特种光纤技术及其发展趋势

合集下载

2023年特种光纤行业市场研究报告

2023年特种光纤行业市场研究报告

2023年特种光纤行业市场研究报告特种光纤是一种具有特殊材料和结构的光纤,具有特殊的性能和应用领域。

随着通信技术的不断发展和应用领域的不断扩大,特种光纤行业市场也呈现出快速增长的趋势。

本文将对特种光纤行业市场进行研究分析,包括市场规模、市场竞争格局、主要应用领域等方面。

特种光纤行业市场规模随着各行各业对通信和传输技术的要求不断提高,特种光纤的市场需求也在不断增长。

根据市场研究报告显示,特种光纤的市场规模从2016年的50亿美元增长到2020年的100亿美元,年均增长率达到15%。

特种光纤行业市场前景广阔,有着巨大的发展潜力。

特种光纤行业市场竞争格局特种光纤行业市场竞争激烈,主要表现在以下几个方面:1.行业内竞争:特种光纤行业存在着多家企业,如杜邦、科腾、富容等。

这些企业通过技术创新、产品质量和服务等方面展开竞争,争夺市场份额。

2.行业外竞争:特种光纤与其他传输技术(如铜缆、无线传输等)存在竞争关系,如何在技术、性能和成本等方面与其他传输技术相比具有竞争优势,是特种光纤行业面临的挑战。

3.市场竞争:特种光纤的应用领域广泛,包括通信、医疗、航天、军事等领域。

在不同的应用领域中,特种光纤企业之间也存在竞争,如如何提供更好的解决方案和定制化产品来满足不同行业的需求。

主要应用领域特种光纤的应用领域非常广泛,主要包括以下几个方面:1.通信领域:特种光纤在通信领域中具有重要应用,如传输速度快、带宽大、传输距离远等特点,被广泛应用于光纤通信网络中。

2.医疗领域:特种光纤在医疗领域中有着广泛的应用,如光学成像、光纤多功能穿刺引导系统、光学传感器等。

3.航天领域:特种光纤在航天领域中发挥着重要作用,如航天器的通信、数据传输、图像传输等。

4.军事领域:特种光纤在军事领域中也有着广泛的应用,如光纤陀螺仪、激光传输、光纤传感器等。

总结特种光纤行业市场规模不断扩大,具有巨大的发展潜力。

在市场竞争激烈的情况下,特种光纤企业应注重技术创新、产品质量、市场营销等方面,提升竞争力。

光纤通信技术的发展及趋势

光纤通信技术的发展及趋势

光纤通信技术的发展及趋势关键词:光纤通信技术发展历史现状发展趋势摘要:本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。

1、导言目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。

作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。

自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。

2、光纤通信技术的发展历史总结近十几年来,光纤通信技术有了长足的进展,其中的新技术也不断被发掘,大大提高了传统意义上的通信能力,这使得光纤通信技术在更大的范围内得到了应用。

光纤通信技术是指把光波作为信息传输的载波,以光纤作为信息传输的媒介,将信息进行点对点发送的现代通信方式。

光纤通信技术的诞生及深入发展是信息通信史上一次重要的改革。

光纤通信技术从理论提出到工程领域的技术实现,再到今天高速光纤通信的实现,前后经历了几十年的时间。

上世纪六十年代开始的光纤通信技术最开始起源于国外,当时研制的光纤损耗高达400分贝/千米,后来,英国标准电信研究所提出,在理论上光纤损耗能够降低到20分贝/千米,然后,日本紧接着研制出通信光纤的损耗是100分贝/千米,康宁公司基于粉末法研制出了损耗在20分贝/千米以下的石英光纤,到最近的掺锗石英光纤的损耗降低至0.2分贝/千米,已经接近了石英光纤理论上提出的损耗极限。

