认识[学生用书P78]1.绝对时空观是在地球范围内凭直觉经验建立起来的,它符合人们对空间、时间的主观感受;相对论时空观是在光速不变的实验事实上,以狭义相对论的两条基本假设为前提建立的.2.经典时空观中,时间、空间、物质是彼此独立、互不联系的,时间、长度和质量这三个物理量都与参考系的运动无关.相对论时空观中,空间和时间是运动着的物质的存在形式,时空概念是从物质运动中抽象出来的,它们之间相互依赖、彼此联系.3.只有在高速运动时,相对论效应才比较显著,在通常情况下,相对论效应极其微小,可忽略不计,仍可按经典时空观理解.理解时空观应特别注意参照系.时空观所研究的就是时间、空间与参考系的问题,经典时空观认为时间和空间是绝对的,与参考系的选取无关,相对论时空观认为对于一个参照系,都有只属于这个参照系的空间和时间.所以在相对论时空观中必须时刻清楚观察者所选定的参考系.(多选)下列说法中属于经典时空观的观点是( )A.世界的过去、现在和将来都只有量的变化,而不会发生质的变化B.时间和空间不依赖人们的意识而存在C.时间和空间是绝对的D.时间和空间是紧密联系、不可分割的[解析] 经典时空观认为时间和空间都是与外界事物无关的,绝对的,故A、B、C属于经典时空观;D属于相对论时空观.[答案] ABC在经典力学中,时间、长度和质量都与参考系的运动无关.1.关于经典力学和相对论,下列说法正确的是( )A.经典力学和相对论是各自独立的学说,互不相容B.相对论是在否定了经典力学的基础上建立起来的C.相对论和经典力学是两种不同的学说,二者没有联系D.经典力学包含在相对论之中,经典力学是相对论的特例解析:选D.相对论的建立并没有否定经典力学,而是认为经典力学是相对论在一定条件下的特殊情形.所以A、B、C错误,D正确.狭义相对论的基本假设及结论[学生用书P78]1.狭义相对论的基本假设(1)相对性原理:在不同的惯性系中,一切物理规律都是相同的.(2)光速不变原理:不管在哪个惯性系中,测得的真空中的光速都相同.2.狭义相对论的结论(1)“同时”的相对性:在一个参考系中同时发生的两个事件,在另一参考系看来是不同时的,这称为“同时”的相对性.(2)运动的时钟变慢:相对于观察者运动的时钟,比相对于观察者静止的时钟走得慢.运动速度越快,效果越明显.(3)运动的尺子缩短:一个物体相对于观察者静止时,它的长度测量值最大;相对于观察者运动时,在沿运动方向上观察,物体的长度要缩短,速度越快,缩得越短.(4)物体质量随速度的增加而增大:当速度接近光速时,质量趋于无穷大.如果物体的运动速度比光速小很多时,物体运动时的质量和物体静止时的质量相等.这意味着经典力学是相对论的一个特例.可见相对论比经典力学具有更普遍的意义.相对论中的时间延缓、长度缩短、质量增大现象是观测效应,并非时钟走慢了,也并非是物体的长度、质量变化了.如图所示,地面上A、B两个事件同时发生.对于坐在火箭中沿两个事件发生地点连线飞行的人来说,哪个事件先发生?[思维流程] 解答本题可按以下思路分析:[解析] 可以设想在事件A发生时A处发出一个闪光,事件B发生时B处发出一个闪光,“两闪光相遇”作为一个事件,发生在线段AB中点,这在不同参考系中看都是一样的.“相遇在中点”这个现象在地面坐标系中很容易解释:两个闪光同时发出,两个闪光传播的速度又一样,当然在线段的中点相遇.火箭上的人则有如下推理:地面在向火箭方向运动,从闪光发生到两闪光相遇,线段中点向火箭的方向运动了一段距离.因此闪光B传播的距离比闪光A长些,既然两个闪光的光速相同,一定是闪光B发生得早一些.即B事件先发生.[答案] B事件先发生对于同一事件,在不同参考系中看到的现象是不同的.2.属于狭义相对论基本假设的是:在不同的惯性系中( )A.真空中光速不变B.时间间隔具有相对性C.物体的质量不变D.物体的能量与质量成正比解析:选A.狭义相对论的基本假设有:(1)狭义相对论的相对性原理,一切彼此做匀速直线运动的惯性参考系,对于描述运动的一切规律来说都是等价的;(2)光速不变原理,对任一惯性参考系,真空中的光速都相等,所以只有A正确.易错易混——光速不变原理与速度合成关系式设某人在以速度0.5c飞行的飞船上打开一个光源,则下列说法正确的是( ) A.飞船正前方地面上的观察者看到这一光速为1.5cB.