近世代数试题及答案

合集下载

近世代数试题及答案

近世代数试题及答案

近世代数试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项不是群的性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律答案:D2. 有限群的阶数为n,那么它的子群的个数至少为:A. nB. 1C. n-1D. n+1答案:B3. 以下哪个命题是正确的?A. 任意两个子群的交集仍然是子群B. 任意两个子群的并集仍然是子群C. 子群的子群仍然是子群D. 子群的补集仍然是子群答案:A4. 群G的阶数为n,那么它的元素的阶数不可能是:A. 1B. nC. 2D. n+1答案:D5. 以下哪个不是环的性质?A. 封闭性B. 交换律C. 分配律D. 结合律答案:B二、填空题(每题4分,共20分)1. 如果集合S上的二元运算*满足结合律,那么称S为________。

答案:半群2. 一个群G的所有子群的集合构成一个________。

答案:格3. 一个环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R为________。

答案:交换环4. 一个环R中,如果对于任意的a,b∈R,都有ab=ba,则称R为________。

答案:交换环5. 一个群G中,如果存在一个元素a,使得对于任意的g∈G,都有ag=ga=e,则称a为G的________。

答案:单位元三、简答题(每题10分,共30分)1. 请简述子群和正规子群的区别。

答案:子群是群G的非空子集H,满足H中的任意两个元素的乘积仍然在H中,并且H对于G的运算是封闭的。

正规子群是子群N,满足对于任意的g∈G和n∈N,都有gng^-1∈N。

2. 请解释什么是群的同态和同构。

答案:群的同态是两个群G和H之间的函数f,满足对于任意的g1,g2∈G,都有f(g1g2)=f(g1)f(g2)。

群的同构是同态,并且是双射,即存在逆映射。

3. 请解释什么是环的零因子和非零因子。

答案:在环R中,如果存在非零元素a和b,使得ab=0,则称a和b 为零因子。

如果环R中不存在零因子,则称R为无零因子环。

近世代数复习题及答案

近世代数复习题及答案

近世代数复习题及答案1. 群的定义是什么?请给出一个例子。

答案:群是一个集合G,配合一个运算*,满足以下四个条件:封闭性、结合律、单位元的存在性、逆元的存在性。

例如,整数集合Z在加法运算下构成一个群。

2. 什么是子群?如何判断一个子集是否为子群?答案:子群是群G的一个非空子集H,使得H中的元素在G的运算下满足群的四个条件。

判断一个子集是否为子群,需要验证它是否在群运算下封闭,是否包含单位元,以及每个元素是否有逆元。

3. 什么是正规子群?请给出一个例子。

答案:正规子群是群G的一个子群N,对于G中任意元素g和N中任意元素n,都有gng^-1属于N。

例如,整数集合Z在加法运算下的子群2Z(所有偶数的集合)是一个正规子群。

4. 什么是群的同态?请给出一个例子。

答案:群的同态是两个群G和H之间的函数φ,使得对于G中任意两个元素a和b,都有φ(a*b) = φ(a) * φ(b)。

例如,函数φ: Z → Z_2定义为φ(n) = n mod 2,是整数群Z到模2整数群Z_2的一个同态。

5. 什么是群的同构?请给出一个例子。

答案:群的同构是两个群G和H之间的双射同态。

这意味着G和H不仅满足相同的群运算规则,而且它们之间存在一一对应关系。

例如,群Z_3(模3整数群)和群{1, -1}在乘法下构成的群是同构的。

6. 什么是环?请给出一个例子。

答案:环是一个集合R,配合两个运算+和*,满足以下条件:(R, +)是一个交换群,(R, *)满足结合律,且乘法对加法满足分配律。

例如,整数集合Z在通常的加法和乘法运算下构成一个环。

7. 什么是理想?如何判断一个子集是否为理想?答案:理想是环R的一个子集I,满足以下条件:I在加法下封闭,对于R中任意元素r和I中任意元素i,都有ri和ir属于I。

判断一个子集是否为理想,需要验证它是否在加法下封闭,以及是否满足吸收性质。

8. 什么是环的同态?请给出一个例子。

答案:环的同态是两个环R和S之间的函数φ,使得对于R中任意两个元素a和b,都有φ(a+b) = φ(a) + φ(b)和φ(a*b) = φ(a) * φ(b)。

近世代数试题及答案

近世代数试题及答案

近世代数试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项不是群的三个基本性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律2. 在有限群中,以下哪个命题是正确的?A. 群的阶数等于群中元素的数量B. 群中每个元素的阶数都是群的阶数的因子C. 群中存在唯一的单位元D. 群中每个元素都有唯一的逆元3. 若一个群G是阿贝尔群,那么以下哪个性质一定成立?A. 群G中的任意两个元素都满足交换律B. 群G中存在唯一的单位元C. 群G中的每个元素都有唯一的逆元D. 群G的阶数是奇数4. 以下哪个不是环的基本性质?A. 环中加法满足交换律B. 环中加法满足结合律C. 环中加法存在单位元D. 环中加法和乘法都满足分配律二、填空题(每题5分,共20分)1. 一个群的阶数是______个元素的集合。

