电动汽车动力电池组管理系统设计

合集下载

电动汽车动力电池系统总体方案设计

电动汽车动力电池系统总体方案设计

电动汽车动力电池系统总体方案设计1.1 额定电压及电压应用范围对于高速电动车辆动力电池系统的额定电压等级,参照《GB/T31466-2015 电动车辆高压系统电压等级》可选择144V、288V、320V、346V、400V、576V等。

对于微型低速电动车动力电池系统的电压等级,100V以下主要以48V、60V、72V和96V为主。

动力电池系统的额定电压及电压范围必须与整车所选用的电机和电机控制器工作电压相匹配,因此为保证整车动力系统的可靠运行,需要根据电动整车电机的电压等级及工作电压范围要求,选择合适的单体电池规格(化学体系、额定电压、容量规格等)并确定单体电池的串联数量、系统额定电压及工作电压范围。

通常允许使用的电压范围上限为系统额定电压的115%~120%,下限为系统额定电压的75%~80%。

1.2 动力电池系统容量整车概念设计阶段,从整车车重和设定的典型工况出发,续驶里程、整车性能(最高车速、爬坡度、加速时间等)要求,可以计算出汽车行驶所需搭载的总能量需求。

动力电池系统容量主要基于总能量和额定电压来进行计算。

1.3 功率和工作电流整车在急加速情况下,动力电池系统需要提供短时脉冲放电功率,对应的工作电流为峰值放电电流;在紧急刹车情况下,需要提供短时能量回收功率,对应的回馈电流为峰值充电电流。

整车在平路持续加速或长坡道时,动力电池系统需要提供稳定的持续放电功率,此时要求能够长时间稳定输出一定额度的电流,即持续放电工作电流。

1.4 可用SOC范围在动力电池系统产品设计上,由于SOC可用范围会直接影响总能量的设计,直接体现到单体电池的选型及数量要求,因此,也会对电池箱体的包络尺寸设计、内部布置及安装空间间隙以及对总体成本等方面产生最直接的影响。

动力电池系统SOC应用范围的选择首先考虑整车对充放电功率和可用能量等方面的需求,同时结合单体电池在不同温度条件下的充放电能力(功率和能量)、存储性能(自放电率)、寿命、安全特性,以及电池管理系统的SOC估算精度等影响因素来确定。

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图电动汽车是指全部或部分由电机驱动的汽车。

目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。

电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。

锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。

但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。

而电池管理系统能够解决这一问题。

当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。

此外,还具有过温、过流、剩余电量估测等功能。

本文所设计的就是一种基于单片机的电池管理系统。

1电池管理系统硬件构成针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。

1.1MCU模块MCU是系统控制的核心。

本文采用的MCU是M68HC08系列的GZ16型号的单片机。

该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。

该单片机具有以下特性:(1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。

1.2检测模块检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。

1.2.1电压检测模块本系统中,单片机将对电池组的整体电压和单节电压进行检测。

对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。

采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。

所以采用分压的电路进行检测。

10串锰酸锂电池组电压变化的范围是28V~42V。

采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。

对于单体电池的检测,主要采用飞电容技术。

电动汽车动力电池组管理系统设计

电动汽车动力电池组管理系统设计

[ src]Akn f e t l e /ir ue n gme tytm r o e at yp cs s rp sd T e ma i n w ot Abtat ido nr i dds i t ma ae n s f w r t r ak o o e. h ls ea dl cs c az tb d s e op b e wa p s lz o
o es se b s d o TC1 C5 6 f h y t m a e n S t 2 61 AD n TC1 C5 1 AD CU st ec r r c s o sd sg e . d t i y tm n t r a o s a dS 2 A 6 M a o ep o e s r h wa e in d An ss s h e mo i sv r u o i

要 : 出 了一套 集 中 / 提 分布 式动力 电池组管理系统 的整体设计方案 。以单 片机 S C 2 51A 和 S C 2 5 6 D 为核心 T 1C 66 D T 1C A1A
ቤተ መጻሕፍቲ ባይዱ
处 理器 , 设计 出一个体积小 和成本低的 系统 。本 系统可 以实 时监测 电池组 电流、 电池组 电压、 电池 电流、 电池 电压及 单 电池温 单 单
o e ai g p r me eso ep we a e a i u h a e e arx v l g , e e a r u r n , i g l a r o tg , i g l a e y p r t a a tr f h o rb k r i r l me s c sg n r ti o t e g n r ti c r e t s b Re v l e sn b k r n t y n e t a x n e y a e