飞船正后方地面上的观察者看到这一光速为0.5cC.在垂直飞船前进方向地面上的观察者看到这一光速是0.5cD.在地面上任何地方的观察者看到的光速都是c[易错分析] 本题易错选项及错误原因具体分析如下:易错选项错误原因根据关系式v=v船+c求得光速为1.5c,忽视光速不变原理,实际上任何物体A的运动速度不可能大于光速根据关系式v=c-v船求得光速为0.5c,实际上接近光速时,以上关系式已不B再适用将飞船速度误认为是光速,这其实是两个不同的概念,而且也违背光速不变原C理,光在一切惯性参考系中,在真空中的传播速度都是c[解析] 根据光速不变原理知,在任何惯性系中测得的真空中的光速都相同,都为c,故D正确.[答案] D(1)光速不变原理:爱因斯坦的狭义相对论指出,在一切惯性参考系中,测量到的真空中的光速c都一样,即光在所有的惯性参考系中的传播速度均是光速.(2)速度合成的关系式v船岸=v船水+v水岸只适用于低速运动的惯性参考系,对于接近光速的高速运动物体,该关系式已不再适用,此时应根据光速不变原理去解决问题.[随堂达标][学生用书P79]1.17世纪末,采用归纳与演绎、综合与分析的方法,建立了完整的经典力学体系,使物理学从此成为一门成熟的自然科学的科学家是( )A.牛顿B.开普勒C.笛卡儿D.伽利略解析:选A.牛顿在前人研究的基础上,总结出一套普遍适用的力学运动规律,建立了完整的经典力学体系.2.(多选)牛顿运动定律适用于下列哪些情况( )A.研究原子中电子的运动B.研究“神舟十号”飞船的高速发射C.研究地球绕太阳的运动D.研究飞机从北京飞往纽约的航线解析:选BCD.牛顿力学属于经典力学的研究范畴,适用于宏观、低速运动的物体,并注意到低速和高速的标准是相对于光速,可判定牛顿运动定律适用于B、C、D中描述的运动,而A不适用.3.如果你以接近于光速的速度朝一星体飞行,你可以根据下述变化发觉自己是在运动的是( )A.你的质量在增加B.你的心脏跳慢了C.你的尺寸在变小D.你的感觉和在地面上的感觉都是一样的解析:选D.“你”相对飞船这个惯性参考系是静止的,因此“你”不能发现自己有什么变化,“你”的感觉和在地面上的感觉是一样的,D正确.4.(多选)关于质量和长度的说法中正确的是( )A.物体的质量与位置、运动状态无关,是物质本身的属性B.物体的质量与位置、运动状态有关,只是在速度较低的情况下,变化可忽略不计C.物体的长度与运动状态无关,是物质本身的属性D.物体的长度与运动状态有关,只是在速度较低的情况下,变化可忽略不计解析:选BD.由相对论的时空观可知,在物体运动的速度较低时,即远小于光速时物体的长度和质量基本保持不变,在物体的运动速度接近于光速时,质量随速度的增大而增大,在速度的方向上,物体的长度随速度的增大而缩短,故B、D说法正确,A、C错误.5.A、B、C是三个完全相同的时钟,A放在地面上,B、C分别放在两个火箭上,以v B和v C朝同一方向飞行,v B<v C,地面上的观察者认为哪个时钟走得最慢?哪个走得最快?解析:运动的时钟变慢,相对观察者运动速度越大,时钟走得越慢,故C时钟最慢,A时钟和观察者相对静止,故A时钟最快.答案:C时钟走得最慢,A时钟走得最快.[课时作业][学生用书P128(单独成册)]一、单项选择题1.20世纪初,提出了狭义相对论,引起了人们对时空观认识的改革的科学家是( )A.惠更斯 B.普朗克C.爱因斯坦 D.洛伦兹解析:选C.20世纪初,爱因斯坦提出了狭义相对论,揭示了时间、空间与物体的运动速度之间的必然联系,引起了人们对时空观认识的改革.2.如图所示,按照狭义相对论的观点,火箭A是迎着光飞行的,火箭B是“追赶”光的,若火箭相对地面的速度为v,则两火箭上的观察者测出的光速分别为( )A.c+v c-v B.c-v c+vC.c c D.无法确定解析:选C.根据光速不变原理,在一切惯性参考系中,测量到的真空中的光速c都一样,因此在火箭A、B两个惯性参考系中,观察者测量到的光速一样大,均为c,故C正确.3.惯性系S中有一边长为l的正方形(如图所示),从相对S系沿x方向以接近光速匀速飞行的飞行器上测得该正方形的图象是( )解析:选C.物体运动时在运动方向上,相对观察者缩短,因物体相对S系沿x方向运动,故在x方向上缩短,C正确.4.