考研数学模拟考试(数学一)

考研数学模拟考试(数学一)
考研数学模拟考试(数学一)

考研数学模拟考试(数学一)

————————————————————————————————作者:————————————————————————————————日期:

2

2014年考研数学模拟试题(数学一)

参考答案

一、选择题(本题共8小题,每小题4分,满分32分,每小题给出的四个选项中,只有一项符合题目要求,把所选项的字母填在题后的括号内)

1.设()f x 在(,)-∞+∞内是可导的奇函数,则下列函数中是奇函数的是(). (A )sin ()f x '(B )

sin ()x t f t dt ??

(C )

(sin )x f t dt ?

(D )

[sin ()]x t f t dt +?

解 选择B. 由题设知,sin ()t f t ?为偶函数,故

sin ()x t f t dt ??

为奇函数.

2.设1

1

1e ,0,()1e 1,

0,x x

x f x x ?

+?≠?=?-??=? 则0x =是()f x 的().

(A )可去间断点(B )跳跃间断点(C )第二类间断点(D )连续点

解 选择B. 1

10

1e lim ()lim 11e

x x x x

f x -

-→→+==-,1

10

1e lim ()lim 11e

x x x x

f x ++

→→+==--,故0x =是()f x 的跳跃间断点.

3.若函数()f x 与()g x 在(,)-∞+∞内可导,且()()f x g x <,则必有(). (A )()()f x g x ->- (B )()()f x g x ''< (C )0

lim ()lim ()x x x x f x g x →→< (D )

()()x x

f t dt

g t dt

?

解 选择 C. 由函数()f x 与()g x 在(,)-∞+∞内可导知, ()f x 与()g x 在(,)-∞+∞内连续,0

0lim ()()x x f x f x →=,

0lim ()()x x g x g x →=,而00()()f x g x <,故0

lim ()lim ()x x x x f x g x →→<.

4.已知级数

1

1

(1)

n n n a ∞

-=-∑和21

n n a ∞=∑分别收敛于,a b ,则级数1

n n a ∞

=∑().【C 】

(A)不一定收敛 (B) 必收敛,和为2a b + (C)必收敛,和为2a b - (D) 必收敛,和为2a b +

解 选择D. 由级数

1

1

(1)

n n n a ∞

-=-∑收敛知,lim 0n n a →∞

=,

1

1

(1)

n n n a ∞

-=-∑,21

n n a ∞

=∑

1

n

n a

=∑的前n 项和分别为,,n n n s S σ,则lim ,lim n n n n s a S b →∞

→∞

==,

2122k k a a a σ=+++L

故22lim lim(2)2k k k k k s S a b σ→∞

→∞

=+=+,21221lim lim()2k k k k k a a b σσ++→∞→∞

=+=+,

所以lim 2n n a b σ→∞

=+,级数

1

n

n a

=∑收敛,和为2a b +.

5.设矩阵A 与101020101B -?? ?

= ? ?-??

相似,则()(2)r A r A E +-=().

(A)3 (B) 4 (C) 5 (D) 6

解 选择A. 矩阵A 与B 相似,则2A E -与2B E -相似, 故()(2)()(2)213r A r A E r B r B E +-=+-=+=.

6.设3阶方阵A 的特征值是1,2,3,它们所对应的特征向量依次为123,,ααα,令312(3,,2)P ααα=,则1

P AP -=().

(A )900010004?? ? ? ???(B )300010002?? ? ? ???

(C )100020003?? ? ? ???(D )100040009?? ? ? ???

解 因为3123,,2ααα分别为A 的对应特征值3,1,2的特征向量,故1

P AP -=300010002??

? ? ???

.

7. 设随机变量X 服从[1,1]-上的均匀分布,则X 与e

X

Y -=().

(A )不相关 (B )相关 (C )独立 (D )相关且不独立 解 选择A. 经计算得,(,)(,e

)(e

)e

0X

X

X

Cov X Y Cov X E X EXE ---==-=,0XY ρ=.

8. 设1,,n X X L 是取自正态总体(0,1)N 一个简单随机样本,则下列结论中错误的是().

(A )~(0,1)nX N (B )2

2

(1)~(1)n S n χ--(C )~(1)nX t n S

-(D )2

12

1~(1,)n i i nX F n X =∑ 解 选择 D. 由一个正态总体的抽样分布知A ,B ,C 都正确,22

221

1

~(1),

~()n

i

i X X

n χχ=∑,但是它们不独立,不能推出

2

121

~(1,)n

i

i nX F n X

=∑.

9.设函数(,)f x y 具有连续偏导数,且2

(,234)f x x x x -+=,(1,3)2x f =,则(1,3)y f = .

解 答案为1-. 方程2

(,234)f x x x x -+=两边对x 求导,得

22(,234)(,234)(43)1x y f x x x f x x x x -++-+?-=,

令1x =,得(1,3)(1,3)1x y f f +=,故(1,3)1y f =-. 10.微分方程(e 1)1x

y y -'+-=的通解为 .

解 答案为e e (1e )x

x

y C -=+. (e 1)(e

1)e [e ]x x

dx

dx

y dx C -----?

?

=+?

e

e e

e e e (e e )e (e )e (1e )x

x

x

x

x

x

x x

x dx C C C -----+--+-=+=+=+?.

11.设2

cos n

n x a

nx ∞

==

∑,则2a = .

解 答案为1. 220

2

cos 21a x xdx π

π

==?

12.设S 为锥面22(01)z x y z =

+≤≤外侧,则 S

y dydz =?? .

解 答案为0. S 关于yoz 面反向对称,y 关于x 为偶函数,故

0S

ydydz =??.

13.设A 为n 阶矩阵,其伴随矩阵的元素全为1,则齐次方程组0Ax =的通解为 .

解 答案为T

(1,1,,1)k L ,k 为任意常数. 由题设知,*

()1r A =,()1r A n =-,()1n r A -=且*AA A E O ==,故*

A 的列

向量T

(1,1,,1)L 是0Ax =的基础解系.

14.设随机变量X 与Y 相互独立,且都服从正态分布(0,1)N ,则{}max(,)0P X Y ≥= .解 答案为

34

. {}{}{}max(,)01max(,)010,0P X Y P X Y P X Y ≥=-<=-<<

{}{}231001(0)4

P X P Y Φ=-<<=-=

.