2. 群的单位元在群中具有唯一的______性质。

3. 阿贝尔群的元素满足______律。

4. 一个环的乘法如果满足交换律,则该环称为______环。

三、解答题(每题10分,共60分)1. 证明:若群G的阶为素数,则G是循环群。

2. 给定一个群G和一个子群H,证明:若H是G的正规子群,则G/H 是群。

3. 描述群同态的基本性质,并给出一个具体的例子。

4. 证明:若环R是整环,则R中每个非零元素都有逆元。

5. 给定一个环R和一个理想I,证明:若I是R的主理想,则R/I是域。

6. 描述环同构和群同构的区别,并给出一个具体的例子。

四、计算题(每题10分,共20分)1. 计算群Z_6(整数模6的加法群)的子群,并确定它们是否是正规子群。

2. 给定环Z[x](多项式环),计算理想(x^2+1)和(x-1)的和,并证明你的结论。

答案:一、选择题1. D2. B3. A4. A二、填空题1. 有限2. 唯一3. 交换4. 整三、解答题1. 略2. 略3. 略4. 略5. 略6. 略四、计算题1. 略2. 略。

近世代数期末模拟考试与答案

近世代数期末模拟考试与答案

近 世 代 数 试 卷一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。

( f )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。

( f )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。

( t )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。

(t )5、如果群G 的子群H 是循环群,那么G 也是循环群。

( f )6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。

( t )7、如果环R 的阶2≥,那么R 的单位元01≠。

( t )8、若环R 满足左消去律,那么R 必定没有右零因子。

( t )9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。

( f )10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。

( f )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么( 2 ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。

2、指出下列那些运算是二元运算( 3 )4①在整数集Z 上,abba b a +=; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。