有一对孪生兄弟小明和小伟,当他们长大到20岁时,由于航天的需要,小伟要乘坐航天飞船去太空进行科学研究,小明在地球上经过了20年后,小伟才返回地面,则下列判断正确的是( )A.小明显得更年轻B.小伟显得更年轻C.他们俩一样年轻D.无法判断谁更年轻解析:选B.狭义相对论的时空观认为,时间是相对的,即在同一个惯性系中不同地点同时发生的两个事件,在另一个惯性系中不一定是同时的,根据爱因斯坦的时间延缓效应,当飞船接近光速时,时间会变慢.故小伟显得更年轻.5.伽利略是经典力学的开创者,有关他的叙述错误的是( )A.伽利略对运动进行了描述和分类,对自由落体运动规律进行了探索,得到了惯性原理,研究了抛体运动的轨迹B.伽利略提出了运动的相对性原理,开创了实验科学C.伽利略的研究,无论是在动力学的基本原理上,还是在动力学的研究方法上,都作出了奠基性的重要贡献D.伽利略提出了狭义相对论解析:选D.伽利略是经典力学的开创者,A、B、C选项内容皆为其科学贡献,故A、B、C 说法均正确;狭义相对论是爱因斯坦提出的,D说法错误.6.日常生活中,我们并没有发现物体的质量随着物体运动速度的变化而变化,其原因是( )A.运动中的物体无法称量其质量B.物体的速度远小于光速,质量变化极小C.物体的质量太小D.物体的质量不随速度的变化而变化解析:选B.在宏观物体的运动中,由于v≪c,所以质量变化不大,而不是因为物体的质量太小或无法测量,也不是因为质量不随速度的变化而变化,正确选项为B.二、多项选择题7.下列运动中经典力学能适用的是( )A.火箭的发射B.宇宙飞船绕地球的运动C.“勇气号”火星探测器D.微观粒子的波动性解析:选ABC.经典力学不能适用的情况是微观、高速物体的运动.8.下列说法正确的是( )A.牛顿运动定律只适用于相对静止的参考系B.在任何惯性系中,物体的加速度都具有不变性C.按照经典时空理论,物体的长度、质量和运动时间都与参考系的运动无关D.伽利略相对性原理表明,在惯性运动的范围内不存在绝对空间和绝对运动解析:选BCD.牛顿运动定律只适用于惯性系,而相对静止的参考系不一定是惯性系;伽利略的相对性原理表明,所有的惯性系都是等效的;经典时空理论中,物体的长度、质量和运动时间都与参考系的运动无关.9.如果牛顿运动定律在参考系A中成立,而参考系B相对于A做匀速直线运动,则在参考系B中正确的是( )A.牛顿运动定律也成立B.牛顿运动定律不能成立C.参考系B不是惯性参考系D.A和B两个参考系中,一切物理规律都是相同的解析:选AD.由于牛顿运动定律在参考系A中成立,因此A为惯性参考系,而B相对于A 做匀速直线运动,所以B也为惯性参考系.根据伽利略的相对性原理,一切物理规律在不同的惯性参考系中都是相同的,故选项A、D正确,B、C错误.10.在地面附近有一高速飞过的火箭,关于地面上的人和火箭中的人观察到的现象,以下说法正确的是( )A.地面上的人观察到火箭变短了,火箭上的时间进程变快了B.地面上的人观察到火箭变短了,火箭上的时间进程变慢了C.火箭上的人观察到地面上的物体的长度和时间进程均无变化D.火箭上的人看到地面上的物体长度变小,时间进程变慢了解析:选BD.根据“尺缩效应”“动钟变慢”原理,地面上的人观察到火箭变短了,火箭上的时间进程应该变慢了,A错误,B正确;根据相对性,火箭上的人看到地面上的物体长度变小,时间进程变慢了,C错误,D正确.。
6.6 经典力学的局限性

三、从弱引力到强引力
阅读教材P50-P51,思考: 1. 经典力学与行星轨道的矛盾是什么?
2
m0为物体静止时的质量 m是物体速度为v时的质量 c是真空中的光速
光在真空中的 c 3.0 108m / s
【例1】 如果真空中的光速为c=3.0×108 m/s,当一个物体的 运动速度为v1=2.4×108 m/s时,质量m1= 3 kg。当它的速度 为v2=1.8×108 m/s时,质量m2为多少?
从低速到高速---速度变换公式
例:一列火车正以v=50 m/s的速度高速行驶,列车内一乘客以相对列车u′= 5 m/s的速度向前跑,站台上的观察者测得该乘客的速度是u=v+u′=55 m/s. 若列车的速度是0.9c,乘客的速度是0.5c,那么站台上的观察者测得该乘客的 速度是0.9c+0.5c=1.4c吗?
答案 不是,光速c是极限速度.