三、解答题(本题共9小题,满分94分。解答应写出文字说明、证明过程或演算步骤)

15. (本题满分9分)设(,)u f x z =,而(,)z z x y =是由方程()z x y z ?=+所确定的隐函数,其中f 具有连续偏导数,而?具有连续导数,求du .

解 取全微分x z du f dx f dz =+,()()()1()

dx z dy

dz dx z dy y z dz dz y z ????+'=++?=

'-,

故()11z z x f f du f dx dy y y ?

??=+

+''

--.

16. (本题满分10分)

设()f x 在(,)-∞+∞上连续,且

()e cos t x n

f x t dt x -=?

.

⑴求()f x ;⑵ 设(0)n a f =,求级数1

112

n

n n a ∞

+=+

∑的和. 解 ⑴令u x t =-,则

()e ()e

e

()e t x u x u x x n

n

n

n

x

f x t dt f u du f u du --

-=-=?

??

故0

e

()e cos x u x n

n

f u du x -

=?

,即0

()e e cos u x x n

n

f u du x -

-

=?,

上式两边对x 求导,得1()e

e cos e sin x x x

n

n

n

f x x x n

-

--=--,

即1

()cos sin f x x x n

=-

-. ⑵ 1

(0)n a f n ==-,级数111111122

n n n n n a n ∞∞

++==+=-∑∑,

11

0011

1()1111ln(1),11n x x n n n x s x x x dx x dx x x x n x +∞

∞-===-=-=-=+-<-∑∑??

1

1

11

1()1ln 2222n n n a s ∞

+=+==-∑

. 17. (本题满分10分)设球体2

2

2

2(0)x y z az a ++≤>的各点密度与坐标原点到该点的距离成反比(比例系数0k >),求球体的质量M 及球体绕z 轴旋转的转动惯量z I . 解 由题设知,球体Ω上任一点的密度2

2

2

(,,)k x y z x y z ρ=

++,

球体的质量2

2

2

(,,)k M x y z dV dV x y z

Ω

Ω

ρ=

=++??????

22cos 2220

4

sin 3

a k d d r dr ka r π

π?θ??π==?

??

. 转动惯量222

2

2

2

2

()()(,,)z k x y I x y x y z dV dV x y z

Ω

Ω

ρ+=

+=++??????

22cos 334216

sin a d d kr dr ka π

π?θ??π==

?

??

.

18. (本题满分11分)设函数()f x 在[2,4]上连续,在(2,4)内可导,且423

(2)(1)()f x f x dx =-?

,证明:存在(2,4)ξ∈,

使得2()

()1f f ξξξ

'=

-. 证 令2

()(1)()F x x f x =-,则2

()2(1)()(1)()F x x f x x f x ''=-+-, 由积分中值定理知,存在[3,4]c ∈,使得

4

223

(2)(1)()(1)()f x f x dx c f c =-=-?,即(2)()F F c =,

由罗尔定理知,存在(2,)(2,4)c ξ∈?,使得()0F ξ'=,即2

2(1)()(1)()0f f ξξξξ'-+-=,即2()

()1f f ξξξ

'=-. 19. (本题满分10分)

(数学一)证明:在右半平面0x >上,曲线积分

22(4)()4L

x y dy x y dx

x y ++-+?与路径无关,并求一个二元函数(,)u u x y =,使得22

(4)()4x y dy x y dx

du x y ++-=

+.

证 2222

4,44x y x y

P Q x y x y

-+=

=++, 2222

22222242(4)48(4)(4)Q x y x x y y xy x x x y x y ?+-+--==?++, 2222

222222

(4)8()48(4)(4)P x y y x y y xy x y x y x y ?-+----==?++, 在右半平面0x >上,

Q P

x y ??=??,故曲线积分22

(4)()4L

x y dy x y dx x y ++-+?与路径无关. 解 所求函数(,)22

(1,0)

(4)()4x y x y dy x y dx

u x y ++-=

+?

取积分路径为(1,0)到(,0)x ,再到(,)x y 的折线段,则

22

221

00

1(4)121ln [arctan ln(4)]422y

x y x y dy y u dx x x y x x y x +=+=++++?

? 22121

arctan ln(4)22

y x y x =++. 20. (本题满分11分)

设二维随机向量(,)X Y 联合概率密度为, 0,(,)0, y xe x y f x y -?<<=??

其它.

求⑴条件概率密度()Y X f y x ;⑵Z X Y =+概率密度. 解 画出联合概率密度的非零区域. ⑴关于的边缘密度0,0,

()(,)x f x f x y dy +∞≤?=

=??

条件概率密度0,,

(,)()(),.

Y X x y

X y x f x y f y x f x e y x -≤?=

=?>? ⑵Z X Y =+的取值范围为(0,)+∞ 当0z ≤时,()0Z F z =,

当0z >时,{}{}()(,)Z x y z

F z P Z z P X Y z f x y dxdy +≤=≤=+≤=

??

2220

()z z z z x z x y

y

x x z x

x

dx xe dy dx xe dy x e e dx ------===-??

??

?

220

z z x

z

x xe dx e

xe dx --=-??

2

0,0()()(1),02

z Z z z f z F z z e e z -

-≤??'==?-+>?? 21.(本题满分11分)

设1,,n X X L 是取自总体X 一个简单随机样本,X 的概率密度为

ln ,0,()010,0,

x x f x x θθθ?->=<

⑴求未知参数θ的矩估计量;

⑵求未知参数θ的最大似然估计量. 解 ⑴1()ln EX xf x dx θ

+∞-∞

=

=-

?

,令11ln X

X EX e θθ-==-?=, 所以θ的矩估计为1

?X

e θ

-

=.

⑵似然函数11()ln (ln )(ln )n

i

n

i x x x

n L θθθθ

θθθ=∑=--=-L ,

1

ln ()()ln ln(ln )n

i i L x n θθθ==+-∑

1

ln ()1()0ln n i i L n x θθθθθ=?=+=?∑,解得1ln x θ=-,1

x e θ-=, 所以θ的最大似然估计为x

e 1-

∧=θ.

22.(11分)已知两个向量组()()T

T

121,2,3,1,0,1αα==与()()T

T

121,2,,4,1,5t ββ=-=. ⑴t 为何值时,两个向量组等价?