电动汽车动力电池组管理系统设计

电动汽车动力电池组管理系统设计
ta s s i n v h ce Ma a e n s se rn mi o e i l , n g me t y t m f r b t r p c s i d sg e b t e wa o b s c mmu iain T e s o at y e a k s e in d y h y f u o nct .h o ma a e n y t m s c mp s d o n i g e b t r e t mo u e n n i tg a e a tr a k n trI r e o n g me t s se i o o e f ma y sn l a ty ts e d ls a d a n e r t d b t y p c s mo i . o d r t e o n
采 集 . 电池 单 体检 测模 块 中设 计 了具 有 特 色的 压控 恒 流 源 电路 。通 过 在 电动 汽 车上 的 实 际 应 用表 明 , 在 系统 运 行 稳 定 正 常. 可扩 充 性 好 , 于安 装 布 置 , 着 广 阔的 应 用 前景 。 便 有 关 键 词 动 力 电 池组 分 布 式 管 理 总 线 通讯 压 控 恒 流 源 电路
摘 要 根 据 动 力 电 池组 在 电动 汽 车上 的使 用 特 点 和要 求 , 用 总 线 通 讯技 术 , 计 出 电池 组 分 布 式 管 理 系统 , 利 设 系统 由

个 电 池组 综合 管理 上 的 高压 干扰 , 实现 对 每 块 电 池 单体 电压 的精 确
t e g o b l y t x a d,s c n e i n r i salt n a d ar n e n , c i vn h d p l ai n f r g o n . h o d a i t o e p i n i o v n e t f n t a i n ra g me t a he ig t e wi e a p i t o e ru d o l o c o Ke wo d :ta t n atr p c s, it b td y r s r ci b t y o e a k d sr u e ma a e n , s o i n g me t Bu c mmu iai n, o sa t u r n s u c c n r l d y nc t o c n t n c re t o r e o tol b e

电动汽车动力电池管理系统(BMS)设计

电动汽车动力电池管理系统(BMS)设计

电动汽车动力电池管理系统(BMS)设计摘要:本文主要从硬件系统设计、软件系统设计两个方面,对电动汽车中动力电池的内部管理系统(BMS)综合设计,进行了深度的分析与研究,以通过不断地实践研究,积极探索出电动汽车中动力电池的内部管理系统(BMS)最具高效性的综合设计方案,以充分提升电动汽车中动力电池的内部管理系统(BMS)的设计水准,确保电动汽车中动力电池的内部管理系统(BMS)各项功能能够满足于电动汽车实际的应用需求,为我国电动汽车行业的长期发展奠定基础。

关键词:电动汽车;动力电池;管理系统(BMS);设计前言:电动汽车(battery electric vehicle;BEV),主要是指以车载类电源为基本动力,利用电机来驱动车轮达到行驶目地,符合于我国安全法规与交管各项规定的车辆。

基于电动汽车有着环保性特征,所以,其在国内的发展前景相对较为良好。

但是,基于国内电动汽车相关技术还处于初步探索阶段,各项技术还不够成熟,若想实现突破性发展还需作出更多的努力。

电动汽车,它与传统汽车最大的不同之处就在于电动汽车内部包含着一种动力的电池。

在一定程度上,通过该动力电池可实现电动汽车节能化、环保化的行使。

那么,为了能够更好地助推我国电动汽车行业的发展,就需从其内部的动力电池入手,对其所在的管理系统(BMS),进行系统化的分析与研究。

从而能够设计出更具有功能特性的动力电池内部管理系统(BMS),为电动汽车提供强大动力电池内部管理系统支持,进一步推动我国电动汽车行业的快速发展,让其可稳步向着新的发展征程迈进。

1、硬件系统设计基于电池组主要是由多节电池的单体并联与串联而成,实现对所有电池单体实时化监控。

因而,如图1所示,电池内部管理系统主要应用了主从结构,以实现灵活性通讯,提升通讯实际速度。

从板均需具有电池单体的温度与电压检测、CAN总线的通讯等各项功能。

图1 BMS系统框图示图1.1 IMCU系统处理器系统处理器主要选用的是Freescale -9S12DT64型号的MCU系统处理器,该型号MCU系统处理器为16位系统的单片机,主要是由CAN系统的总线模块、PWM的调节器(1个)AD的转换器(2个)定时器(1个)外部串口(1个)内部串口(2个)。

