单相交流调压电路的分析
单相交流调压电路实验报告

大学电力电子技术课程设计总结报告题目:单相交流调压电路学生姓名:系别:专业年级:指导教师:年月日一、实验目的与要求(1)加深理解单相交流调压电路的工作原理。
(2)掌握单相交流调压电路的调试步骤和方法。
(3)熟悉单相交流调压电路各点的电压波形。
(4) 掌握直流电动机调压调速方法电力电子技术是专业技术基础课,做课程设计是为了让我们运用学过的电路原理的知识,独立进行查找资料、选择方案、设计电路、撰写报告、制作电路等,进一步加深对变流电路基本原理的理解,提高运用基本技能的能力,为今后的学习和工作打下良好的基础,同时也锻炼了自己的实践能力。
二、实验设备及仪器1、DT01B 电源控制屏2、DT09 转速显示3、DT15 交流电压表4、DT14 直流电流表5、DT20 电阻(900欧)6、DT04 电阻(3000欧)7、DT02 220V直流稳压电源8、DDS12单相交流调压电路触发器9、DD202 晶闸管、二极管、续流二极管、电感 10、导线若干 11、双踪示波器三、实验线路及原理1、主电路的设计所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。
交流调压电路广泛用于灯光控制及异步电动机的软启动,也用于异步电动机调速。
此外,在高电压小电流或低电压大电流之流电源中,也常采用交流调压电路调节变压器一次电压。
本次课程设计主要是研究单相交流调压电路的设计。
由于交流调压电路的工作情况与负载的性质有很大的关系,因此下面就反电势电阻负载予以重点讨论。
①电阻负载图1、图2分别为电阻负载单相交流调压电路图及其波形。
图中的晶闸管VT1和VT2也可以用一个双向晶闸管代替。
在交流电源U2的正半周和负半周,分别对VT1和VT2的移相控制角进行控制就可以调节输出电压正、负半周α起始时刻(α=0),均为电压过零时刻。
在tωα=时,对VT1施加触发脉冲,当VT1正向偏置而导通时,负载电压波形与电源电压波形相同;在tωπ=时,电源电压过零,因电阻性负载,电流也为零,VT1自然关断。
单相交流调压电路

单相交流调压电路交流-交流变流电路:把一种形式的交流变成另一种形式交流的电路。
直接方式即无中间直流环节,间接方式即有中间直流环节交流-交流变换电路可以分为间接方式(有中间直流环节)直接方式(即无中间直流环节)直接方式有交流电力控制电路和变频电路交流电力控制电路:只改变电压、电流或对电路的通断进行控制,而 不改变频率的电路。
变频电路:改变频率的电路把两个晶闸管反并联后串联在交流电路中,通过对晶闸管的控制就可以控制交流输出。
Ø交流电力控制电路交流调压电路在每半个周波内通过对晶闸管开通相位的控制,调节输出电压有效值的电路。
交流调功电路以交流电的周期为单位控制晶闸管的通断,改变通态周期数和断态周期数的比,调节输出功率平均值的电路。
交流电力电子开关:串入电路中根据需要接通或断开电路的晶闸管。
02异步电动机软起动。
04供用电系统对无功功率的连续调节。
01灯光控制(如调光台灯和舞台灯光控制)。
03异步电动机调速。
05在高压小电流或低压大电流直流电源中,用于调节变压器一次电压。
应用图1 阻性负载单相交流调压电路及波形电阻负载Ø在交流电源u1 的正半周和负半周,分别对VT1 和VT2的开通角α进行控制就可以调节输出电压。
基本的数量关系Ø负载电压有效值U0负载电流有效值I0--式1---式2Ø晶闸管电流有效值ITØ功率因数λ----式3----式4图1 阻性负载单相交流调压电路及波形Ø电阻性负载时,控制角 移相范围为0~π ,随着α增大,U0逐渐减小。
电阻性负载及各处波形如图2所示。
由于电感的储能作用,负载电流 会在电源电压 u1过零后再延迟一段时间后才能降为零,延迟的时间与负载的功率因数角 有关。
晶闸管的关断是在电流过零时刻,因此,晶闸管的导通时间θ 不仅与触发控制角α 有关,还与负载功率因数角有φ关,必须根据α与α 的关系分别讨论。
由于θ=π 时意味着负载电流i0 连续, θ < π时意味i0 断续,因此也表达了电流连续与否的运行状态。
单相交流调压电路实验总结