⑵两个向量组等价时,求出它们之间的线性表示式. 解 ⑴对矩阵()1212,,,A ααββ=作初等行变换,得

()1212111411

14,,,2021~024********A t t ααββ--???? ? ?

==-- ? ? ? ?-+-????

1114~02470010t -??

?-- ? ?-??

, 当1t =时,12112(,,)(,)r r ααβαα=,12212(,,)(,)r r ααβαα=,12,ββ可由12,αα线性表示,且12112(,,)(,)r r ββαββ=,

⑵两个向量组等价时,

1101211147~0247~012

200000000A ?

? ?-?? ?

? ?--- ? ? ?

?

?? ? ???

, 故112212172,22βααβαα=-=+,1122127412

,9999

αββαββ=+=+. 23.(11分)已知二维向量α不是二阶方阵A 的特征向量.

⑴证明,A αα线性无关;

⑵若2

60A A ααα+-=,求A 的全部特征值,并判断A 能否与对角矩阵相似. ⑴证 设120k k A αα+=,则20k =,否则1

2

k A k αα=-

,α是的A 特征向量,与题设矛盾,将20k =代入120k k A αα+=,得10k α=,又0α≠,故10k =,所以,A αα线性无关; ⑵解 2

2

60(6)0A A A A αααα+-=?+-=

(3)(2)0A E A E α?+-=或者(2)(3)0A E A E α-+=,

(3)(2)(3)(2)0A E A E A E A ααα+-=+-=,又20A αα-≠,故3A E +有一个特征值为0,从而A 有一个特征值为3-,

同理,2A E -有一个特征值为0,从而A 有一个特征值为2,故A 的特征值为3-和2. 由于二阶方阵A 有两个不同的特征值,故A 能与对角矩阵相似.

2020考研数学复习:高数常见题型分析

2020考研数学复习:高数常见题型分析 2020考研数学复习:高数常见题型分析 1、求极限 无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。 区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因式、重要极限等几种方法,有时 需要选择多种方法综合完成题目。另外,分段函数在个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性 的研究等也需要使用极限手段达到目的,须引起注意! 2、利用中值定理证明等式或不等式 利用中值定理证明等式或不等式,利用函数单调性证明不等式证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。 等式的证明包括使用4个常见的微分中值定理(即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),1个定积分中 值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用时的一个难点,但考查的概率不大。 3、求导 一元函数求导数,多元函数求偏导数求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。 一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基 本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能 是隐函数(包括方程组确定的隐函数)。另外,二元函数的极值与条

件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。 4、级数 级数问题常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形 式出现。 函数项级数(幂级数,对数一的考生来说还有傅里叶级数,但考 查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在 一点的幂级数展开在考试中常占有较高的分值。 4、积分的计算 积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数一考生来说常主要是三重积分、曲线积分、曲面 积分的计算。 这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想象能力的考查为辅的。需要注意在复习中对一些问题的 灵活处理,例如定积分几何意义的使用,重心、形心公式的使用, 对称性的使用等。 6、微分方程解常微分方程 微分方程解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住 常用形式,注意运算准确性,在考场上正确运算都没有问题。 但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程求通解或特解,现在给出通解或特解求方程。 这需要大家对方程与其通解、特解之间的关系熟练掌握。

[考研类试卷]考研数学三(线性代数)模拟试卷17.doc

[考研类试卷]考研数学三(线性代数)模拟试卷17 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 设A,B为两个n阶矩阵,下列结论正确的是( ). (A)|A+B|=|A|+|B| (B)若|AB|=0,则A=0或B=0 (C)|A—B|=|A|—|B| (D)|AB|=|A||B| 2 设α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1=m,|B|=|α1,α2,β2,α3|=n,则|α1,α2,α3,β1+β2|为( ). (A)m+n (B)m一n (C)一(m+n) (D)n一m 3 设A是m×n矩阵,B是n×m矩阵,则( ). (A)当m>n时,必有|AB|≠0 (B)当m>n时,必有|AB|=0 (C)当n>m时,必有|AB|≠0 (D)当n>m时,必有|AB|=0

4 设A,B,A+B,A-1+B-1皆为可逆矩阵,则(A-1+B-1)-1等于( ).(A)A+B (B)A-1+B-1 (C)A(A+B)-1B (D)(A+B)-1 5 设A,B都是n阶可逆矩阵,则( ). (A)(A+B)*=A*+B* (B)(AB)*=B*A* (C)(A—B)*=A*一* (D)(A+B)*一定可逆 6 设A为n阶矩阵,k为常数,则(kA)*等于( ). (A)kA* (B)k n A* (C)k n-1A* (D)k n(n-1)A* 7 设A为n阶矩阵,A2=A,则下列成立的是( ). (A)A=0 (B)A=E (C)若A不可逆,则A=0

(D)若A可逆,则A=E 8 设A为m×n矩阵,且r(A)=m<n,则( ).(A)A的任意m个列向量都线性无关 (B)A的任意m阶子式都不等于零 (C)非齐次线性方程组Ax=b一定有无穷多个解(D)矩阵A通过初等行变换一定可以化为(E m|0) 9 设 P1= ,则m,n可取( ). (A)m=3,n=2 (B)m=3,n=5 (C)m=2,n=3 (D)m=2,n=2 10 设 A= ,则B为( ).

考研数学二真题答案解析

1..【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐 函 数 求 导 . 【详解】 方法一: x x y )sin 1(+==)sin 1ln(x x e +,于是 ] sin 1cos )sin 1[ln()sin 1ln(x x x x e y x x +? ++?='+, 从而 π =x dy = .)(dx dx y ππ-=' 方法二: 两边取对数, )sin 1ln(ln x x y +=,对x 求导,得 x x x x y y sin 1cos )sin 1ln(1++ +=', 于是 ] sin 1cos )sin 1[ln()sin 1(x x x x x y x +? ++?+=',故 π =x dy = .)(dx dx y ππ-=' 【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式. 2..【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可. 【详解】 因为a= ,1) 1(lim )(lim 2 3=+=+∞→+∞ →x x x x x f x x []23)1(lim )(lim 2 32 3 = -+=-=+∞ →+∞ →x x x ax x f b x x , 于是所求斜渐近线方程为 . 23 +=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。这里应注意两点:1) 当存在水平渐近线时,不需要再求斜渐近线;2)若当∞→x 时,极限x x f a x ) (lim ∞ →=不存在,则应进 一步讨论+∞→x 或-∞→x 的情形,即在右或左侧是否存在斜渐近线,本题定义域为x>0,所以只 考虑+∞→x 的情形. 3..【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则