近世代数期末考试试卷及答案

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。

A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。

A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----------同构。

2、一个有单位元的无零因子-----称为整环。

3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。

4、a 的阶若是一个有限整数n ,那么G 与-------同构。

5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。

6、若映射ϕ既是单射又是满射,则称ϕ为-----------------。

7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得10=+++n n a a a αα 。

8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---------。

近世代数模拟试题及答案

近世代数模拟试题及答案

近世代数模拟试题一、单项选择题每题5分,共25分1、在整数加群Z,+中,下列那个是单位元;A 0B 1C -1D 1/n,n是整数2、下列说法不正确的是;A G只包含一个元g,乘法是gg=g;G对这个乘法来说作成一个群B G是全体整数的集合,G对普通加法来说作成一个群C G是全体有理数的集合,G对普通加法来说作成一个群D G是全体自然数的集合,G对普通加法来说作成一个群3、下列叙述正确的是;A 群G是指一个集合B 环R是指一个集合C 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在D 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在4、如果集合M的一个关系是等价关系,则不一定具备的是;A 反身性B 对称性C 传递性D 封闭性S的共轭类;5、下列哪个不是3A 1B 123,132,23C 123,132D 12,13,23二、计算题每题10分,共30分S的正规化子和中心化子;1.求S={12,13}在三次对称群32.设G ={1,-1,i,-i},关于数的普通乘法作成一个群,求各个元素的阶;3.设R 是由一切形如⎪⎪⎭⎫ ⎝⎛0,0,y x x,y 是有理数方阵作成的环,求出其右零因子;三、证明题每小题15分,共45分1、设R 是由一切形如⎪⎪⎭⎫ ⎝⎛0,0,y x x,y 是有理数方阵作成的环,证明⎪⎪⎭⎫ ⎝⎛0,00,0是其零因子;2、设Z 是整数集,规定a ·b =a +b -3;证明:Z 对此代数运算作成一个群,并指出其单位元;3、证明由整数集Z和普通加法构成的Z,+是无限阶循环群;近世代数模拟试题答案一、单项选择题每题5分,共25分1. A2. D3. C4. D5. B二、计算题每题10分,共30分1. 解:正规化子NS ={1,23};;;;;;;;;;;;6分中心化子CS ={1};;;;;;;;;;;;;;;;;;4分2. 解:群G 中的单位元是1;;;;;;;;;;;;;;;;;;;;;;;;2分1的阶是1,-1的阶是2,i 和-i 的阶是4;;;;4×2分3. 解:设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;;;;2分 所以⎪⎪⎭⎫ ⎝⎛0,0,y x ⎪⎪⎭⎫ ⎝⎛0,0,b a =⎪⎪⎭⎫ ⎝⎛0,0,xb xa =0;;;;;;;;;;;;;;;3分因为x 任意,所以a =b =0;;;;;;;;;;;;;;;;;;;;3分因此右零因子为⎪⎪⎭⎫⎝⎛0,00,0;;;;;;;;;;;;;;;;;;;;;;;;2分三、证明题每小题15分共45分 1.证明:设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;;;;2分 所以⎪⎪⎭⎫ ⎝⎛0,0,y x ⎪⎪⎭⎫ ⎝⎛0,0,b a =⎪⎪⎭⎫ ⎝⎛0,0,yb xa =0;;;;;;;;;;;;;;;;5分 因为x,y 任意,所以a =b =0;;;;;;;;;;;;;;;;;8分同理设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;10分 所以⎪⎪⎭⎫ ⎝⎛0,0,b a ⎪⎪⎭⎫ ⎝⎛0,0,y x =⎪⎪⎭⎫ ⎝⎛0,0,yb xa =0;;;;;;;;;;;;;;;;12分 因为x,y 任意,所以a =b =0;;;;;;;;;;;;;;;;;14分因此零因子为⎪⎪⎭⎫ ⎝⎛0,00,0;;;;;;;;;;;;;;;;;;;;;;;;15分2.明:首先该代数运算封闭;;;;;;;;;;;;;;;;;;;;3分其次我们有:a ·b ·c =a +b -3·c =a +b -3+c -3=a +b +c -3-3=a ·b ·c,结合律成立;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;6分令e =3,验证a ·e =a +e -3=a,有单位元;;;;7分对任意元素a,6-a 是其逆元,因为a ·6-a =3;;;8分因此,Z 对该运算作成一个群;显然,单位元是e =3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;10分3.证明:首先证明Z,+是群,+满足结合律,对任意的Z x ∈,x x x =+=+00,0是运算+的单位元又由于: ()()0=+-=-+x x x x所以 ,1x x -=-从而Z,+为群;;;;;;;;;2分由于+满足交换律,所以Z,+是交换群;;;;4分Z,+的单位元为0,对于1Z ∈,由于 1+-1=0,所以111-=-,;;;5分于是对任意Z k ∈,若0=k ,则:010=;若0>k ,则k k =+++=1111 ;;;;;;;;;;;8分若0<k ,则()()()k k k k ------===111111)1()1()1(---++-+-=个k))(1(k --= k = ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;10分综上,有k k =1,对任意的Z k ∈. 因而,{}Z k Z k ∈=1,从而Z,+是无限阶循环群;;;;;;;;;;;;;;;;;;15分。

近世代数经典题与答案

近世代数经典题与答案

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载近世代数经典题与答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容1.设为整数加群, ,求解在 Z中的陪集有:, , ,, , 所以, .2、找出的所有子群。

解:S3显然有以下子群:本身;((1))={(1)};((12))={(12),(1)};((13))={(13),(1)};((23))={(23),(1)};((123))={(123),(132),(1)}若S3的一个子群H包含着两个循环置换,那么H含有(12),(13)这两个2-循环置换,那么H含有(12)(13)=(123),(123)(12)=(23),因而H=S3。

同理,若是S3的一个子群含有两个循环置换(21),(23)或(31),(32)。

这个子群也必然是S3。

用完全类似的方法,可以算出,若是S3的一个子群含有一个2-循环置换和一个3-循环置换,那么这个子群也必然是S3。

7.试求高斯整环的单位。

解设 () 为的单位, 则存在 , 使得 , 于是因为 , 所以 . 从而 , , 或 . 因此可能的单位只有显然它们都是的单位. 所以恰有四个单位:5.在中, 解下列线性方程组:解: 即 , .12. 试求的所有理想.解设为的任意理想, 则为的子环,则 , , 且 .对任意的 , , 有 ,从而由理想的定义知, 为的理想. 由此知, 的全部理想为且 .13、数域上的多项式环的理想是怎样的一个主理想。

解由于,所以,于是得。

14、在中, 求的全部根. 解共有16个元素: , , , , 将它们分别代入 ,可知共有下列4个元素, , , 为的根.20.设R为偶数环.证明:问:是否成立?N是由哪个偶数生成的主理想?解::故另外故总之有另方面,由于且而且实际上N是偶数环中由8生成的主理想,即,但是因此,.实际上是22、设,求关于的所有左陪集以及右陪集.解 , 的所有左陪集为:;;.的所有右陪集为:;;.1.在群中, 对任意 , 方程与都有唯一解.证明令 , 那么 , 故为方程的解。