单相交流调压电路实验总结1. 实验目的本实验旨在通过搭建单相交流调压电路,研究和了解调压原理,探究电压调节器的工作原理,掌握电压调节器的设计和使用方法。
2. 实验原理单相交流调压电路是一种能够将输入的交流电源电压调节到特定输出电压的电路。
通过调整器件的导通角度来改变直流电压的大小,从而实现对交流电源进行调节。
常见的调压器有可控硅调压器和晶闸管调压器。
本实验以晶闸管调压器为例,其主要由变压器、调压变压器、晶闸管、负载等组成。
通过改变触发信号的时刻,来控制晶闸管的导通和截断,从而改变输出电压的大小。
3. 实验步骤与结果3.1 实验步骤1.搭建单相交流调压电路,连接变压器、调压变压器、晶闸管和负载。
2.接通电源,调节输出电压调节器的电位器,观察输出电压的变化。
3.改变触发信号的时刻,观察输出电压的变化。
3.2 实验结果根据实验步骤进行实验后,观察到输出电压随着调节器电位器的调节而改变,同时观察到改变触发信号的时刻会对输出电压产生影响。
4. 重要观点与关键发现•晶闸管调压电路可以实现对交流电源电压的调节。
•调压电路主要由变压器、调压变压器、晶闸管和负载等组成。
•通过改变导通角度来控制晶闸管的导通和截断,从而调节输出电压的大小。
•输出电压的大小和触发信号的时刻密切相关。
5. 进一步思考1.通过实验可以发现,调压电路可以实现对交流电源电压的调节。
然而,在实际应用中,还需要考虑电流、功率等因素。
如何在保证电压稳定的前提下,实现对电流和功率的控制,是一个值得研究的问题。
2.实验中使用的是晶闸管调压器,还有其他类型的调压器,如可控硅调压器等。
不同类型的调压器具有不同的特点和适用范围,可以进行更深入的研究和比较。
3.在实验过程中,可能会遇到一些问题,如晶闸管发热、功率损耗等。
如何在设计和使用调压器时解决这些问题,可以进行进一步的探索和优化。
4.在实际应用中,调压器多用于电力系统中,如电网调压、高压输电线路调压等。
如何在复杂的电网环境下实现稳定的调压效果,是一个具有挑战性的问题,值得深入研究。
单相交流调压电路仿真实验报告

单相交流调压电路仿真实验报告一、实验目的本实验旨在通过仿真模拟,深入理解单相交流调压电路的工作原理和性能特点,掌握其电压调节原理和操作方法,提高对电力电子技术的理解和应用能力。
二、实验原理单相交流调压电路是通过控制开关器件的通断,调节输入交流电压的幅值和相位,以达到调节输出电压的目的。
根据控制方式的不同,单相交流调压电路可以分为斩波调压和相控调压两种。
本实验采用斩波调压方式。
斩波调压是通过控制开关器件的通断时间,调节输出电压的幅值。
当开关器件导通时,输出电压为输入电压;当开关器件关断时,输出电压为0。
通过调节开关器件的通断时间,可以改变输出电压的平均值,从而实现调节输出电压幅值的目的。
三、实验设备本实验使用MATLAB/Simulink软件进行仿真模拟,实验设备包括计算机、MATLAB/Simulink软件、电源模块、电阻器、电感器和开关器件等。
四、实验步骤1. 打开MATLAB/Simulink软件,新建一个仿真模型;2. 搭建单相交流调压电路的仿真模型,包括电源模块、电阻器、电感器、开关器件等;3. 设置仿真参数,如仿真时间、采样时间等;4. 启动仿真,观察并记录仿真结果;5. 分析仿真结果,包括输出电压的波形、相位、幅值等;6. 调整开关器件的通断时间,观察输出电压的变化,并分析斩波调压原理;7. 整理实验数据和波形,撰写实验报告。
五、实验结果与分析通过仿真模拟,我们得到了单相交流调压电路在不同开关器件通断时间下的输出电压波形。
从实验结果可以看出,当开关器件导通时间越长,输出电压的幅值就越高;当开关器件关断时间越长,输出电压的幅值就越低。
这个结果表明斩波调压原理是可行的。
此外,我们还观察了输出电压的相位变化。
当开关器件导通时,输出电压与输入电压同相位;当开关器件关断时,输出电压为0。
这说明斩波调压方式不会改变输出电压的相位。
六、结论与总结通过本次单相交流调压电路的仿真实验,我们深入了解了斩波调压电路的工作原理和性能特点,掌握了其电压调节方法和操作技巧。
单相交流调压电路

一、几种交流调压电路 1、简单双向晶闸 管交流调压电路