光纤通信传输技术应用和发展趋势

光纤通信传输技术应用和发展趋势

光纤通信传输技术应用和发展趋势光纤通信传输技术是一种通过光纤传输信息的通信技术,其信号传输速率和容量远远超过了传统的电信号传输技术。

随着信息时代的高速发展,光纤通信传输技术在各个领域的应用也越来越广泛。

本文将从应用和发展趋势两个角度进行分析。

其次,光纤通信传输技术的发展趋势。

随着人们对通信速度和传输容量要求的增加,光纤通信传输技术也在不断创新和发展。

以下是几个光纤通信传输技术发展的趋势:1.高速传输:随着云计算、物联网、5G等新兴技术的兴起,对通信速度和传输容量的要求越来越高。

光纤通信传输技术将不断提高传输速率,预计在不久的将来,将实现TB级别的传输速率。

2.大容量传输:随着高清视频、虚拟现实、增强现实等信息形式的出现,对传输容量的要求也越来越大。

光纤通信传输技术将不断提高带宽,以满足大容量传输的需求。

3.无源光网络:无源光网络是一种无源光纤通信传输技术,它不需要能耗较高的光放大器等设备,可以降低通信系统的能耗。

未来的光纤通信传输技术将更加注重能耗问题,提高系统的能效。

4.光纤传感技术:光纤通信传输技术在其他领域的应用也逐渐展开,例如光纤传感技术。

光纤传感技术通过光纤传输信号,实现对温度、压力、湿度等物理量的监测,具有高精度、高灵敏度等特点。

综上所述,光纤通信传输技术在应用和发展上具有广阔的前景。

随着技术的不断进步和创新,光纤通信传输技术将进一步提高传输速率和容量,满足不断增长的通信需求。

另外,光纤通信传输技术在其他领域的应用也将得到拓展,为智能交通、智能家居、医疗健康等领域的发展提供支撑。

2024年特种光缆市场规模分析

2024年特种光缆市场规模分析

2024年特种光缆市场规模分析引言特种光缆是一种在特殊环境条件下使用的光纤电缆。

它具备抗压、抗拉、抗腐蚀、抗辐射等功能,广泛应用于军事、航天、海底通信等领域。

本文将对特种光缆市场规模进行详细分析。

市场概述特种光缆市场是充满活力的市场。

随着全球通信技术的不断发展,特种光缆的需求持续上升。

特种光缆在军事作战、海底勘探、空间探索等领域具有独特的优势,因此市场前景广阔。

市场规模根据研究机构的数据,特种光缆市场在过去几年里保持了稳定的增长。

预计到2025年,特种光缆市场的规模将达到XX亿元。

市场增长驱动因素1. 军事应用的持续增长随着军事技术的发展,特种光缆在军事通信、军事雷达等领域的应用越来越广泛。

该领域的持续增长将为特种光缆市场提供稳定的需求。

2. 海底勘探的推动海洋资源的调查和勘探对特种光缆的需求非常大。

随着海洋开发的不断深入,特种光缆市场将会受益。

3. 航天和航空领域的增长特种光缆在航天和航空领域的应用非常广泛,它可以承受极端的温度和压力。

随着航天和航空产业的发展,特种光缆市场将继续增长。

市场分析1. 产品类型分析特种光缆市场根据产品类型可以分为抗拉光缆、抗压光缆、抗腐蚀光缆等。

抗拉光缆占据了市场的主要份额,预计将继续保持领先地位。

2. 应用领域分析特种光缆市场的应用领域非常广泛,包括军事、航天、海底通信、石油勘探等。

目前,军事领域是最主要的市场,占据了特种光缆市场的大部分份额。

市场竞争态势特种光缆市场存在较多的竞争对手。

主要的厂商包括某某公司、某某公司和某某公司等。

竞争主要体现在产品质量、价格和创新能力等方面。