跨考教育考研数学高数第一章常考题型分析七

考研数学高数第一章常考题型七:函数的连续性 69.【01—3 3分】设函数()()0 x g x f u du =?, 其中()()()211,01211,123x x f x x x ?+≤≤??=??-≤≤??,则()g x 在区间()0,2内( ) ()A 无界 ()B 递减 ()C 不连续 ()D 连续 70.【06—2 4分】设函数23 01sin 0(),0x t dt x f x x a x ?≠?=??=?? 在0x =处连续,则a = 71.【08—3 4分】设函数21,()2,x x c f x x c x ?+≤?=?>?? 在(,)-∞+∞内连续,则c = . 72. 【03—3 4分】 设,0,0, 0,1cos )(=≠?????=x x x x x f 若若λ 其导函数在0x =处连续,则λ的取值范围是________。 73.【04—2 4分】设2(1)()lim 1 n n x f x nx →∞-=+, 则()f x 的间断点为x = 74.【03—3 10分】设).1,2 1[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义(1)f 使得()f x 在]1,21[上连续. 【小结】: 考查函数的连续性本质上也就是考查求极限。函数()f x 在x a =处连续当且仅当li m ()()x a f x f a →=;由于lim ()x a f x →存在当且仅当(0),(0)f a f a -+存在且相等,因此该等式又可以等价地表述为(0)(0)()f a f a f a -=+=。 参考答案 69.【01—3 3分】()D

考研数学练习题推荐

考研数学练习题推荐 WD《考前冲刺最后3套题》★★★ 比较简单,练练手不错。 恩波《最后冲刺成功8套卷》★★★ 网上都喊不难,但是我做的不是很理想。怎么说呢,总觉得题目怪怪的。和真题完全不是一个类型。 考试虫《8套模拟试卷》★★★ 面市时间过早。没有一定的能力就去做模拟题的话,效果不是很大。虽然卖点是众多前命题组成员的集体智慧结晶,但也意味着出题风格与极力创新的现命题组的思路格格不入。陈文灯《复习指南之100问专题串讲》★★★两位考研前辈编写的一本书,具有一定的示范效应。形式有点类似大帝的《超越135》,不过内容没那么全。有些很巧很赞的方法,也有些方法复杂到不实用。知识部分的讲解常有神来之笔。 李永乐《最后冲刺超越135分》★★★☆ 以专题的形式呈现考研数学的重点内容。并附有典型例题,有些难度很大,有些极其复杂。但大部分还是令人舒坦的。因为是例题,有人可能会倾向于只看不做。我觉得还是笔耕不辍为妙。不能说冲刺必备,但用来配合全书或指南做最后一轮复习还是可行的。李永乐《基础过关660题》★★★☆

一本客观题练习集。真的如传闻所言只是第一轮复习书吗?我看未必。书中的相当部分题目还是很有难度的。我是这样理解的,如果660道题全会做,你的基础才算过关。李永乐《线性代数辅导讲义》★★★★ 大帝无愧于“线代之王”的称号。薄薄的一本书把考研数学线性代数部分研究的非常透彻。第二三轮复习必备。得力于该书所讲的求行列式的递进法,我幸运地做对了08年考试中线代的一道难题。 黄先开曹显兵《经典冲刺5套卷》★★★☆ 难度一般,可以拿来建立信心。一些题目体现出了新鲜的元素,不妨做做让脑筋转转弯。陈文灯《单选题解题方法与技巧》★★★★ Excellent,难以用语言形容。如果用心做完这本书选择题还拿不了满分,真可以称得上是奇迹了。 《考研数学考试分析》★★★★ 在复习末期,精心准备的考生一定会有这样一个问题。那就是解题的规范性。计算题和证明题,究竟怎么答才算标准,才不用担心因解题不规范而丢掉分数?答案就在这本书中。近四年数一到数四的真题及标准解题过程应有尽有,好好研究模仿吧。对于经济类考生的又一大福音就是可以接触到数学一的真题。做做数一还是有助于拓宽思路提升水平的。 \

考研数学三模拟题

考研数学三模拟题 一、选择题:1~8小题,每小题4分,共32分。在每小题给出的四个选项中,只有一项符合 题目要求,把所选项前的字母填在题后的括号中。 (1)()f x 是在(0,)+∞内单调增加的连续函数,对任何0b a >>,记()b a M xf x dx =?, 01[()()]2b a N b f x dx a f x dx =+??(中间的加号改成减号),则必有( ) (A )M N ≥;(B )M N ≤;(C )M N =;(D )2M N =; (2)设函数()f x 在(,)-∞+∞内连续,在(,0)(0,)-∞+∞U 内可导,函数()y y x =的图像为 则其导数的图像为( ) (A) (B)

(C) (D) (3)设有下列命题: ①若 21 21 ()n n n u u ∞ -=+∑收敛,则1 n n u ∞=∑收敛; ②若1 n n u ∞=∑收敛,则10001 n n u ∞ +=∑收敛; ③若1 lim 1n n n u u +→∞>,则1n n u ∞=∑发散; ④若1()n n n u v ∞=+∑收敛,则1n n u ∞=∑,1n n v ∞ =∑收敛 正确的是( ) (A )①②(B )②③(C )③④(D )①④ (4)设220ln(1)() lim 2x x ax bx x →+-+=,则( ) (A )51,2a b ==- ;(B )0,2a b ==-;(C )5 0,2 a b ==-;(D )1,2a b ==- (5)设A 是n 阶矩阵,齐次线性方程组(I )0Ax =有非零解,则非齐次线性方程组(II )T A x b =, 对任何12(,,)T n b b b b =L (A )不可能有唯一解; (B )必有无穷多解; (C )无解; (D )可能有唯一解,也可能有无穷多解 (6)设,A B 均是n 阶可逆矩阵,则行列式1020 T A B -?? -? ??? 的值为 (A )1 (2)n A B --; (B )2T A B -; ( C )12A B --; ( D )1 2(2)n A B -- (7)总体~(2,4)X N ,12,,,n X X X L 为来自X 的样本,X 为样本均值,则( )