RL 1 VD ~220V R C1 Q 2
2、触发二极管 交流调压电路
RLT
VD
u
C1
C2
图B
VT
VD RP ~220V
M
VD1
VD2
C VD3 VD4
3、单结晶体管触发电路
RL
R1 VD1 VD2 R2 R3 V2 VD3 VD4
第四章
单相交流调压电路的分析
A. 反并联电路 B. 混合反并联电路
May 1, 2003
北方交通大学电气工程学院
4-4
第四章
单相交流调压电路的分析(续)
• 电感性负载 a. 电路 b. 电压与电流波形
May 1, 2003
北方交通大学电气工程学院
4-12
第四章 e. 几种典型情况: (1) = 0
(2) 不等于 0 < 180
May 1, 2003 北方交通大学电气工程学院 4-15
第四章 (3) =
(4)
窄脉冲 宽脉冲
May 1, 2003
北方交通大学电气工程学院
4-16
图C
RP
R4 V1
R5
~170V
VD5 TP
VT
C
θ RT
4、程控单结管触发的交流调压电路
RL
L1
VD1 C1 VD2 RP R1 R2 R3 R5
UG
UA C2 VD3 L2 VD4 V
PUT
VT TP C3 VD5
~220V
R4
二、单相交流调压电路分析
1、纯电阻负载 2、感性负载 (1) α >φ (2) α =φ (3)α <φ A、窄脉冲 B、宽脉冲或脉冲序列
单相交流调压电路实验心得

单相交流调压电路实验心得
在本次单相交流调压电路实验中,我深刻体会到了电路理论在实际应用中的重要性。
通过实验,我不仅加深了对单相交流调压电路工作原理的理解,还掌握了一些实用的实验技能。
实验开始前,我们先对单相交流调压电路的相关理论知识进行了学习,包括电路的组成部分、工作原理以及调压的实现方法等。
在实验过程中,我按照实验指导书的步骤进行操作,认真观察和记录实验现象,通过改变电阻值和控制信号,观察负载电压的变化,进一步理解了交流调压的工作原理。
通过本次实验,我还学会了如何使用示波器、万用表等仪器来测量和分析电路的性能。
这些实验技能将对我今后的学习和工作产生积极的影响。
这次实验让我对单相交流调压电路有了更深入的理解,也提高了我的实验技能和解决问题的能力。
我明白了理论知识与实践操作相结合的重要性,只有通过实际操作,才能真正理解和掌握所学的知识。
在今后的学习中,我将更加注重实践,不断提高自己的综合能力。
单相交流调压电路
项目一单相交流调压电路一、单相交流调压电路(电阻性负载)∙原理图单相交流调压电路,它用两只反并联的普通晶闸管或一只双向晶闸管与负载电阻R串联组成的电路,如图1-1。
如图1-1∙工作原理.以反并联电路为例进行分析,正半周a时刻触发VT1管,负半周a时刻触发VT2管,输出电压波形为正负半周缺角相同的正弦波∙建立模型仿真根据原理图用matalb软件画出正确的仿真电路图,如图1-2。
如图1-2仿真参数,算法(solver)ode15s,相对误差(relativetolerance)1e-3,开始时间0结束时间0.05s,如图1-3。
图1-3第一个脉冲参数,振幅3V,周期0.02,占空比20%,时相延迟30/180*0.01如图1-4第二个脉冲参数,振幅3V,周期0.02,占空比20%,时相延迟30/180*0.01+0.01如图1-4图1-4图1-5 电源参数,频率50hz,电压220v,如图1-6图1-6 晶闸管参数,如图1-7(4)仿真参数设置设置触发脉冲α分别为30°、60、90、120°。
与其产生的相应波形分别如图1-8、图1-9、图1-10、图1-11。
在波形图中第一列波为晶闸管电流波形,第二列波为晶闸管电压波形,第三列波为负载电流波形,第四列波为负载电压波形图1-8图1-9图1-10(4)小结在电源电压正半波(0~π区间),晶闸管Ug1承受正向电压,在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流Id,负载上有输出电压和电流。
在ωt=π时刻,U2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为0。