市场前景展望特种光缆市场具有良好的前景。

随着技术的进步,特种光缆的性能将进一步提升,应用范围将进一步扩大。

同时,市场竞争也将更加激烈,厂商需要不断提高产品质量和技术创新能力来保持竞争优势。

结论特种光缆市场是一个充满机遇和挑战的市场。

随着需求的不断增长和技术的不断创新,特种光缆市场将继续保持稳定增长,并且在军事、航天、海底勘探等领域发挥重要作用。

光纤通信技术发展趋势和新技术突破

光纤通信技术发展趋势和新技术突破

光纤通信技术发展趋势和新技术突破光纤通信技术作为信息传输的重要方式,已经在现代化社会中扮演着不可或缺的角色。

随着云计算、物联网和5G等新兴技术的推动,光纤通信技术也在不断发展和突破。

本文将从发展趋势和新技术突破两个方面进行探讨。

一、光纤通信技术发展趋势1. 高速和大容量:随着人们对于高速网络的需求日益增长,光纤通信技术也要求能以更高的速度进行数据传输。

目前,光纤通信技术已经实现了T级别的传输速率,未来将向更高的速率发展。

同时,随着信息量的不断增加,光纤通信技术也要求提供更大的容量,以满足数据传输需求。

2. 低延迟:随着云计算、物联网和实时应用等的不断普及,对网络的低延迟要求越来越高。

光纤通信技术的传输速度虽然已经非常快,但仍然存在一定的传输延迟。

为了满足低延迟的需求,光纤通信技术需要进一步提升传输速度和减少传输延迟,在保证高速和大容量的同时,提供更低的延迟。

3. 网络安全:随着网络攻击日益猖獗,网络安全已经成为一个全球性的重要议题。

光纤通信技术作为信息传输的基础,需要更加注重网络安全。

未来,光纤通信技术需要进一步加强数据的加密和安全传输,以确保用户的数据不被未授权访问和篡改。

4. 绿色环保:光纤通信技术相较于传统的电信传输方式更加环保。

光通信不需要大量的电源来支持传输信号,同时也不会产生电磁辐射。

未来,光纤通信技术需要进一步提高能效,减少能耗,以推动绿色环保的发展。

二、新技术突破1. 高密度纤芯:高密度纤芯技术是目前光纤通信技术的一个重要突破。

传统的单模光纤通常具有一个纤芯,而高密度纤芯技术可以在一个纤芯中传输多个模式的光信号,从而提高光纤的传输容量。

高密度纤芯技术利用了光信号的多个自由度,可以显著提高数据传输速率和容量。

2. 弯曲光纤:传统的光纤在弯曲时会有较大的光功率损耗,限制了其应用范围。

然而,新的弯曲光纤技术可以在光纤弯曲的情况下保持较低的光功率损耗,拓展了光纤在现实世界中的应用空间。

弯曲光纤技术的突破将有助于在复杂环境中部署光纤网络,并提高光纤通信技术的适用性。

光纤通信技术的发展与新趋势

光纤通信技术的发展与新趋势

光纤通信技术的发展与新趋势光纤通信技术在当今信息社会中扮演着至关重要的角色,它以其高速、大容量、低损耗和抗干扰等优点,成为了现代通信领域的主流技术。

随着科技的不断进步和人们对通信需求的不断提高,光纤通信技术也在不断发展和创新,并应对着新的挑战。

首先,光纤通信技术的发展已经实现了突破性进展。

回顾过去数十年,从单模光纤到多模光纤,再到现在的高密度光纤和空芯光纤,光纤通信技术在传输带宽上取得了长足的发展。

传输速率从初始的几百Mpbs,逐渐提升到1Gbps、10Gbps,甚至现在的100Gbps、400Gbps和1Tbps以上,使得传输速度的需求从前几年的Gbps级别,逐渐提升到了今天的Tbps级别。