电动汽车动力电池管理系统的设计与研究

电动汽车动力电池管理系统的设计与研究

AUTOMOBILE DESIGN | 汽车设计时代汽车 电动汽车动力电池管理系统的设计与研究纪文煜无锡南洋职业技术学院 江苏省无锡市 214081摘 要: 能源危机和生态危机产生的人类生存压力越来越明显,汽车产业受能源危机和生态危机的双重影响,电动汽车的研发俨然是大趋势。

电动汽车的问世减少了环境污染,缓解了生态压力,而其也减少了能源消耗,在解决能源枯竭问题方面有着积极意义。

其研发与应用得益于其电池管理系统的设计优化,这也是新型能源汽车研发中的核心命题。

本文主要就电动汽车所对应的电池管理系统进行设计方面的系统研究,以通过硬件与软件的系优化设计,带来电池管理系统的优化,带来电动汽车研发的新革命,使得其性能逐步提升,助力新能源汽车产业的创新发展。

关键词:电动汽车 动力电池 管理系统 设计分析汽车产业是市场经济中的一大主导产业,其快速发展的背后也引发人类关于生态性问题、能源利用问题的深刻思考,当前生态危机加剧,能源紧张的现实让部分产业发展受限,而汽车产业首当其冲。

鉴于传统汽车产业发展的不足,研究新能源汽车成为备受瞩目的课题,而电动汽车的问世无疑为汽车行业的转型升级带来曙光。

对于电动汽车设计研发和性能发挥、来说,起核心作用的是电池,而其对应的系统设计是重中之重,电池作为其能量源泉,其系统则负责能量来源——电池运行情况的分析、数据的采集、故障的判断、运动控制等,系统性能优劣对汽车安全性和功能性发挥的影响是直接而深刻的。

1 电动汽车动力电池工作原理当前汽车的动力电池多对为金属燃料,主要构成是铝,基于其材料选择和性能循环的优化考虑,电池负极为金属材料,正极则采用泡沫石墨烯,其电解液主要成分是四氯化铝,实现了充放电的有效循环,即使在常温条件下也可以正常循环运作。

其正极所对应的石墨烯材料属于典型的层状材料,其能有效容纳阳离子,实现电解液内阴离子的容纳,让动力电池放电形成良性循环。

2 电动汽车电池管理系统设计的三大技术支持2.1 参数检测与分析工作参数检测是动力电池管理系统设计中首先要考虑的问题,工作参数检测涵盖多个方面,从工作电力到电压再到电温等,在这些工作参数检测的过程中[1],重点是进行单体电池的电压具体数值的测量,进行电压稳定性分析,以此明确电池工作状态。

基于STM32的电动汽车动力电池管理系统设计

基于STM32的电动汽车动力电池管理系统设计

基于STM32的电动汽车动力电池管理系统设计随着对环境保护和汽车技术的不断追求,电动汽车逐渐取代传统燃油汽车成为人们的首选。

作为电动汽车的核心组成部分之一,动力电池的管理系统在保证车辆性能和安全的同时起着至关重要的作用。

本文将基于STM32单片机介绍电动汽车动力电池管理系统的设计。

一、电动汽车动力电池管理系统的概述动力电池管理系统是电动汽车控制系统中的一个重要模块,主要用于监测、控制和保护动力电池组。

其主要功能包括电池组的电压、电流、温度的监测与采集,对电池组进行均衡和充放电控制,以及电池过充、过放和过温等异常条件的检测和保护。

二、STM32单片机的选择STM32单片机具有功耗低、性能强大、集成度高等特点,是嵌入式系统设计的理想选择。

在电动汽车动力电池管理系统设计中,STM32单片机可以实现对电池组各种参数的高精度采集与控制,具备良好的可靠性和稳定性。

三、电池组参数的采集与控制1. 电池组电压采集:通过电压分压电路和模数转换器实现对电池组电压的采集,并通过STM32单片机进行精确测量和数据处理。

2. 电池组电流采集:采用电流传感器和模数转换器对电池组电流进行实时监测,实现对电池组的充放电控制。

3. 电池组温度采集:通过温度传感器实时测量电池组温度,并结合STM32单片机的温度补偿功能,对电池组的温度进行精确控制。

4. 电池组均衡控制:根据对电池组电压的监测和比较,通过控制均衡电路,实现对电池组各个单体电池的均衡充放电,从而提高电池组的使用寿命和性能。

四、电池异常状态的监测与保护1. 过充保护:当电池组电压超过设定阈值时,系统会自动切断充电电路,避免电池过度充电造成安全隐患。

2. 过放保护:当电池组电压低于设定阈值时,系统会自动切断负载电路,保护电池组避免过度放电。

3. 过温保护:通过温度传感器实时监测电池组温度,当温度超过设定阈值时,系统会自动采取保护措施,如切断充电和放电电路,保证电池组的安全运行。

电动汽车电池管理系统设计方案设计说明 (1)