近世代数试题及答案

近世代数试题及答案

近世代数试题及答案一、单项选择题(每题3分,共30分)1. 群的元素a的阶是指最小的正整数n,使得a^n=e,其中e是群的()。

A. 单位元B. 零元C. 负元D. 逆元答案:A2. 环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R 是()。

A. 交换环B. 非交换环C. 整环答案:A3. 向量空间V中,如果存在非零向量α,使得对于V中任意向量β,都有α⊥β,则称α是V的一个()。

A. 基B. 零向量C. 法向量D. 正交向量答案:C4. 有限域F中,如果存在元素a∈F,使得a^p=a对于所有a∈F 成立,则称F是()。

A. 素域B. 特征域C. 完全域答案:B5. 群G的一个子群H,如果对于任意的h∈H,g∈G,都有ghg^-1∈H,则称H是G的一个()。

A. 正规子群B. 非正规子群C. 子群D. 群答案:A6. 环R中,如果对于任意的a,b∈R,都有ab=ba,则称R是()。

A. 交换环B. 非交换环C. 整环答案:A7. 向量空间V中,如果存在一组向量α1,α2,…,αn,使得V中任意向量都可以表示为这些向量的线性组合,则称这组向量是V的一个()。

A. 基B. 零向量C. 法向量D. 正交向量答案:A8. 群G的一个子群H,如果H=G,则称H是G的一个()。

A. 正规子群B. 非正规子群C. 子群答案:C9. 环R中,如果对于任意的a,b∈R,都有a-b=b-a,则称R 是()。

A. 交换环B. 非交换环C. 整环D. 除环答案:A10. 向量空间V中,如果存在一组向量α1,α2,…,αn,使得这些向量线性无关,并且V中任意向量都可以表示为这些向量的线性组合,则称这组向量是V的一个()。

A. 基B. 零向量C. 法向量D. 正交向量答案:A二、填空题(每题4分,共40分)1. 群G中,如果对于任意的a,b∈G,都有ab=ba,则称G是________。

答案:交换群2. 环R中,如果对于任意的a,b∈R,都有ab=0,则称R是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内蒙古广播电视大学2008—2009年度第二学期期末
《近世代数》试题
一、(16分)叙述概念或命题
1.正规子群;
2.唯一分解环;
3.代数数;
4.鲁非尼-阿贝尔定理 二、(12分)填空题
1.设有限域F 的阶为81,则的特征=p 。

2.已知群G 中的元素a 的阶等于50,则4a 的阶等于 。

3.一个有单位元的无零因子 称为整环。

4.如果710002601a 是一个国际标准书号,那么=a 。

三、(10分)设G 是群。

证明:如果对任意的G x ∈,有e x =2,则G 是交换群。

四、(10分)证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。

五、(15分)设}R ,,,|{H ∈+++=d c b a dk cj bi a 是四元数体,对H 中任意元
dk cj bi a x +++=,
定义其共轭
dk cj bi a x ---=。

1.证明:x x x x =是一个非负实数;
2.对k j i x 221-+-=,k j i y -+-=22,求xy ,yx 和1-x 。

六、(15分)设)6(1=I ,)15(2=I 是整数环的理想,试求下列各理想,并简述理由。

1.21I I +;
2.21I I ⋂; 3.21I I ⋅
七、(10分)设有置换)1245)(1345(=σ,6)456)(234(S ∈=τ。

1.求στ和στ-1;
3.确定置换στ和στ-1的奇偶性。

八、(12分)求剩余类加群Z 12中每个元素的阶。

《近世代数》试卷答案
一、1.若H 是群G 的子群,且对每个G a ∈,有Ha aH =,那么H 称为是G 的正规子群。

2.设R 是个整环,若对于R 中每个非零非单位的元都有唯一分解,则称R 为唯一分解环。

3.有理数域上的代数元称为代数数。

4.如果5≥n (特征为0),那么n 次的一般方程没有根式解。

二、1.3
2.25
3.交换环 4.6 三、对于G 中任意元x ,y ,由于e xy =2)(,所以yx x y xy xy ===---111)((对每个x ,从e x =2可得1-=x x )。

四、设A 是任意方阵,令)(21A A B '+=
,)(2
1
A A C '-=,则
B 是对称矩阵,而
C 是反对称矩阵,且C B A +=。

若令有11C B A +=,这里1B 和1C 分别为对称矩阵和反对称矩阵,则C C B B -=-11,而等式左边是对称矩阵,右边是反对称矩阵,于是两边必须都等于0,即:1B B =,1C C =,所以,表示法唯一。

五、1.02222≥+++==d c b a x x x x
2.k j i xy 8424-+--=,k j i yx 2484-+--=,)221(10
1
1k i i x +-+=- 六、1.)3(21=+I I ;
2.)30(21=⋂I I ; 3.)90(21=⋅I I
七、1.)56)(1243(=στ,)16524(1=στ-;
2.两个都是偶置换。

八、。

相关文档
最新文档