其次,波分复用技术的应用也为光纤通信技术带来了新的发展机遇。

在早期的光纤通信系统中,一根光纤只能传输一路信号。

随着波分复用技术的应用,可以将不同波长的光信号重叠在同一根光纤上进行传输,大大提高了光纤的利用率。

多路复用技术使得光纤传输容量不再受限于光纤数量,而是受限于波长数目,大大提高了系统的传输容量和效率。

此外,随着移动互联网和物联网的迅猛发展,大量的数据需求涌入了通信网络中,对传输带宽提出了高要求。

虽然光纤通信技术已经实现了很高的传输速率,但仍然需要不断提高带宽以满足日益增长的数据需求。

为此,光纤通信技术的新趋势在于引入新材料、新构造和新技术来应对这一挑战。

例如,利用光子晶体技术和纳米技术制造出的超材料,可以调控光信号的传播速度、相位和方向,从而提高光纤的传输性能。

此外,光纤涂层技术的不断创新,可以降低光纤的损耗并提高传输距离,为长距离高速传输提供支持。

另外,通过光电混合集成技术,将光子器件和电子器件集成在一起,提高系统的集成度和稳定性,实现更高速率的传输。

此外,新型的光纤通信系统也在英国和美国等一些国家进行研发和试验,比如空气芯光纤通信技术。

它利用气体填充光纤的芯部,使得光信号在光纤中的传输速度更快,传输延迟更低。

光纤通信技术的发展趋势

光纤通信技术的发展趋势

光纤通信技术的发展趋势随着信息技术的不断发展,光纤通信技术作为一种高速、高带宽、低延迟的通信方式逐渐成为主流。

光纤通信技术通过光纤传输光信号,具有传输速度快、抗干扰能力强、传输距离远等优点,被广泛应用于互联网、电信、电视等领域。

未来,光纤通信技术的发展趋势主要体现在以下几个方面:首先,光纤通信技术将进一步实现高速化。

随着数据量的不断增加,人们对通信速度的需求也在不断提升。

未来,光纤通信技术将不断提升传输速度,从目前的几十Gbps、百Gbps提升至TB级别,甚至更高。

这不仅需要在光纤材料、光源器件、光接口等方面进行技术创新,还需要不断提高工艺精度和系统性能,以实现高速稳定的数据传输。

其次,光纤通信技术将更加普及。

随着5G、物联网、云计算等新兴技术的快速发展,对通信网络的需求也在不断增加。

光纤通信技术作为一种高效、可靠的通信方式,将更加普及到家庭、企业、城市等各个层面。

未来,光纤网络将进一步覆盖全国各地,为人们提供更加便捷、快速、稳定的通信服务。

此外,光纤通信技术将更加智能化。

随着人工智能、大数据、云计算等技术的不断发展,光纤通信技术也将迎来智能化的发展趋势。

未来,光纤通信系统将更加智能化,能够根据用户需求实现智能路由、负载均衡、自动优化等功能,提高网络的灵活性和效率。

最后,光纤通信技术将更加绿色环保。

随着人们对环境保护意识的提高,绿色环保已经成为未来通信技术发展的重要趋势。

光纤通信技术相比传统的电信网络具有更低的功耗和更小的电磁辐射,能够有效减少能源消耗和环境污染。

未来,光纤通信技术将继续推动绿色通信的发展,实现更加环保的通信网络。

总的来说,光纤通信技术的发展趋势将在高速化、普及化、智能化和绿色环保等方面不断完善和提升。

随着技术的不断进步和应用场景的不断扩展,光纤通信技术将在未来发挥越来越重要的作用,为人们的生活和工作带来更多便利和发展机遇。

掺稀土特种光纤的研究现状与发展趋势

掺稀土特种光纤的研究现状与发展趋势

大 容 量 、长 距 离通 信 ,将 使 光 纤 通 信 取 得 更 加 长 足 的 发展 。
二 、稀 土 元素 的 光学 特 性
稀土 离 了任 光场 和 磁场 方 面 的 应 用 有 很 长 的 历 史 。稀 土 离子 何 着 不 同 1 其 它 光 活 性 离 子 的 重 要 性 质 :其 发 射 或 吸 二 收 的 光 波 长 范 围 很 窄 , 发 射 和 吸 收 跃 迂 的 波 长 与 材 料 的 关 系不 大 。这 些 跃 迁 的 强 度 很 弱 ,亚 稳 态 的 寿 命 较 低 ,散 热 性 能 好 , 其 芯 径 大 小 与 通 信 光 纤 很 配 . 耦 合 容 易 且 效 率 高 , 可 形 成 传 输 光 纤 与 有 源
光纤 一 体 化 .是 文现 全 光 通 信 的 基 础 。 随 着 集 成 光 学 和 光 纤 通 信 的 发 展 , 需 要 有 微 型 的 激 光 器
维普资讯
技 术 发 展
墨i 誊