电动汽车电池管理系统设计方案设计说明 (1)

随着能源枯竭和节能产业的发展,社会对环境保护的呼声,使得零排放电动汽车的研究得到了许多国家的大力支持。

电动汽车的各种特性取决于其动力源——电池。

管理可以提高电池效率,保证电池安全运行在最佳状态,延长电池寿命。

1.1电动汽车目前,全球汽车保有量超过6亿辆,汽车的石油消耗量非常大,达到每年6至70亿桶,可占世界石油产量的一半以上。

长期现代化和规模化开采,石油资源逐渐增加。

筋疲力尽的。

电能来源广泛,人们在用电方面积累了丰富的经验。

进入2 1世纪,电能将成为各种地面交通工具的主要能源。

电动汽车的发展是交通运输业和汽车业发展的必然趋势。

由于电动汽车的显着特点和优势,各国都在发展电动汽车。

中国:早在“九五”时期,我国就将电动汽车列为科技产业重大工程项目。

在全市七尾岛设立示范区。

清华大学、华南理工大学、广东汽车改装厂等单位都参与了电动汽车的研发,丰田汽车公司和通用汽车公司提供样车和技术支持在示范区进行测试.德国:吕根岛测试场是德国联邦教育、科学研究和技术部资助的最大的 EV 和 HEV 测试项目,提供 Mercedes-Benz AG、Volkswagen AG、Opel AG、BMW A G 和 MAN Motors 64 辆 EV 和 HEV经公司测试。