在电源电压负半波(π~2π区间),晶闸管Ug2承受正向电压,在wt=a+180度处触发晶闸管Ug2,Ug2导通,而Ug1受反向电压,晶闸管不导通直到电压电源U2的下个周期的正半波,脉冲在ωt=2π+α处又触发Ug1晶闸管,晶闸管再次被触发导通,输出电压和电流有加在负载上,如此不断反复。
单相交流调压移相触发电路
单相交流调压移相触发电路
关于单相交流调压移相触发电路介绍如下:
单相交流调压移相触发电路是一种用于调节交流电压的电路,通常由控制电路、检测电路和输出电路组成。
其工作原理是通过控制电路调节触发角的大小,进而改变输出电压的幅值和相位,以达到调节交流电压的目的。
在单相交流调压移相触发电路中,通常采用晶闸管作为开关器件。
当触发角较小时,晶闸管导通的时间较短,输出电压的幅值较低;而当触发角较大时,晶闸管导通的时间较长,输出电压的幅值较高。
通过调节触发角的大小,可以实现对输出电压的幅值和相位进行调节。
此外,单相交流调压移相触发电路还具有以下特点:
1. 调节范围广:通过调节触发角的大小,可以实现对输出电压的幅值和相位进行大幅度调节,从而满足不同负载的需求。
2. 输出波形好:由于采用晶闸管作为开关器件,输出的波形较为平滑,可以减小对负载的冲击。
3. 响应速度快:由于晶闸管的开关速度较快,因此单相交流调压移相触发电路的响应速度也较快,可以快速地调节输出电压。
4. 可靠性高:由于晶闸管具有较高的耐压和电流容量,因此单相交流调压移相触发电路的可靠性也较高。
总之,单相交流调压移相触发电路是一种功能强大、可靠性高的电路,在电力电子、电机控制等领域得到了广泛应用。
单相交流调压电路(阻感性负载)
1.单相交流调压电路(阻-感性负载)1.1单相交流调压电路电路结构(阻-感性负载)单相交流调压电路,它用两只反并联的普通晶闸管或一只双向晶闸管与负载电阻R电感L串联组成主电路。
单相交流调压电路(阻-感性负载)电路图如图1所示。
图1.单相交流调压电路(阻-感性负载)电路图1.2单相交流调压电路工作原理(阻-感性负载)当电源电压U2在正半周时,晶闸管VT1承受正向电压,但是没有触发脉冲晶闸管VT1没有导通,在α时刻来了一个触发脉冲,晶闸管VT1导通,晶闸管VT2在电源电压是正半周时承受反向电压截止,当电源电压反向过零时,由于负载电感产生感应电动势阻止电流变化,故电流不能马上为零,随着电源电流下降过零进入负半周,电路中的电感储存的能量释放完毕,电流到零,晶闸管VT1关断。
当电源电压U2在负半周时,晶闸管VT2承受正向电压,但是没有触发脉冲晶闸管VT2没有导通,在π+α时刻来了一个触发脉冲,晶闸管VT2导通,晶闸管VT1在电源电压是负半周时承受反向电压截止,当电源电压反向过零时,由于负载电感产生感应电动势阻止电流变化,故电流不能马上为零,随着电源电流下降过零进入负半周,电路中的电感储存的能量释放完毕,电流到零,晶闸管VT2关断。
1.3单相交流调压电路仿真模型(阻-感性负载)单相交流调压电路(阻-感性负载)仿真电路图如图2所示:图2.单相交流调压电路(阻-感性负载)仿真电路图电源参数,频率50hz,电压100v,如图3图3.单相交流调压电路(阻-感性负载)电源参数VT1脉冲参数设置,振幅3V,周期0.02,占空比10%,时相延迟α/360*0.02,如图4图4.单相交流调压电路(阻-感性负载)脉冲参数设置VT2脉冲参数设置,振幅3V,周期0.02,占空比10%,时相延迟(α+π)/360*0.02,如图5图5.单相交流调压电路(阻-感性负载)脉冲参数设置1.4单相交流调压电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。
单相交流调压电路实验报告
单相交流调压电路实验报告单相交流调压电路实验报告引言:在现代电力系统中,交流电压的调整和稳定对于各种电气设备的正常运行至关重要。
为了实现对交流电压的调节,单相交流调压电路应运而生。
本文将介绍一次单相交流调压电路的实验过程和结果。
实验目的:本次实验的目的是通过搭建单相交流调压电路,掌握调压电路的工作原理和调压效果,并通过实验数据分析,对调压电路的性能进行评估。