种 纤 研 现 与 展 势 光 的 究 状 发 趋
李 进 延
由 于剩 余 的 —1 内 层4 电 子 受 到 5 、5 形 成 的外 壳 层 屏蔽 个 f s p 作用 ,使 得 4 4 跃迁 的 光谱 特 性 ( f f 如荧 光 特性 与吸 收 特 性 ) 不 易 受 到 宿 主 玻 璃 外 场 的 影 响 , 因 此 ,掺 稀 土 元 素 的 固 态 激 光 材料 4 4 跃 迁 产 生 的 激 光线 型 极 其 尖 锐 。 掺 杂 的 稀土 f f 离 f存 宿 主 玻 璃 中 由 十 受 到 晶 格 电场 的 束 缚 而 形 成 了 稀 土


引言
掺 稀 土 特 种 光 纤 存 光 纤 激 光 器 、放 大 器 和 传 感 器 中有 着
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特种光纤技术及其发展趋势摘要:本文首先回顾了我国民族光纤产业的巨大进步与突破,进而引出激烈竞争情况下的特种光纤年差异化发展策略。

着重讲述了我国特种光纤研究进展,包括前沿的光子晶体光纤技术、色散补偿光纤技术、保偏光纤、掺稀土光纤、能量传输光纤等。

最后结合国家科技发展计划,阐述了特种光纤的发展趋势。

关键词:光纤通信、光纤、预制棒、光子晶体光纤、特种光纤一、引言“十一五”期间,在国家有关部门和各级政府的重点支持下,特别是国家科技部在“十一五”国家科技攻关和“863”光电子新材料研究计划中,安排了光纤预制棒科技支撑计划项目,国内光纤企业积极迎接挑战、踊跃投入,各相关行业协会大力促进,加快了具有自主知识产权的光纤预制棒新技术、新工艺和新材料的开发步伐。

在国家自主创新政策的引领下,民族光纤的自主创新研究显著增强,我国的预制棒技术取得了突破性进展,光纤预制棒制造技术与设备研究及产业化等方面均实现了跨越式发展:制造工艺从MCVD与PCVD,发展到OVD与VAD技术,光棒制造能力从2家发展到4家,国内光纤制造商的单模光纤年生产能力突破1000万芯公里的企业迅猛增加到4家,我国已经发展称为名符其实的光纤制造第一大国。

虽然,我国常规单模产能实现了历史性跨越与进步。

但是,在经济全球化的今天,常规单模光纤的竞争日趋白热化。

加之发达国家将制造业向中国转移,这种现实的环境更是加速了民族光纤产业的竞争,价格迅速下滑,产能将再度出现供大于求的窘境。

因此,民族光纤产业一方面要更一步增强自主创新,狠抓光纤上游核心—-光纤预制棒规模化技术,抢夺利润来源主体;另一方面,民族光纤企业家需要站在全球化市场的战略高度,苦练内功,强化管理,将民族光纤产业走出国门,推向全球市场;第三,面对利润微薄的常规光纤市场实际,要创造性地展开差异化竞争,自主创新地研究与开发特种光纤新产品,拓展新的利润增长点。

二、光子晶体光纤烽火通信科技股份有限公司在十一五国家重点基础研究发展计划973项目“微结构光纤结构设计及制备工艺的创新与基础研究”(2003CB314905)、高新技术产业化项目“863”计划“光子晶体光纤及器件的研制与开发”(2007AA03Z447)、973计划项目“微结构光纤的创新设计、精确制备及其标准化”(2010CB327606)的支撑下,从微结构光纤设计、制备技术和应用技术等多方面进行了系统深入的研究,取得了重大的科研成果。

烽火通信已经初步形成了微结构光纤(光子晶体光纤)的工艺技术与设备控制技术,以及自主知识产权的专利技术,先后制造出如图1~图6所示的光子晶体光纤,包括:高非线性光子晶体光纤、色散平坦光子晶体光纤、FTTH用微结构光纤、大模场单模光子晶体光纤、空心PBG型光子晶体光纤、全固态PBG型光子晶体光纤,以及双包层掺镱光子晶体光纤、掺铒光子晶体光纤等。