研究考研数学典型例题

研究考研数学典型例题 数学科目重视做题和理论应用,尤其是典型的题型,大家要研究好,且要灵活的运用,下面查字典数学网小编分享关于研究和用好典型例题的事儿,请小伙伴们注意啦。 一、面对一道典型例题,在做这道题以前你必须考虑,它该从哪个角度切入,为什么要从这个角度切入。 做题的过程中,必须考虑为什么要用这几个原理,而不用那几个原理,为什么要这样对这个式子进行化简,而不那样化简。做完之后,必须要回过头看一下,这个解题方法适合这个题的关键是什么,为什么偏偏这个方法在这道题上出现了最好的效果,有没有更好的解法……就这样从开始到最后,每一步都进行全方位的思考,那么这道题的价值就会得到充分的发掘。 二、学习数学,重在做题,熟能生巧。 对于数学的基本概念、公式、结论等也只有在反复练习中才能真正理解与巩固。数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。此外,还要初步进行解答综合题的训练。数学考研题的重要特征之一就是综合性强、知识覆盖面广,近几年来较为新颖的综合题愈来愈多。这类试题一般比较灵活,难度也要大一些,应逐步进行训练,积累解题经验。这也有利于进一步理解并彻底

弄清楚知识点的纵向与横向联系,转化为自己真正掌握了的东西,能够在理解的基础上灵活运用、触类旁通。 三、同时要善于思考,归纳解题思路与方法。 一个题目有条件,有结论,当你看见条件和结论想起了什么?这就是思路。思路有些许偏差,解题过程便千差万别。考研数学复习光靠做题也是不够的,更重要的是应该通过做题,归纳总结出一些解题的方法和技巧。考生要在做题时巩固基础,在更高层次上把握和运用知识点。对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。 基础的重要性已不言而喻,但是只注重基础,也是不行的。太注重基础,就会拘泥于书本,难以适应考研试题。打好基础的目的就是为了提高。但太重提高就会基础不牢,导致头重脚轻,力不从心。考生要明白基础与提高的辩证关系,根据自身情况合理安排复习进度,处理好打基础和提高能力两者的关系。一般来说,基础与提高是交插和分段进行的,在一个时期的某一个阶段以基础为主,基础扎实了,再行提高。然后又进入了另一个阶段,同样还要先扎实基础再提高水平,如此反复循环。考生在这个过程中容易遇到这样的问题,就是感觉自已经过基础复习或一段时间的提高后几乎不再 有所进步,甚至感到越学越退步,碰到这种情况,考生千万

[考研类试卷]考研数学(数学二)模拟试卷415.doc

[考研类试卷]考研数学(数学二)模拟试卷415 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 下列无穷小中阶数最高的是( ). (A)eχ-e tanχ (B)ln(1+2t)dt (C)ln(1+χ)-sinχ (D)-1 2 下列命题正确的是( ). (A)若f(χ)在χ0处可导,则一定存在δ>0,在|χ-χ0|<δ内f(χ)可导 (B)若f(χ)在χ0处连续,则一定存在δ>0,在|χ-χ0|<δ内f(χ)连续 (C)若存在,则f(χ)在χ0处可导 (D)若f(χ)在χ0的去心邻域内可导,f(χ)在χ0处连续,且f′(χ)存在,则f(χ)在χ0处可导,且f′(χ0)f′(χ) 3 下列说法中正确的是( ). (A)若f′(χ0)<0,则f(χ)在χ0的邻域内单调减少 (B)若f(χ)在χ0取极大值,则当χ∈(χ0-δ,χ0)时,f(χ)单调增加,当χ∈(χ0,χ0+δ)时,f(χ)单调减少

(C)f(χ)在χ0取极值,则f(χ)在χ0连续 (D)f(χ)为偶函数,f〞(0)≠0,则f(χ)在χ=0处一定取到极值 4 设δ>0,f(χ)在(-δ,δ)内恒有f〞(χ)>0,且|f(χ)|≤χ2,记I-δδ=∫f(χ)dχ,则有( ). (A)I=0 (B)I>0 (C)I<0 (D)不能确定 5 设厂有一阶连续的偏导数,且f(χ+y,χ-y)=4(χ2-χy-y2),则χf′χ(χ,y)+yf′y(χ,y)为( ). (A)2χ2-8χy-2y2 (B)-2χ2+8χy-2y2 (C)2χ2-8χy+2y2 (D)-2χ2+8χy+2y2 6 设f(χ)=χ3-3χ+k只有一个零点,则k的取值范围是( ). (A)|k|<1 (B)|k|>1 (C)|k|>2 (D)k<2

2018年考研数学模拟测试题完整版及答案解析[数三]

2017考研数学模拟测试题完整版及答案解析(数三) 一、选择题:1~8小题,每小题4分,共32分。在每小题给出的四个选项中,只有一项符 合题目要求,把所选项前的字母填在题后的括号中。 (1)()f x 是在(0,)+∞内单调增加的连续函数,对任何0b a >>,记()b a M xf x dx = ? , 01 [()()]2b a N b f x dx a f x dx =+??,则必有( ) (A )M N ≥;(B )M N ≤;(C )M N =;(D )2M N =; (2)设函数()f x 在(,)-∞+∞内连续,在(,0)(0,)-∞+∞内可导,函数()y y x =的图像 为 则其导数的图像为( ) (A) (B)

(C) (D) (3)设有下列命题: ①若 21 21 ()n n n u u ∞ -=+∑收敛,则1 n n u ∞=∑收敛; ②若1 n n u ∞=∑收敛,则10001 n n u ∞ +=∑收敛; ③若1 lim 1n n n u u +→∞>,则1n n u ∞=∑发散; ④若1()n n n u v ∞=+∑收敛,则1n n u ∞=∑,1n n v ∞ =∑收敛 正确的是( ) (A )①②(B )②③(C )③④(D )①④ (4)设22 0ln(1)() lim 2x x ax bx x →+-+=,则( ) (A )51,2a b ==- ;(B )0,2a b ==-;(C )5 0,2 a b ==-;(D )1,2a b ==- (5)设A 是n 阶矩阵,齐次线性方程组(I )0Ax =有非零解,则非齐次线性方程组(II ) T A x b =,对任何12(,,)T n b b b b = (A )不可能有唯一解; (B )必有无穷多解; (C )无解; (D )可能有唯一解,也可能有无穷多解 (6)设,A B 均是n 阶可逆矩阵,则行列式1020 T A B -?? -? ??? 的值为 (A )1 (2)n A B --; (B )2T A B -; (C )12A B --; (D )1 2(2)n A B -- (7)总体~(2,4)X N ,12,,,n X X X 为来自X 的样本,X 为样本均值,则( ) (A )22 11()~(1)1n i i X X n n χ=---∑; (B )221 1(2)~(1)1n i i X n n χ=---∑;