相对论认为: 同一过程的位移和时间测量在不同参考系中是不同的,因 此上式不能成立,经典力学也就不适用了。
从低速到高速---相对论速度变换公式
v
u
车对地的速度为v,人对车的速度为u/
地面上的人看到车上人 相对地面的速度为:
u
u v
1
uv c2
注:如果车上人运动方向与火车运动方向相反,则u/ 取负值
普朗克常数 h 6.631034 J s
旧量子论:普朗克,爱因斯坦,玻尔;
新量子论:海森堡,狄拉克,薛定谔,泡利,德布罗意,玻恩,费米,狄拉克,康普 顿
物理学的“全明星”合影
1927年索尔维会议照片(彩色为后期技术处理)
力学发展史的几个重要阶段

力学发展史的几个重要阶段引言力学作为物理学的一个重要分支,研究物体运动的规律以及力的作用和效果。
力学的发展历程可以追溯到古代希腊时期,经过了多个重要的阶段。
本文将对力学发展史的几个重要阶段进行探讨。
古代力学的奠基希腊古代力学的兴起希腊古代力学的兴起可以追溯到公元前6世纪的毕达哥拉斯学派。
毕达哥拉斯学派提出了“万物皆数”的观念,将力与数学联系在一起。
这为后来的力学研究奠定了基础。
阿基米德的力学成就古希腊科学家阿基米德在力学领域做出了重要贡献。
他提出了浮力定律和杠杆原理,为后来的力学研究提供了重要的理论基础。
经典力学的建立牛顿力学的诞生17世纪末,英国科学家牛顿提出了经典力学的三大定律,即惯性定律、运动定律和作用-反作用定律。
这一理论体系完整地描述了物体运动的规律,开创了经典力学的时代。
牛顿力学的发展牛顿力学的建立并不是一蹴而就的,它经历了长期的发展过程。
随着科学技术的进步,人们对力学规律的认识不断加深,牛顿力学也得到了进一步的完善和发展。
进一步发展的力学理论拉格朗日力学18世纪末,法国数学家拉格朗日提出了拉格朗日力学,这是一种以能量和广义坐标为基本概念的力学理论。
拉格朗日力学更加简洁优美地描述了物体运动的规律,成为经典力学的重要组成部分。
哈密顿力学19世纪初,爱尔兰数学家哈密顿提出了哈密顿力学,它是一种以广义坐标和广义动量为基本概念的力学理论。
哈密顿力学在力学研究中起到了重要的作用,为后来的量子力学的发展奠定了基础。
相对论力学20世纪初,爱因斯坦提出了相对论的理论框架,将时间和空间统一起来。
相对论力学修正了牛顿力学的一些不足,对高速运动和强引力场下的物体运动提供了更加准确的描述。
现代力学的新发展量子力学20世纪初,量子力学的理论被提出。
量子力学描述了微观粒子的运动规律,与经典力学有着本质的区别。
量子力学的发展为理解微观世界的力学行为提供了新的视角。
统计力学统计力学是一种研究大量微观粒子统计行为的力学理论。
经典力学的建立和发展

经典⼒学的建⽴和发展第⼆章经典⼒学的建⽴和发展⽜顿在“原理”⼀书中⼀开始便说:我把这部著作叫做《⾃然哲学的数学原理》,因为哲学的全部任务看来就在于从各种运动现象来研究各种⾃然之⼒,⽽后⽤这些⼒去论证其他的现象。
本章主要四⽅⾯内容:1.近代科学诞⽣是从天⽂学的突破开始 —— 哥⽩尼⽇⼼说。
2.经典⼒学是从伽利略和开普勒时代开始的,到⽜顿时代到达成熟阶段。
3.⽜顿的哲学思想、科学研究⽅法和⼒学机械观。
4.具体知识 —— 着重⼏个守恒定律。
§2.1 坐标系、位置⽮量、速度先介绍在⼒学中的基本物理量:1.⼒学是定量的科学,为了描写物体运动,必须引⼊基本量位置、时间、速度。
2. 在⽜顿⼒学中,坐标和时间是独⽴的,且测量长度的尺在不同参考系中“长度是不变的”和所⽤的钟测得的是“绝对时间”(即不同参考系中钟的快慢⼀样)。
3. 速度是⽮量,速度合成⽤平⾏四边形法则。
4.在数学和物理中,作图法很重要,可帮助我们理解。
希望同学们在学习中重视图形的⽤处,体会⽤图形来分析说明问题的重要性和必要性。
§2.2 从哥⽩尼到开普勒⼀、向地⼼说挑战——哥⽩尼创⽴⽇⼼说1.为什么近代科学诞⽣是从天⽂学的突破开始的?早在公元前4世纪,古希腊哲学家亚⾥⼠多德就已提出了“地⼼说”,即认为地球位于宇宙的中⼼。
公元140年,古希腊天⽂学家托勒密发表了他的13卷巨著《天⽂学⼤成》,在总结前⼈⼯作的基础上系统地确⽴了地⼼说。
根据这⼀学说,地为球形,且居于宇宙中⼼,静⽌不动,其他天体都绕着地球转动。
这⼀学说从表观上解释了⽇⽉星⾠每天东升西落、周⽽复始的现象,⼜符合上帝创造⼈类、地球必然在宇宙中居有⾄⾼⽆上地位的宗教教义,因⽽流传时间长达1300余年。
2. ⽇⼼说提出的科学根源、哲学根源和历史根源是什么?(1) 科学根源:随着天⽂学观察数据越来越多,为了给予解释,托勒密的地⼼说不断修补,越来越复杂,难以使⼈信服。
(2) 哲学根源:他接受毕达哥拉斯学派提出的“宇宙是和谐的,可⽤简单的数学关系来表达宇宙规律”的基本思想。
经典力学发展简史

经典力学发展简史经典力学是物理学中最基本的分支之一,它描述了物体在力的作用下的运动规律。
本文将带您回顾经典力学的发展历程,从牛顿的三大定律到拉格朗日和哈密顿的变分原理,再到哈密顿力学的矩阵形式和量子力学的浮现。
1. 牛顿力学的奠基经典力学的起源可以追溯到17世纪末,当时英国科学家艾萨克·牛顿提出了三大定律,即牛顿运动定律。