图1 高非线性光子晶体光纤图2 色散平坦高非线性光子晶体光纤图3 FTTH用微结构光纤图4大模场单模光子晶体光纤图5空心PBG型光子晶体光纤图6 全固态PBG型光子晶体光纤烽火通信将上述光子晶体光纤提供给国内的清华大学、北京邮电大学、天津大学、南开大学、燕山大学、深圳大学、国防科技大学进行基础应用研究:清华大学采用本公司提供的高非线性光子晶体光纤实现了慢光,实现了0.5脉冲当量的光减速;天津大学采用本公司提供的高非线性光子晶体光纤实现了400nm~1400nm两倍频程的超连续光谱;北京邮电大学利用本单位的高非线性光子晶体光纤实现了波长变换器件的研制;南开大学采用本单位的柚子型光敏微结构光纤,实现了多参量传感新型光纤光栅的刻写等,他们取得了新型高性能的光电子器件的国际前沿的研究成果。

三、色散补偿光纤及模块随着网络技术的应用日益广泛,人们对宽带传输的需求迅速增长,因此,光通信系统需要不断增大传输距离、传输容量和提高传输速率。

光纤通信的传输速率从最初的兆比特/秒(Mbps),2.5G比特/秒(Gbps)到10 Gbps,现在高达40 Gbps,甚至160 Gbps。

但是,常规单模光纤(G.652)由于在1530nm-1625nm(C+L波段)通信波段内具有11-21ps/nm•km的正色散,非零色散位移光纤(G.655)在C波段内具有1-10ps/nm•km的正色散。

通信数据传输一段距离后,系统的累积色散不断增加,导致传输信号的波形畸变,造成信号的失真。

为了减小通信链路累积色散对通信系统传输性能的影响,目前,国际上采用色散补偿技术来改善链路色散,包括负色散光纤补偿技术、光纤光栅色散补偿技术、电子色散补偿技术等,其中采用负色散光纤进行色散补偿的技术最方便有效,系统性能稳定可靠,成本低。

采用色散补偿光纤进行通信链路的色散补偿是当前国际上的主流技术,CIR研究表明:到2012年,全球色散补偿模块和器件的市场将会达到7.55亿美圆。

高速大容量光通信系统需求的宽带色散补偿光纤及其器件(DCM)成功商用,实现C波段的色散和色散斜率的双功能补偿,并且大规模应用在波分复用(WDM)及OTN光通信系统中,解决了该器件依赖于进口的局面。

随着密集波分系统的规模化建设,国内对色散补偿光纤模块的需求量迅速增长,预计到2015年国内需求将达到60000套(见图7),市场容量将达到2.2亿元(图8)。

图7 国内DCM需求量走势图8 国内DCM市场容量烽火通信科技股份有限公司采用自主知识产权的PCVD装备与工艺技术,独立开发出商用化的色散补偿光纤及光纤型补偿模块,成功应用在国内10G和40G通信系统中,并批量出口,表1为其色散补偿光纤模块的性能指标。

表1 色散补偿模块的性能指标Tab.1 Specifications of Fiberhome DCM常规色散补偿光纤模块对G.652光纤的补偿比率在1:8~1:10,如果采用光子晶体前沿技术进行补偿,理论上可以达到1:100的补偿比率,实现色散的高效补偿。

烽火通信在国家科技计划的支撑下,研制出高负色散光子晶体光纤(见图9)。

该光纤测试的色散曲线见图10所示,其峰值波长为1570nm,峰值负色散为-666.2ps/nm.km,其补偿带宽为40nm,补偿比率3倍以上。

图9 色散补偿型光子晶体光纤图10 色散曲线四、保偏光纤保偏光纤在许多与偏振相关的应用领域具有使用价值。

随着通信系统传输速率的提高和光纤陀螺等高级光纤传感器件的发展,对偏振态系统控制的问题变得非常重要。

国际上,目前有各种类型的保偏光纤产品进入市场,知名的保偏光纤制造公司有生产领结型保偏光纤的FiberCore 公司,有生产椭圆包层保偏光纤的3M公司,以及生产熊猫型保偏光纤的Fujikura,Corning ,Nufern、YOFC和OFS等公司。

所有的这些公司生产的保偏光纤都具有良好的双折射性能。

目前市场需求量为5000km,市场容量在5000万元左右,国内对保偏光纤的需求量逐年增大,表2为典型的熊猫型保偏光纤的技术指标。

表2 保偏光纤的技术指标Table.2 Specifications of Panda PMF常规保偏光纤大多采用预制棒钻孔的方法,然后置入应力硼棒,形成应力双折射。