2003年考研数学三真题及全面解析

2003年全国硕士入学统考数学(三)试题及答案 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设,0, 0, 0,1cos )(=≠?????=x x x x x f 若若λ 其导函数在x=0处连续,则λ的取值范围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导. 【详解】 当1>λ时,有 ,0, 0,0,1sin 1cos )(21 =≠?? ???+='--x x x x x x x f 若若λλλ 显然当2>λ时,有)0(0)(lim 0 f x f x '=='→,即其导函数在x=0处连续. (2)已知曲线b x a x y +-=2 3 3与x 轴相切,则2b 可以通过a 表示为=2b 6 4a . 【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2 b 与a 的关系. 【详解】 由题设,在切点处有 0332 2=-='a x y ,有 .220a x = 又在此点y 坐标为0,于是有 030023 0=+-=b x a x , 故 .44)3(6 422202202a a a x a x b =?=-= (3)设a>0,, x a x g x f 其他若, 10,0,)()(≤≤?? ?==而D 表示全平面,则 ??-=D dxdy x y g x f I )()(= 2a . 【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可. 【详解】 ?? -=D dxdy x y g x f I )()(= dxdy a x y x ??≤-≤≤≤1 0,102 =.])1[(21 021 1 2 a dx x x a dy dx a x x =-+=?? ? + (4)设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵

考研数学常规题型和陌生题型解答方法

考研数学常规题型和陌生题型解答方法 考研数学不仅要熟练掌握常规题型,面对陌生题型也要沉着应对,使用一些小技巧和方法化解。小编为大家精心准备了考研数学常规题型及陌生题型解答秘诀,欢迎大家前来阅读。 考研数学常规题型及陌生题型解答技巧 一、考研数学常规题型 ?1.选择题 对于选择题来说,大家还是有很多方法可选的,常用的方法有:代入法、排除法、图示法、逆推法、反例法等。如果考试的时候大家发现哪种方法都不奏效的话,大家还可以选择猜测法,至少有25%的正确性。选择题属于客观题,答案是 唯一的,并且考研数学考试中的多选题也是以单选的形式出现的,最终的答案只有一个,评分是不偏不倚的。 选择题的难度一般都是适中的,均为中等难度,没有特别难的,也没有一眼就能看出选项的题目。选择题主要考查的是考生对基本的数学概念、性质的理解,要求考生能进行简单的推理、判断、计算和比较即可。所以选择题对于考生来说,要么依靠扎实的知识得分,要么靠自身的运气得分,这32分

要想稳拿需要考生在复习的时候深入思考,不能主观臆想,要思考与动手相结合才行。 ?2.填空题 填空题的答案也是唯一的,做题的时候给出最后的结果就行,不需要推导过程,同样也是答对得满分,答错或者不答得0分,不倒扣分。这一部分的题目一般是需要一定技巧的计算,但不会有太复杂的计算题。题目的难度与选择题不相上下,也是适中。填空题总共有6个,一般高数4个,线代和概率各1个,主要考查的是考研数学中的三基本:基本概念、基本原理、基本方法以及一些基本的性质。做这24分的题目时 需要认真审题,快速计算,并且需要有融会贯通的知识作为保障。 ?3.解答题 解答题的分值较多,占总分的60%多,类型也较复杂,有计算题、证明题、实际应用题等,并且一般情况下每道大题都会有多种解题方法或者证明思路,有的甚至有初等解法,得分率不容易控制,所以考试在做解答题是尽量用与《考试大纲》中规定的考试内容和考试目标相一致的解题方法和证明方法,每一步的表述要清楚,每题的分值与完成该题所花费的时间以及考核目标是有关系的。综合性较强、推理过程较多、或者应用性的题目,分值较高;基本的计算题、常规性试题和简单的 应用题分值较低。

考研数学模拟模拟卷

全国硕士研究生入学统一考试数学( 三) 模拟试卷 一、选择题(1~8小题,每小题4分,共32分.) (1)已知当0→x 时,1)2 31(31 2 -+x 与 1cos -x 是 ( ) (A )等价无穷小 (B )低阶 无穷小 (C )高价无穷小 (D )同阶 但非等价无穷小 (2)设()f x 满足 ()(1cos )()()sin f x x f x xf x x '''+-+=,且 (0)2f =,0)0(='f 则( ) (A )0x =是函数()f x 的极小值点 (B )0x =是函数()f x 的极大值点 (C )存在0δ >,使得曲线()y f x =在点 (0,)δ内是凹的 (D )存在0δ >,使得曲线()y f x =在点 (0,)δ内是凸的 (3)设有两个数列 {}{},n n a b ,若lim 0n n a →∞ =,则正确的是 ( ) (A )当 1 n n b ∞ =∑收敛时, 1 n n n a b ∞ =∑收敛. (B )当 1 n n b ∞ =∑发散时, 1n n n a b ∞ =∑发散. (C )当 1 n n b ∞ =∑收敛时, 221 n n n a b ∞ =∑收敛. (D )当 1 n n b ∞ =∑发散时, 221 n n n a b ∞ =∑发散. (4)设22(,)xy z f x y e =-,其中(,)f u v 具有连续二阶偏导数,则z z y x x y ??+=?? ( ) (A )( ) v xy f e y x '+2 2 (B) v xy u f xye f xy '+'24 (C) ( ) u xy f e y x '+2 2 (D) v xy f xye '2 (5)设四阶方阵()1234,,,,A αααα=其中 12,αα线性无关,若1232αααβ+-=, 1234ααααβ+++=, 1234232ααααβ+++=,则Ax β=的通 解为( ) (A ) 123112213111012k k k ?????? ? ? ? ? ? ?++ ? ? ?- ? ? ??????? (B ) 12012123201112k k ?????? ? ? ? ? ? ?++ ? ? ?- ? ? ?-??????