第一定律指出,物体在没有外力作用下将保持静止或者匀速直线运动;第二定律指出,物体的加速度与作用在其上的力成正比,与物体的质量成反比;第三定律指出,任何两个物体之间的相互作用力大小相等、方向相反。
2. 拉格朗日力学的建立18世纪末,意大利数学家约瑟夫·拉格朗日提出了一种全新的力学形式,即拉格朗日力学。
他利用了一种称为拉格朗日方程的数学表达式来描述物体的运动。
拉格朗日方程可以从一个称为拉格朗日量的函数中推导出来,该函数包含了物体的动能和势能。
3. 哈密顿力学的发展19世纪初,爱尔兰数学家威廉·哈密顿对拉格朗日力学进行了改进,提出了哈密顿力学。
哈密顿力学使用了一种称为哈密顿函数的函数来描述物体的运动。
哈密顿函数是拉格朗日函数的勒让德变换,它包含了物体的广义动量和广义坐标。
4. 哈密顿力学的矩阵形式20世纪初,量子力学的浮现对经典力学产生了深远的影响。
瑞士物理学家埃尔温·薛定谔将哈密顿力学的形式转化为矩阵形式,从而为量子力学的发展奠定了基础。
矩阵形式的哈密顿力学将物体的状态表示为一个向量,运动规律由矩阵的演化来描述。
5. 经典力学与量子力学的关系经典力学和量子力学是物理学中两个重要的分支,它们描述了不同尺度下物体的运动规律。
经典力学适合于宏观物体,而量子力学适合于微观粒子。
量子力学通过波函数和算符来描述粒子的运动,引入了不确定性原理和量子纠缠等概念。
总结:经典力学是物理学中最基础的分支之一,它的发展经历了牛顿力学、拉格朗日力学和哈密顿力学的演进过程。
经典力学的建立
帕斯卡(1623-1662)法国数学家,物理学家,哲学家。 1631年移居巴黎,12岁时对数学感兴趣,物理主要贡 献有大气压强和流体静力学。 马略特(1620-1684)
荷兰:
惠更斯(1620-1695)物理、天文数学家,出 生于海牙,自幼聪慧,13岁自制车床,1645-1647年在 莱顿大学学习法律与数学。1647-1649年转入布雷达学 院,致力于力学,光学,天文学。一生体弱多病终生 未婚。
6. 关于单摆 关于摆的研究是伽利略在物理学上的第一 个重要贡献。1583年的一天,伽利略在比萨 大教堂做弥撒时,用自己的脉搏测定了天花板 上来回摆动着的大灯的摆动周期。他惊奇的发 现,尽管灯每次摆动幅度越来越小,但摆动所 持续的时间却准确的相等,他马上回家,将石 头系在绳子上,重复这个实验。 结果:摆动的周期与摆动的幅度无关。 还发现:给定的绳长,用重石块还是轻 石块摆动周期相同。单摆的运动是重力引起物 体下落的一个特例。
二. 伽利略对于经典力学的主要贡献及其 科学方法. 伽利略的主要贡献:
(1) 天文学上以望远镜和« 两大体系对话» 为代表,给哥白尼 体系已决定性的支持. (2) 以《关于力学与位移运动两门新科学的讨论及数学证 明》(1638)一书为代表,奠定了经典力学中运动学与动力学 的基础。 (3) 创建了一整套科学方法,也就是伽利略所首创的实验、 物理思维和数学演绎三者巧妙结合的科学方法。
(1)永动机不可能原理和力的平行四边形法则.
由于两侧重量不同,链条要做逆时针运动,由于 链条的连续性,这种运动将会持续下去.这就是 原始“永动机”. 但实际处于平衡状态,这一 现象意味着斜面方向拉力随着斜面与水平面 夹角的减小而减小. 因为斜面左右两边小球的 数目与斜面长度成正比,
Hale Waihona Puke CFrAFl
物理学史
哈雷慧星轨道的推算
长期以来,人们一直认为彗星是神秘的,不吉利的灾星, 长期以来,人们一直认为彗星是神秘的,不吉利的灾星, 根本不能用科学来说明。 根本不能用科学来说明。牛顿的好友哈雷用牛顿力学算出了 1682年出现的彗星的轨道 指出它的回归周期是75 76年 年出现的彗星的轨道, 75—76 1682年出现的彗星的轨道,指出它的回归周期是75 76年, 由此预言它将在1758年再次出现。53年以后的1758年 1758年再次出现 年以后的1758 由此预言它将在1758年再次出现。53年以后的1758年(当时 哈雷已去世),这颗彗星果然如期出现。 ),这颗彗星果然如期出现 哈雷已去世),这颗彗星果然如期出现。哈雷慧星的发现验 证了万有引力定律的科学性。 证了万有引力定律的科学性。
太阳系中还有一颗未知的行星, 太阳系中还有一颗未知的行星,我们没有考虑到它对天王星的引 力作用。他们用牛顿力学算出了这颗未知行星的位置和质量。 力作用。他们用牛顿力学算出了这颗未知行星的位置和质量。 1848年 23日 柏林天文台台长在收到勒维列来信的当晚, 1848年9月23日,柏林天文台台长在收到勒维列来信的当晚,用望 远镜对准勒维列所指出的位置,一下子就看到了一颗新的行星— 远镜对准勒维列所指出的位置,一下子就看到了一颗新的行星 海王星。勒维列无需观测星空,就在笔尖上发现了新行星。 海王星。勒维列无需观测星空,就在笔尖上发现了新行星。牛顿 力学又创造了新的奇迹。 力学又创造了新的奇迹。
相对论与牛顿力学的关系: 相对论与牛顿力学的关系:
相对论打破了牛顿以来传统的绝对时 空观,但并非全盘否定牛顿力学。 空观,但并非全盘否定牛顿力学。牛顿力 学反映的是宏观物体低速运动的客观规律, 学反映的是宏观物体低速运动的客观规律, 而狭义相对论反映的是物体高速运动的客 观规律,是对牛顿力学的继承和发展。 观规律,是对牛顿力学的继承和发展。牛 顿力学是相对论的一种特例( 顿力学是相对论的一种特例(物体低速运 动状态),包括在相对论体系中。 ),包括在相对论体系中 动状态),包括在相对论体系中。与量子 理论共同构成了现代物理学的基本理论框 架。
力学的发展历程
力学的发展历程力学是物理学中的一个重要分支,研究物体的运动规律和力的作用。
它是自古以来人类对自然界运动现象的观察和实践经验的总结,经过长期的发展和演变,形成为了今天我们所熟知的力学理论体系。
下面将为您详细介绍力学的发展历程。
1. 古希腊时期的力学古希腊时期的力学主要由亚里士多德提出,他认为物体的运动是由于物体本身具有内在的趋向性。
他的观点主要包括自然运动和强迫运动两种形式。
自然运动是指物体根据其固有属性而发生的运动,如石头下落;而强迫运动是外力作用下物体发生的运动,如推动物体。
2. 文艺复兴时期的力学文艺复兴时期,伽利略·伽利莱提出了力学的实验方法和科学观点。
他通过实验和观察,发现自由落体物体的加速度是恒定的,并提出了“万有加速度定律”。
此外,他还研究了斜面上物体的滑动运动和摆锤的运动规律,为后来的力学研究奠定了基础。
3. 牛顿力学的建立17世纪末,伊萨克·牛顿提出了经典力学的三大定律,即牛顿定律。
第一定律是惯性定律,指出物体在没有外力作用时将保持静止或者匀速直线运动;第二定律是运动定律,描述了物体的加速度与作用力之间的关系;第三定律是作用-反作用定律,说明了相互作用的两个物体之间的力相等、方向相反。
牛顿力学的建立使得力学研究进入了一个新的阶段。
4. 19世纪的力学发展19世纪,随着科学技术的进步,力学得到了更深入的研究。
拉格朗日和哈密顿等科学家提出了变分原理和广义动力学原理,为力学的数学形式化提供了重要的工具。
此外,达朗贝尔也为力学研究做出了重要贡献,他提出了刚体力学和弹性力学的理论。
5. 现代力学的发展20世纪,随着量子力学和相对论的发展,力学也发生了重大变革。
量子力学揭示了微观粒子的运动规律,相对论则描述了高速物体的运动规律。
这些新的理论使得力学的研究再也不局限于经典力学,而是涉及到更广泛的领域,如量子力学、相对论力学和统计力学等。
总结:力学的发展历程经历了古希腊时期的亚里士多德观点、文艺复兴时期的伽利略实验方法、牛顿力学的建立、19世纪的力学发展以及现代力学的发展等阶段。
简述经典力学体系建立的历史背景
简述经典力学体系建立的历史背景经典力学是一种描述物体运动和互相作用的物理学理论,它是现代物理学的基础。
亦称牛顿力学,以英国物理学家艾萨克·牛顿命名,是一种对于物体在时空中运动变化的描述。
经典力学不仅在物理学领域有着重要地位,而且在其他自然科学领域,如化学、天文学和材料科学中也有广泛应用。
因此,建立经典力学体系在科学发展历程中起着重要的作用。
经典力学体系的建立源远流长,它的历史背景具有很多方面的原因。
在此,我将从以下三个方面为大家解析经典力学体系建立的历史背景。
一、科学技术的进步科学技术的进步是促使经典力学体系建立的重要因素之一。
在欧洲文艺复兴时期,欧洲社会经济、文化、政治逐渐发展。
这个时期欧洲人形成了新的知识体系,追求科学发展,开始建立自己的科学体系。
这个重要的历史时期也促使了科学和技术方面的大量进步。
如望远镜的发明、钟摆的发明和精度地图的制作等。
其中,望远镜的发明运用了透镜原理,使得人们可以更加清晰的观察星空、天空、天体。
在肉眼无法辨认的地方,望远镜可以发现和观察到更多的天体现象。
凭借望远镜,伽利略就观测到了木星的四个卫星,这极大地推动了天文学的发展。
二、自然科学的发展自然科学的发展也是促使经典力学体系建立的重要原因之一。
自然科学在欧洲文艺复兴后得到了飞速的发展,人类对自然现象的认识不断加深。
自然科学的发展对人们认识世界和改变社会发展有着极大的帮助。
维也纳的哲学家和自然科学家,伽利略,牛顿,菲利普·阿尔布雷希特,斯蒂芬·霍金等科学家的工作极大地推动了自然科学的发展,为经典力学的创立奠定了基础。
在牛顿的学说中,他首次提出了“万有引力”的概念。
这种力量是负责保持天体在太阳的引力场内运动的力量。
这一学说,在当时的背景下,引起了许多学者的关注和争论。
三、数学的发展数学的发展也为经典力学的建立提供了极大的帮助和支持。
数学的发展是一个持久而且缓慢的过程,历时几百年才走上一个良性循环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F G
m1 m 2 R
2
万有引力的实验验证—卡文迪许扭称
卡文迪许测得:
G 6.67261011 N•m2/kg2
目前的国际公认值: G 6.7541011 N•m2/kg2
旋吊线
悬吊在半空中可以 自由转动的木杆
小铅球
卡文迪许
大铅球
卡文迪许扭称
理论预言的实践检验——哈雷彗星和海王 星的发现(预言运行轨道,出现周期)
时间T(秒,
s):
宇宙年龄:1018
地球年龄: 1017 出现古人类: 1014 人类文明史: 1011 人类寿命: 109 地球公转周期: 107 地球自转周期: 104 钟摆周期: 100 基本粒子的寿命: 10-6—10-25