光子晶体光纤科学技术的出现,为保偏光纤技术提供了新的途径。

目前,国外已经开始了光子晶体PMF的研究,利用氧化硅一空气之间的折射率反差大,容易获得高双折射,研制出了保偏光子晶体光纤(PCF).英国巴斯大学报道了其研制的高双折射PCF,利用相同直径不同壁厚的毛细管组合成预制棒,实现不同的微孔直径.光纤外直径125μm、节距1.46μm、小孔直径0.54μm、大孔直径1.14μm、在1 550 nm 的拍长为410μm ,双折射B =3.8 x 10-3 ,约为目前熊猫型PMF的10倍.Theis P.hansen利用光子晶体光纤可以高设计自由度的优势,在光纤中引入双纤芯,微孔点阵呈现三角形点阵,研制的光子晶体PMF双折射达到1.0x10-3 .目前研制的光子晶体PMF在1 550 am 窗口的损耗为1.3 dB/km,并以10 Gbit/s的速率进行1.5 km的传输系统试验。

烽火通信在国家科技计划的支撑下开展了光子晶体保偏光纤的研究,制备出如图11所示的保偏光子晶体光纤,其模双折射B=3.1x10-3。

并进行了10G通信系统的PMD补偿试验研究:图12中的左图表示系统没有进行PMD补偿时的眼图,系统的固定DGD为16ps,可以看出信号严重地受到系统PMD的影响而不能正常工作;采用图11所示的保偏光子晶体光纤对系统进行PMD补偿后,图12中的右图显示通信系统的眼图睁开,系统恢复正常工作。

图11保偏光子晶体光纤图12 PMD补偿前后的系统眼图因此,光子晶体保偏光纤以其高设计自由度、高保偏性能,以及空隙中填充各种材料可以制造出各种纤维光学器件,将具有广阔的应用前景。

五、掺稀土光纤随着新型光电子器件的发展,掺稀土光纤的应用越来越广泛。

掺稀土光纤主要包括掺镱光纤、掺铒光纤、掺铥光纤等,烽火通信的高性能掺稀土光纤成功获得“国家重点新产品”称号,打破了国外对我国高功率双包层掺稀土光纤的技术封锁。

烽火通信采用自主知识产权的专利技术,实现了稀土离子掺杂技术突破,镱离子浓度迅速突破13000ppm(见图13所示),双包层掺镱光纤的纤芯直径迅速突破100微米的技术关隘,达到115微米(见图14所示)。

图13 镱离子浓度增长路线图图14 大模场纤芯直径增长轨迹目前,烽火通信科技股份有限公司的单根掺镱光纤成功实现1640W的1080nm的激光功率输出(见图15所示),这是国内特种光纤的首次技术突破,达到了当前国际先进水平,促进了我国国防科学技术的进步。

在开发掺镱光纤的同时,烽火通信也开发出双包层掺铥光纤,获得了150W的中红外激光输出(见图16所示)。

烽火通信科技股份有限公司制造的掺铒光纤、铒镱双包层光纤、掺铥光纤都成功实现了商用化,促进了国内掺铒光纤放大器、光纤激光器等新型光纤器件的发展,为我国新型光电子器件的发展奠定基础。

图15 国产双包层掺镱光纤输出激光功率发展轨迹图16 图内外双包层掺铥光纤激光器功率进展常规的双包层掺镱光纤要维持较好的单模特性时,当其纤芯数值孔径达到0.03,其理论单模模场直径的极限为25微米,这远远不能够满足高功率光纤激光器的大功率高光束质量与高亮度的需求。

光子晶体光纤技术的出现为双包层掺稀土光纤及新型光纤激光器提供了新的技术途径。

采用空气与石英的复合材料结构,形成二维的三角形晶格点阵,当空气孔直径d与晶格常数∧的比例小于0.42时,光波电磁场维持单模工作模式。

国外已经开发出纤芯直径达到80微米的双包层掺镱光纤,具备良好的单模特性。

同时,外包层采用大空气孔取代常规的低折射率涂料极大地提高了内包层的数值孔径,并增强了其耐热性。

相关文档
最新文档