(超级总结吐血推荐)考研数学二经典知识点题型技巧总结(高数线代)综合网上及个人线代心得

高等数学(数二> 一.重点知识标记 高等数学 科目大纲章节知识点题型重要度等级 高等数学 第一章函数、极限、连续 1 .等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★ 2 .函数连续的概念、函数间断点的类型 3 .判断函数连续性与间断点的类型★★★ 第二章一元函数微分学 1 .导数的定义、可导与连续之间的关系 按定义求一点处的导数,可导与连续的关系★★★★ 2 .函数的单调性、函数的极值讨论函数的单调性、极值★★★★ 3.闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用★★★★★ 第三章一元函数积分学 1 .积分上限的函数及其导数变限积分求导问题★★★★★ 2 .有理函数、三角函数有理式、简单无理函数的积分 计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分★★ 第四章多元函数微分学 1 .隐函数、偏导数、的存在性以及它们之间的因果关系 2 .函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连 续性的讨论与它们之间的因果关系★★ 3 .多元复合函数、隐函数的求导法求偏导数,全微分★★★★★ 第五章多元函数积分学 1. 二重积分的概念、性质及计算 2.二重积分的计算及应用★★ 第六章常微分方程 1.一阶线性微分方程、齐次方程, 2.微分方程的简单应用,用微分方程解决一些应用问题★★★★ 一、函数、极限、连续部分:

极限的运算法则、极限存在的准则(单调有界准则和夹逼准则>、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理>,这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。 二、微分学部分: 主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。 一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。微分中值定理也是重点掌握的内容,这一部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,这种类型题目的技巧性比较强,应多加练习。函数的凹凸性、拐点及渐近线,也是一个重点内容,在近几年考研中常出现。 多元函数微分学,掌握连续性、偏导性、可微性三者之间的关系,重点掌握各种函数求偏导的方法。多元函数的应用也是重点,主要是条件极值和最值问题。 三、积分学部分: 一元函数积分学 一个重点是不定积分与定积分的计算。在计算过程中,会用到不定积分/定积分的基本性质、换元积分法、分部积分法。其中,换元积分法是重点,会涉及到三角函数换元、倒代换,如何准确地进行换元从而得到最终答案,却是需要下一番工夫的。定积分的应用同样是重点,常考的是面积、体积的求解,多练掌握解题技巧。对于定积分在物理上的应用(数二有要求>,如功、引力、压力、质心、形心等,近几年考试基本都没有涉及,考生只要记住求解公式即可。 多元函数积分学的一个重点是二重积分的计算,其中要用到二重积分的性质,以及直角坐标与极坐标的相互转化。这部分内容,每年都会考到,考生要引起重视,需要明白的是,二重积分并不是难点。 四、微分方程: 这里有两个重点:一阶线性微分方程。二阶常系数齐次/非齐次线性微分方程。 线性 第一章行列式 1.行列式的运算 2.计算抽象矩阵的行列式★★★ 第二章矩阵 1. 矩阵的运算 2. 求矩阵高次幂等★★★ 3. 矩阵的初等变换、初等矩阵与初等变换有关的命题★★★★★ 第三章向量 1. 向量组的线性相关及无关的有关性质及判别法 2. 向量组的线性相关性★★★★★ 3. 线性组合与线性表示判定向量能否由向量组线性表示★★★★

考研题型经典总结高数部分

2011考研必备:超经典的考研数学考点与题型归类分析总结 1高数部分 1.1 高数第一章《函数、极限、连续》 1.2 求极限题最常用的解题方向:1.利用等价无穷小; 2.利用洛必达法则,对于 00型和∞∞型的题目直接用洛必达法则,对于∞0、0∞、∞ 1型的题目则是先转化为 00型或∞ ∞型,再使用洛比达法则;3.利用重要极限,包括1sin lim 0=→x x x 、e x x x =+→1 )1(lim 、 e x x x =+∞ →)1(1lim ;4.夹逼定理。 1.3 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》 第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积 分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。 对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。在此只提醒一点:不定积分 ?+=C x F dx x f )()(中的积分常数C 容易 被忽略,而考试时如果在答案中少写这个C 会失一分。所以可以这样建立起二者之间的联系以加深印象:定积分?dx x f )(的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就 是 ?+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。 第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于 ? -a a dx x f )(型定积分,若 f(x)是奇函数则有 ? -a a dx x f )(=0;若f(x)为偶函数则有?-a a dx x f )(=2?a dx x f 0)(;对于?2 )(πdx x f 型 积分,f(x)一般含三角函数,此时用x t -= 2 π 的代换是常用方法。所以解这一部分题的 思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量

考研高数模拟试题

模拟测试题(七) 考生注意:(1)本试卷共三大题,23小题,满分150分. (2)本试卷考试时间为180分钟. 一、选择题(本题共8小题,每题4分,共32分) (1)函数sin y x x =+及其表示的曲线 ( ). (A ) 没有极值点,有无限个拐点 ; (B ) 有无限个极值点和无限个拐点 ; (C ) 有无限个极值点,没有拐点 ; (D ) 既无极值点,也无拐点 . (2) 设222 22(0(,)0,0x y x y f x y x y ?++≠?=??+=? 则在(0,0)点处, (,)f x y ( ). (A ) 连续但二偏导数不都存在 ; (B ) 二阶偏导数存在但不连续; (C ) 连续且二偏导数存在但不可微 ; (D ) 可微 . (3)(一、三)设级数 n n a ∞ =∑收敛,则下列三个级数① 2 1 ,n n a ∞ =∑②41 ,n n a ∞ =∑③61 n n a ∞ =∑中( ) (A ) ①、②、③均收敛 ; (B ) 仅②、③收敛 ; (C ) 仅③收敛 ; (D ) ①、②、③均未必收敛 . (3)(二) 设21,0 ()||,(),,0 x x f x x g x x x -≥?==?

2002年考研数学三真题及全面解析

2002年全国硕士研究生入学统一考试数学三试题 一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上) (1) 设常数1 2a ≠,则21lim ln .(12)n n n na n a →∞??-+=??-?? (2) 交换积分次序: 111 42210 4 (,)(,)y y dy f x y dx dy f x y dx += ? ??. (3) 设三阶矩阵12 22 12304A -?? ? = ? ??? ,三维列向量(),1,1T a α=.已知A α与α线性相关,则 a = . (4) 则2X 和2 Y 的协方差2 2 cov(,)X Y = . (5) 设总体X 的概率密度为 (),, (;)0,x e x f x x θθθθ--?≥=?