§2.4 牛顿与经典力学
英国著名诗人Pope写道:
Nature and Nature’s law lay hid in night, God said “let Newton be” and all was light. 自然界和自然界的规律隐藏在黑暗中,
《自然哲学的数学原理》
牛顿的研究方法:归纳 — 演绎法 归纳法:从实验出发,由特殊到一般
演绎法:以理论为主,由一般到特殊
值得思考:
牛顿不仅讲了研究目的,还讲了科学研究方法:特殊 (现象)到一般(规律),再从一般回到特殊。
•前者是英国哲学家培根强调的“归纳法”,它以实验为 基础;
•数学家兼哲学家的笛卡儿所强调的“演绎法”,它要用 数学工具。
因果性原理:对于自然界中同一类结果,必须尽可
能归之于同一种原因。 统一性原理:物体的属性,凡是既不能增强也不能 减弱者,又为我们实验所能及的范围的一切物体所具 有者,就应视为所有物理的普遍属性。 简单性原理:除那些真实而已足够说明其现象者外, 不必再去寻求自然界事物的其他原因。
真理性原理:在实验哲学中,我们必须把那些从各种 现象中运用一般归纳而导出的命题看作是完全正确的 或很接近于真实的,虽然可以想象出任何相反的假说, 但是在没有出现其他现象足以使之更为正确或者出现 例外之前,仍然应当给予如此的对待。
G N
一个定律统一物理学? 一个思想统一全人类?
• 物理定律适应条件与范畴 • 拓展的应用——
系统的稳定性结构 社会的和谐与稳定性 发展与变革 结构与作用力(地质,人体,建筑物)
牛顿在科学研究方法上的贡献
“我把这部著作叫做 《自然哲学的数学原理》, 因为哲学的全部任务看来 就在于从各种运动现象来 研究各种自然之力,而后 用这些力去论证其他的现 象。”
历史根源:在意大利留学10年,受到文艺复兴运动影 响,思想解放,投身科学革命。
哥白尼体系与托勒密体系相比具有明显的优点:
内在的简单性——太阳在中心,五大行星和地球绕太阳 作大小不同的圆周运动,提供了用匀速圆周运动解释天 体现象的最简单的几何方案。 内在的和谐性——将行星轨道大小、运动速率和排列顺 序关联起来,形成紧密有序的整体,太阳位于中心,使 宇宙显示对称性。
• 古希腊哲学家亚里士多德提出 “地心说”,认为宇宙以地 球为中心
• 近代科学诞生是从天文学的突破开始的(研究方法) 公元140年,古希腊天文学家托勒密发表 巨著《天文学大成》,在总结前人工作 的基础上系统地确立了宇宙地心说 : — 地为球形,且居于宇宙中心,静止不 动,其他天体都绕着地球转动。
“地心说” •表观上解释了日月星辰每天 东升西落、周而复始的现象 •符合上帝创造人类、地球必 然在宇宙中居有至高无上地 位的宗教教义 流传长达1300余年。 欧洲教会以此作为上帝创造 世界的理论支柱,取得学术 界的统治地位
T kR
2
3
开普勒行星运动三定律的科学意义
•定律强烈暗示了太阳对行星有一种吸引力,这个 力随距离的增大而减弱。
•能解释例如为什么水星(离太阳最近)的运动速 度比金星的快,因而周期最短的事实。
•这是什么样的力呢? •牛顿揭示这一自然奥秘 —— 万有引力 •开普勒的理论为牛顿经典力学的建立提供了重要 基础。 •从开普勒起,天文学真正成为一门精确科学,成 为近代科学的开路先锋。
伽利略斜面实验
伽利略与斜塔(自由落体实验)
三、对科学方法的贡献
伽利略的研究方法:
对现象的观察
实验验证
提出假设
形成理论
进行数学和逻辑的推理
开创科学实验方法,将实验、 观察和理论思维相结合。 提出思想实验。
出发点要可靠 推理要严谨
伽利略在解释其观察结论
“伽利略的发现以及他所用的科学推理方法是人类思想 史上最伟大的成就之一,而且标志着物理学真正的开端”
•描述运动状态:时间,空间 (坐标,位移,速度,加速度)
牛顿(1642-1727)的绝对时空观:
坐标和时间是独立的,与运动无关, 在不同参考系中用“长度不变的尺”和“绝对时间”
运动是绝对的
运动的描述是相对的 例:
船在流水中前进
飞机上发射火箭
飞机逆风起飞与降落 火箭发射与地球自转同向
飞机空中加油; 宇宙飞船与空间站对接 (绝对速度0,相对速度=0)
第谷用过的望远镜
第谷在天文台工作
研究方法:实验观测 —— 归纳总结(归纳法)
1.椭圆定律:每个行星的轨道是一个椭圆,太阳位于一 个焦点上。
行星 太阳
开普勒第一定律
2.等面积定律: 在行星与太阳间作一条直线,则此直线在行星运动时于 相同时间内扫过相等的面积(行星非匀速运动)
开普勒第二定律
3.和谐定律:行星运动周期T 的平方正比于行星与太阳 平均距离R 的三次方,记为:
重力:地球对物体的引力作用 失重,超重, 想象无重力作用情况(外空间) 弹性力:物体企图恢复形变时产生的力 摩擦力:物体具有相对运动(或趋势)时产生 f = N (滚动,滑动)
(汽车离合器,刹车,车轮与地面,纺织品) 电场力,磁力,分子、原子的作用力
牛顿第一定律——惯性定律
• 一个不受外力作用的物体,将保持它的静止或匀速直 线运动状态。 惯性——物体固有运动特性(维持原有运动状态)。 力的含义——是改变物体运动状态的因素,而不是维 持物体运动状态的因素。
上帝说:“让牛顿去吧!”