实验装置:1. 交流电源:提供实验所需的交流电源,频率为50Hz,电压为220V。
2. 变压器:将输入的220V交流电压转换为所需的输出电压。
3. 整流电路:将交流电压转换为直流电压。
4. 滤波电路:对整流后的直流电压进行滤波处理,使其更加稳定。
5. 调压电路:通过调节电路中的元件,实现对输出电压的调节。
实验步骤:1. 按照实验装置的接线图,将交流电源、变压器、整流电路、滤波电路和调压电路依次连接。
2. 打开交流电源,调节变压器的输出电压,使其达到所需的实验电压。
3. 通过示波器观察输出电压的波形,并记录下波形的峰值、峰-峰值和有效值。
4. 调节调压电路中的元件,观察输出电压的变化,并记录下调节前后的输出电压值。
5. 重复步骤4,记录不同调节状态下的输出电压值,以评估调压电路的性能。
实验结果:通过实验,我们得到了以下结果:1. 输出电压的波形为直流电压,具有较小的纹波。
2. 调节电路中的元件可以实现对输出电压的连续调节,并且调节范围较大。
3. 调节电路的调压效果良好,输出电压的稳定性较高。
实验分析:根据实验结果,我们可以得出以下分析:1. 变压器的作用是将输入的220V交流电压转换为所需的输出电压。
通过调节变压器的输出电压,可以实现对输出电压的初步调节。
2. 整流电路的作用是将交流电压转换为直流电压。
通过整流电路的滤波处理,可以使输出电压的纹波较小。
3. 调压电路的作用是通过调节电路中的元件,实现对输出电压的进一步调节。
通过实验数据的记录和分析,我们可以评估调压电路的性能,并对其进行优化和改进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、单相交流调压电路的分析
如上所述,应用最广的是反并联交流调压电路,因此以这种电路为代表,分析交流调压电路带不同性质负载时的工作情况。
电阻性负载返回页首
反并联交流调压电路和波形如图5-1(a)所示。
其输出波形是对称的,设正、负半波的控制角均为α,负载电阻为R,输入的电源电压有效值为U
,则此电路
1
的基本电气参数如下:
1.负载电阻R上的交流电压有效值U
R
2.负载电阻R上的电流有效值I
R
3.功率因数λ
4.晶闸管的电流平均值I
dT
5.晶闸管电流有效值I及其通态平均电流I
T
图5-3为单相交流调压器在电阻负载时的参数与控制角α的关系,其中U
R /U
1
、
I R /I
及功率因数λ三者与α的关系可用同一条曲线表示。
图5-3
电感性负载返回页首
交流调压器在电感性负载下工作和整流器在电感性负载下工作类似,电流的波形也滞后于电压的波形。
因此电压过零为负值后,还要经过一个延滞角,电流才会降到零,所以已经导通的晶闸管也要经过一个延迟角才会关断。
延滞角的大小与控制角α、负载功率因数角ϕ都有关系。
图5-4(a)和(b)为单相交流调压器在电感性负载时的电路和电压、电流的波形。
图中θ为晶闸管的导通角,虚线所
示的电流i
L0
为α=ϕ时的负载电流,其滞后于电压的相角即为功率因数。
下面分
析θ、α、ϕ间的关系并求负载电流的表达式。
图5-4
1.负载电流表达式
为了方便起见,取晶闸管开始导通瞬间为时间坐标的原点(见图5-5),
这时晶闸管中的负载电流i
L
,相当于ωt=0瞬间RL电路突然与交流电源接通的
电流,电压的初相角为α。
负载电流i
L 可以分为强制(稳态)分量i
L1
与自由(暂
态)分量i
L2
两部分。
图5-5
通过对i
L1、i
L2
的计算,最后得出:
由i
L1和i
L2
合成的i
L
图形如图5-5所示。
2.控制角α、功率因数角ϕ与导通角θ间的关系
设晶体管导通角为θ,故当ωt=θ时,i
L
=0,由上式得
这是超越方程式,表示了θ=f(α、ϕ)的关系。
由该式可求得一族θ=f(α)的曲线关系,如图5-6所示。
图5-6
由以上分析和图5-6可以看出以下几种典型情况:
1.ϕ=0︒:
图5-7 2.ϕ≠0︒、α>ϕ、θ<180︒:
图5-8 3.α=ϕ:
图5-9 4.α<ϕ:
图5-10 上:宽脉冲下:窄脉冲
当交流调压器带电感负载时,为了可靠、有效地工作,应使ϕ≤α≤180︒;为了避免出现直流分量应采用宽脉冲或脉冲列触发晶闸管。