法国:拉罗尔市成为第一个安装电动汽车系统的城市,拥有 12 个充电站,其中 3 个是快速充电站。

标致雪铁龙、雪铁龙和标致雪铁龙集团都参与了电动汽车的建设。

日本:在大阪市,大发汽车公司、日本蓄电池公司和大阪电力公司共同建立了EV和HEV试验区。

1.2 电动汽车电池根据汽车的特点,实用的动力电池一般应具有比能量高、比功率高、自放电少、工作温度范围宽、充电快、使用寿命长、安全可靠等特点。

前景较好的是镍氢电池、铅酸电池、锂离子电池、1.3 电池管理系统(BMS)电池能量管理系统是维持供电系统正常应用、保障电动汽车安全、提高电池寿命的关键技术。

可以保护电池的性能,防止单个电池的早期损坏,方便电动汽车的运行,并具有保护和警示功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5所示为电池组综合管理器硬件结构示意图,j。、y。代 表了霍尔形式的电流、电压传感器,其中电压传感器输入0V~ 600V,输出0mA~20mA,电流传感器输入一200A~200A,输出一 100mA~100mA;微处理器选用了带CAN通讯接口的单片机 P87C591;在总线通讯方面。CAN总线采用了内置CAN控制器 的单片机P87C591和总线驱动器82C250,并加以光电耦合器 6N137与外部总线隔离。RS485总线使用了差动信号驱动器 65LBCl84,并用光耦ⅡL117实现隔离,RS232总线选用了控制 器MAX232以实现综合管理器与PC机的数据交换。从而方便 系统调试;ANFIS是电池组剩余电量的核心计算单元.通过单 片机软件编程得以算法实现,硬件上则借助电压、电流传感器
电动汽车动力电池组管理系统设计
张承宁朱正张玉璞李红林 (北京理工大学机械与车辆工程学院,北京100081)
E—mail:zhuzhengbitev@126.eom
摘 要 根据动力电池组在电动汽车上的使用特点和要求,利用总线通讯技术,设计出电池组分布式管理系统.系统由 一个电池组综合管理器和多个电池单体检测模块组成。为了克服电池组上的高压干扰。实现对每块电池单体电压的精确 采集,在电池单体检测模块中设计了具有特色的压控恒流源电路。通过在电动汽车上的实际应用表明.系统运行稳定正 常,可扩充性好,便于安装布置,有着广阔的应用前景。 关键词 动力电池组 分布式管理 总线通讯 压控恒流源电路 文章编号1002—8331一(2006)25—0220—03 文献标识码A 中图分类号TP273
利用放大电路中的正反馈和负反馈,这里的电池组单体电 压采集是通过一种压控恒流源电路加以实现的,其原理图如图 3所示。根据输入信号可分解为差模信号和共模信号的原理。 如果利用差动放大电路来采集单体电池电压.尽管不同节点上 电池的参考点不同,但由于差动放大电路对共模信号的抑制作 用。处于低电位节点处的电压就被抑制。而差动放大电路仅对 单体电池电压进行放大.使得相邻电池节点处的电池都具有一 个共同的参考点,所以可以实现对长串电池组单体电压的测 量。在该电路中。就是利用上述原理把被检测的电压差(即单体 电池端电压)转换成电流的形式长距离传输而不受外界干扰. 且传输精度高,适合不同电压级别的微机接口电路.以便数据 采集和转换,为实际使用带来了方便和灵活性。在图3中可以 看到采用运算放大器组成的压控恒流源.被检测电压差取自每
Design on Management System for Traction Battery Packs in
Electric Transmission Vehicle
ZH慷NG Cheng-ning ZHU Zheng ZHANG Yu-pu LI Hong-lin (Beijing Institute of Technology,Beijing 10008 1)
l动力电池组分布式管理系统组成
图1所示为电动汽车电池组管理系统的组成框图.不难看
l燃。l l燃卜一I燃。l
l一…一- 485总线
…一。一l
电池组综合 管理器
CAN总线L-—一一--·
图l 电动汽车电池组管理系统的组成框图 220 2006.25计算机工程与应用
万方数据
图2电动汽车电池组管理系统的工作原理图
—命—令—分!—类一 非法命令
妲垒
叽接收就{ N
上Y
耋鲎堕堡查!!}睦 收标志=0
廷渺 匿p函———一
l恢复现场l
l返回
图6 电池单体检测模块RS一485总线通讯流程图
集,处理A/D数据,电池剩余电量预测算法等功能;故障检测与 诊断程序模块实现单体电压报警、温度、总电压和剩余电量报 警;通信与网络程序模块保障系统与其它控制单元之间完成实 时高速而可靠安全的信息交互。
计算机工程与应用2006.25 221
和一个V佰压频转换电路完成信息采集:显示单元选用了集成 的液晶模块T6963C,使用和开发都非常方便。
键盘单元I匾i翮 降合控制器

型塑到也乳
螺 确

辐遽甄

—[=)
120
;l [
充电器
24v
图5 电池组综合管理器硬件结构示意图
3动力电池组分布式管理系统软件设计 3.1 电池单体检测模块软件设计
2动力电池组分布式管理系统硬件设计
2.1 电池单体检测模块硬件设计 电池单体检测模块在电池管理系统中属于下位机部分,能
够完成对单体电池端电压以及现场工作温度的采集.同时还带 有RS一485串行通信接口,并在电池组综合管理器的协调下工 作。模块中具有两路的模拟输入,分别采集5块电池的端电压 和1个电池温度,并通过模数转换后存储到模块寄存器中,当 模块接收到电池综合管理器发出的指令后,就把寄存器中的数 据传输到管理器中。 2.1.1 电池组单体电压采集电路
图4即为电池单体检测模块结构原理示意图,其中a1~aL5 为单体电压采集电路的输出端,A1,A5为单片机上对应的A/D 接口,R、T分别为单片机串行接口的接收端和发送端,R0、D为 对应的发送端和接收端。不难看出模块就是将五组单体电压采 集电路置于同一块电路板中设计而成的,再经过A/D转换和 RS一485串行总线通信完成数据采集和传输,这样根据串联电 池组中的电池数量采用一个或多个模块就实现了对其中每块 电池单体电压的测量。
出系统内部采用了成本较低的RS一485网络,而与车辆上其它 控制器间的数据通讯则统一采用了CAN通讯网络。电池管理 系统由单体检测模块和综合管理器构成.且多个电池单体检测 模块在电池组综合管理器的协调调度下实现电池组数据交换: 而综合管理器以及车辆的其它控制器又是在整车综合控制器 的协调调度下实现整车数据交换、管理和控制。图2所示为系
-<N键\值为/l?