于是一切成为光明。
牛顿的贡献:数学,天文学,
力学,光学,科学研究方法
牛顿发明反射望远镜
力—物体间的相互作用
万有引力:
定律的创立过程 问题的提出 ——苹果为什么从树上掉到地上? 月亮为什么不掉到地球上来? 别人只看到了天上和地上的运动不同, 牛顿看到了它们的相似性,把它们统一起来。这正是牛 顿哲学思想——统一性原理的体现。
惯性参照系与非惯性参照系(a 0) 汽车启动与刹车,电梯,转盘,地球
Why?
a
参照系与测量结果
• 使用的物理定律相同,结果不同 • 立场与结论——观点相同,但结论相对而异
物质世界的空间尺度和时标
• 长度L(米, m):
宇宙引力半径:1026 地球到银河系中心距离: 1020 地球到太阳距离:1011 太阳半径: 109 地球半径:106 地球到月亮距离: 108 人的身高:100 人的头发直径: 10-4 细菌:10-5 原子:10-10 核子:10-15
哈雷彗星和海王星的发现(预言运行轨道,
出现周期)
请在你的学习与工作中有意识的学用归纳法和演绎法 去分析和认识一些自然科学现象 天气预报是如何形成的?
§2.2 伽利略和近代力学的诞生
一、伽利略在天文学方面的贡献:
自制望远镜(1609,光学对天文研究的贡献)— 远距离, 高灵敏,高分辨
发现木星的4颗卫星(1610)
在牛顿前,两种方法被认为是互相排斥的。牛顿在科学方法上的重 大贡献就是将两种方法结合起来。 从万有引力公式的建立到被世界公认的过程,体现牛顿将两种方法 成功结合起来,说明这两种方法是相辅相成的。这也是牛顿哲学思 想的体现。
三、牛顿的自然哲学思想
牛顿在《自然哲学的数学原理》中,提出了4条 《哲学中的推理法则》:
牛顿第三定律(作用力和反作用力定律):
• 一物体对另一物体的作用力将引起另一物体对该物体的反作用力,
作用力与反作用力性质相同,大小相等、方向相反,沿同一条直线
分别作用于两物体。
F12 F21
例:汽车安全气囊
N
问题:拔河的胜负关键取决于什么?与地面的摩擦力!
拓展到其他领域:自然科学,经济型,社会学,国际关系 (相互作用过程的存在,反作用)
近代自然科学的诞生从天文学的突破开始。
经典力学从伽利略和开普勒时代开始(16-17世纪),
到牛顿时代达到成熟。
从科学方法上看,经典力学的建立和发展离不开科 学实验方法和数学的引入,离不开归纳法(需要实 验)和演绎法(需要数学)两者的结合。
§2.1 从哥白尼到开普勒——日心说的创立
一、向地心说挑战 — 哥白尼创立日心说
托勒密地心说体系
哥白尼(1473-1543)
提出新观点-日星说
哥白尼日心说示意图
日心说的创立和《天体运行论》的出版(1539) —— 科学史上的一次革命
日心说提出的科学根源、哲学根源和历史根源:
科学根源:随着天文学观察数据越来越多,为了给予 解释,托勒密的地心说不断修补,越来越复杂,难以 使人信服。 哲学根源:哥白尼接受毕达哥拉斯学派提出的“宇宙 是和谐的,可用简单的数学关系来表达宇宙规律”的 基本思想,也赞同柏拉图哲学,同柏拉图一样,高度 赞美太阳,给予太阳“宇宙正中”的位置。
发现太阳黑子(1612)
定出太阳自转周期(25天)
伽利略望远镜
木星卫星
伽利略(1564-1642)
Байду номын сангаас 二、在力学方面的贡献:
提出落体定律和惯性运动概念 伽利略自由落体实验否定了亚里士多德“重的物 体落地快,轻的物体落地慢”的错误理论,发现 自由落体定律。伽利略斜面实验表明:“保持物 体运动不需要力,物体运动的改变才需要力”— —观念上的重大更新。