(2) 设幂级数1n n n a x ∞ =∑与1n n n b x ∞ =∑ 13,则幂级数221n n i n a x b ∞ =∑的收敛半 径为 ( ) (A) 5 (B) (C) 13 (D)1 5 (3) 设A 是m n ?矩阵,B 是n m ?矩阵,则线性方程组()0AB x = ( ) (A)当n m >时仅有零解 (B)当n m >时必有非零解 (C)当m n >时仅有零解 (D)当m n >时必有非零解 (4) 设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,已知n 维列向量α是A 的属于特征值λ的 特征向量,则矩阵( ) 1 T P AP -属于特征值λ的特征向量是 ( ) (A) 1 P α- (B) T P α (C)P α (D)() 1T P α- (5) 设随机变量X 和Y 都服从标准正态分布,则 ( ) (A)X Y +服从正态分布 (B)22 X Y +服从2 χ分布 (C)2X 和2 Y 都服从2 χ分布 (D)2 2 /X Y 服从F 分布 三、(本题满分5分) 求极限 2 00 arctan(1)lim (1cos ) x u x t dt du x x →??+????-? ? 四、(本题满分7分) 设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程x y z xe ye ze -=所确定,求du . 五、(本题满分6分) 设2 (sin ),sin x f x x = 求()x dx . 六、(本题满分7分) 设1D 是由抛物线2 2y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线2 2y x =和直线0y =,x a =所围成的平面区域,其中02a <<. (1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V ; (2)问当a 为何值时,12V V +取得最大值?试求此最大值.

考研数学二模拟题及答案

* 4.微分方程 y 2 y x e 2x 的特解 y 形式为() . * 2x * 2 x (A) y (ax b)e (B) y ax e (C) y * ax 2 e 2x (D) y * ( ax 2 bx)e 2 x 2016 年考研数学模拟试题(数学二) 参考答案 一、选择题(本题共 8 小题,每小题 4 分,满分 32 分,每小题给出的四个选项中,只有一 项符合题目要求,把所选项的字母填在题后的括号内) 1.设 x 是多项式 0 P( x) x 4 ax 3 bx 2 cx d 的最小实根,则() . (A ) P ( x 0 ) 0 ( B ) P ( x 0 ) 0 (C ) P ( x 0 ) 0 ( D ) P (x 0 ) 0 解 选择 A. 由于 lim P( x) x x 0 ,又 x 0 是多项式 P(x) 的最小实根,故 P (x 0 ) 0 . 2. 设 lim x a f ( x) 3 x f (a) a 1 则函数 f ( x) 在点 x a () . (A )取极大值( B )取极小值( C )可导( D )不可导 o o 解 选择 D. 由极限的保号性知,存在 U (a) ,当 x U (a) 时, f ( x) 3 x f (a) a 0 ,当 x a 时, f ( x) f (a) ,当 x a 时, f ( x) f (a) ,故 f ( x) 在点 x a 不取极值 . lim f ( x) f (a) a lim f ( x) f (a) a 1 x a x x a 3 x 3 ( x a) 2 ,所以 f ( x) 在点 x a 不可导 . 3.设 f ( x, y) 连续,且满足 f ( x, y) f ( x, y) ,则 f (x, y) dxdy () . x 2 y 2 1 (A ) 2 1 1 x 2 1 1 y 2 0 dx f ( x, y)dy ( B ) 2 0 dy 1 y 2 f ( x, y)dx 1 1 x 2 1 1 y 2 (C ) 2 dx 1 x 2 f ( x, y)dy ( D ) 2 dy f ( x, y)dx 解 选择 B. 由题设知 f ( x, y)dxdy 2 f ( x, y)dxdy 2 1 0 dy 1 y 2 1 y 2 f ( x, y)dx . x 2 y 2 1 x 2 y 2 1, y 0

最新考研数学类似题目分析如下汇总

2006年考研数学类似题目分析如下

2006年考研数学类似题目分析如下: 附1: 2006年考题与2005年《新东方高等数学冲刺班讲义》(即:《全国巡讲讲义》)类似题目 (以数一和数二为例,更详细的真题解答请查看新东方网站“考研数学栏目”) -汪诚义(北京新东方学校) (1)数学一(17):将函数()2 2x f x x x =+-展开成x 的幂级数。 与P60例1非常相似:()2 1 2 f x x x =--按()1x -展成幂级数。 (2)数学一(16):设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<== 。 求: (Ⅰ)证明lim n x x →∞存在,并求之 ;(Ⅱ)计算2 1 1lim n x n x n x x +→∞?? ??? 。 与P4“二、有关两个准则”中例1同类型: 设 1103,n x x +<<=,证明lim n n x →∞ 存在,并求其值。 (3) 数学一(19):设在上半平面D=(){},0x y y >内,数(),f x y 是有连续偏导数,且对任意的t>0都有),(),(2y x f t ty tx f -=。 证明: 对L 内的任意分段光滑的有向简单闭曲线L,都有 0),(),(=-?L dy y x xf dx y x yf 与P50例3基本上同一类型: 设函数()y ?具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分()2 4 22L y dx xydy x y ?++? 的值恒为同一常数。

(4) 数学二(19)与数学三(17): sin 2cos sin cos ++证明: 当0时 与P17例2数学不等式的证明很类似:设2e a b e <<<,证明 22ln ln b a -()2 4 b a e > -。 附2: 2006年考题与2005年新东方线性代数《模拟考卷》的类似题目: (以《模拟考卷》为例,更详细的真题解答请查看新东方网站 “考研数学栏目”) -尤承业(北京新东方学校) (1)数学三(12): α1,α2,…,αs 是n 维向量组,A 是m ?n 矩阵,则( )成立. (A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解:本题考的是线性相关性的判断问题,只要熟悉两个基本性质就可解出是: 1. α1, α2, …,αs ???σ? r(α1, α2,…,αs )=s. 2. r(AB )≤ r(B ). 矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此 r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ). 由此马上可判断答案应该为(A).

相关文档
最新文档