坠<、磊、、茹—/
Yl
磕、病/亨>J

围7动力电池组综合管理器软件运行流程图 222 2006.25计算机工程与应用
万方数据
中断
保护现场
殛鎏一 夏丢上Y痢
接受下一个字符
BB
卜题9

』!
厂———叫 送发送标志:0I|送发送标志=1
l发送数据l
|!<癍釜诧
N 吝命令字? 、、、——,—,
整个系统的软件设计思路是保证系统初始化、人机接口、 故障诊断和通信四个模块的通用性。其软件运行流程以及RS一 485总线通讯流程分别如图7、图8所示。
可得:
£居一
图3压控恒流源电池电压采集电路
万方数据
,一半
(5)
当各电阻满足鲁=里R4时,联立上述五式,即可得输出电
流I满足:
5酉 ‘%。’R3
(6)
也就是说流过负载电阻R,的电流与单体电池电压值以。 成正比,而与负载电池只,的值无关。这样只要改变尺,的阻值, 就可把电流转换成不同的电压级别,从而满足不同单片机接El 的需要。
统的工作原理图.其中电池单体检测模块完成对电池单体的电 压和现场温度采集,然后通过RS--485总线传输到电池组综合 管理器中;综合管理器能够采集电池组的电压、电流和环境温 度,并针对电池组剩余电量SOC预测算法完成软硬件实现。此 外。电池组综合管理器还带有RS一485通讯接口和CAN通讯 接口.前者完成对电池单体检测模块的数据交换。后者完成对 整车综合控制器的数据交换,并且其自带液晶显示单元和键盘 单元,可以实时显示电池单体电压和电池组的状态信息。
电池 单体l
电池 单体2
电池 单体3
电池 单体4
电池 单体5
图4电池单体检测模块结构原理示意圈
2.1.2单线式温度采集单元 电池单体检测模块中的温度采集单元采用了“1-wire”单
线式串行数据通讯总线,实现简单而且具有12位的采集精度, 采集温度范围宽,如DSl8b20,其稳定性和精度都优于传统的 模拟温度传感器。 2.2动力电池组综合管理器硬件设计
动力电池组综合管理器软件系统从功能上可分为系统初 始化、人机接口、数据处理、故障诊断、通信与网络五个程序模 块。系统初始化程序模块主要完成中央处理电路模块的诊断与 启动以及系统变量的初始定义和设置:人机接口程序模块负责 输入命令的处理和输出信息的显示:数据处理程序模块完成采
广丽 主程序流程图
CPU初始化 CAN通讯初始化 液晶显示初始化 485通讯初始化
节电池的正负极输出端钮,即单体电池的电压值玑。如(1)式 所列:
%。=u,一%
(1)
由于电路中引入了负反馈,故可以认为运算放大器两个输
入端电压相等.即有:
以一以
(2)
而且在结点2、3的电流方程分别为:
百2百 %一以以一以
,。 ‘’,
u。一U—U—U
r扪

Байду номын сангаас
、-t 7
尺1
R3
若在选取电阻时满足R,>>R,那么输出电流,则由下式
键盘初始化 剩余电量预测算法初始化
N 始化成功

液晶显示主界面 (电压、电流、剩余电量、温度)
生\ <俞/
Yl

始 \键—值变/化?

-<N键\ 值为/27
Yl
磊\病/℃J
Yl
显示总电压、总 电流、剩余电量、 环境温度、工作 现场温度
显示37块 电池电压
显示报警电池 电压 (大于14.9V或 者小于10.5V)
voltage
动力电池组是电动汽车的辅助能量源和关键部件.其状态 好坏和寿命长短在很大程度上决定了整车性能的优劣.因此有 必要对整个电池组实施有效的管理和监测。基于此种目的。又 考虑到便于在电动汽车上安装布置.设计了电池组分布式管理 系统,其由两部分组成,分别为电池组综合管理器和电池单体 检测模块。整个系统利用总线通讯技术,完成数据传输与交换, 既保证了较好的实时性.又可以建立分布式的系统结构.从而 极大程度上方便了各模块在电动汽车上的安装布置,并且系统 可以根据电池组结构上的不同而随意调整、剪裁和扩充.具有 很大的灵活性、适应性。本系统已经成功应用于电传动原理样 车上.并在实践中取得了良好效果。为车辆的顺利调试和电池 组的正常运行发挥了重要作用。
相关文档
最新文档