基于图像灰度的模板匹配方法
ncc 模板匹配算法 -回复

ncc 模板匹配算法-回复NCC(Normalized Cross-Correlation)模板匹配算法在计算机视觉领域中被广泛应用,用于检测图像中的目标物体。
本文将逐步介绍NCC模板匹配算法的原理、步骤和应用,并探讨其优势和局限性。
一、NCC模板匹配算法的原理NCC模板匹配算法基于归一化的互相关性进行目标检测。
互相关性是一种衡量两个信号相似度的方法,通过计算两个信号之间的相似性得分来判断它们的相关性。
而NCC模板匹配算法则在此基础上进行了归一化处理,使得计算结果不受亮度和对比度的影响。
二、NCC模板匹配算法的步骤1. 数据准备:首先,我们需要准备一张待匹配的图像和一个目标物体的模板图像。
模板图像是我们希望在待匹配图像中找到的目标物体的参考图像。
2. 归一化处理:为了消除亮度和对比度的影响,需要对待匹配图像和模板图像进行归一化处理。
具体来说,我们需要将图像的亮度值均衡化,以及将图像的对比度缩放至合适的范围。
3. 特征提取:在NCC模板匹配算法中,我们通常使用图像的灰度值作为特征。
因此,我们需要将待匹配图像和模板图像转换为灰度图像。
4. 计算互相关系数:接下来,计算目标物体在待匹配图像中的位置。
我们通过计算待匹配图像与模板图像之间的互相关系数来评估它们的相似度。
互相关系数的计算公式为:NCC = sum((I - mean(I)) * (T - mean(T))) / (std(I) * std(T))其中,I表示待匹配图像的灰度值矩阵,T表示模板图像的灰度值矩阵,mean()和std()分别表示矩阵的均值和标准差。
5. 目标定位:最后,根据互相关系数的计算结果,我们可以确定目标物体在待匹配图像中的位置。
通常,我们选择互相关系数最大的位置作为目标物体的定位。
三、NCC模板匹配算法的应用NCC模板匹配算法在计算机视觉领域有广泛的应用,如目标检测、人脸识别、图像拼接等。
以下是NCC模板匹配算法的几个应用实例:1. 目标检测:NCC模板匹配算法可以用于检测图像中的特定目标物体。
如何进行高效的图像匹配和图像配准

如何进行高效的图像匹配和图像配准图像匹配和图像配准是计算机视觉领域中常见的任务,其目的是通过计算机算法将两幅或多幅图像进行比较,从而找出它们之间的相似性或者进行图像的对齐。
本文将介绍一些高效的图像匹配和图像配准的方法。
一、图像匹配图像匹配即是将一幅图像中的特征在另一幅图像中找到对应物体或者区域。
下面是一些常见的图像匹配方法:1.特征点匹配特征点匹配是最常见的图像匹配方法之一,它通过在图像中提取特征点,并计算特征点的描述子,然后使用某种度量来比较两幅图像的特征点,找出最相似的特征点对。
常用的特征点匹配算法包括SIFT、SURF和ORB等。
2.直方图匹配直方图匹配是一种基于图像全局颜色或纹理分布的匹配方法,它将图像的直方图进行比较,通过计算直方图之间的相似性度量来进行匹配。
直方图匹配适用于颜色和纹理信息较为明显的图像匹配任务。
3.模板匹配模板匹配是一种基于像素点灰度值的匹配方法,它通过将一个预定义的模板图像滑动或者扫描到待匹配图像上,计算模板和图像之间的相似性度量,从而找到最佳匹配位置。
模板匹配适用于物体检测和目标跟踪等应用场景。
4.特征描述子匹配特征描述子匹配是一种将图像中的局部特征点的描述子进行比较的匹配方法,它通过计算特征点描述子之间的相似性度量找到最佳匹配。
常用的特征描述子匹配算法包括基于二值描述子的BRISK和ORB,基于二进制描述子的BRIEF和FREAK,以及基于浮点数描述子的SIFT、SURF和AKAZE等。
二、图像配准图像配准是将两幅或多幅图像进行对齐,使得它们在空间上或者几何上具有一致性。
下面是一些常用的图像配准方法:1.特征点配准特征点配准是将两幅图像中的特征点进行对应的一种配准方法,它通过计算特征点的几何变换关系,然后将其中一幅图像进行变换,使得两幅图像的特征点对应一致。
常用的特征点配准方法包括RANSAC、LMS和Hough变换等。
2.像素级配准像素级配准是将两幅图像的像素进行一一对应的配准方法,它通过计算图像间的几何变换关系,然后将其中一幅图像进行变换,使得两幅图像在几何上对应一致。
halcon圆形模板匹配的中心点

halcon圆形模板匹配的中心点Halcon圆形模板匹配是一种图像处理方法,用于在给定图像中寻找与预先定义的圆形模板最相似的圆形区域。
匹配技术可以应用于很多领域,包括机器视觉、工业自动化、医学图像处理等。
圆形模板匹配的中心点是识别出的圆形区域的中心坐标,它具有重要的意义,可以用于进一步分析和处理图像。
从技术的角度来看,Halcon圆形模板匹配是基于灰度图像处理的。
首先,通过提取图像的灰度信息,将彩色图像转换为灰度图像。
然后,定义一个圆形模板,包括圆心的位置和半径的大小。
接下来,通过计算图像与模板之间的相似性度量,如相关系数、均方差等,来评估匹配的好坏。
最后,根据相似性度量的结果,确定最匹配的圆形区域以及其中心点的位置。
在Halcon中,圆形模板匹配的中心点可以通过以下步骤获得:1.导入图像:使用Halcon提供的图像处理函数,将图像从文件中读取或者通过相机进行采集。
选择合适的图像预处理方法,如去噪、增强对比度等,以优化图像的质量。
2.定义圆形模板:通过Halcon提供的模板定义函数,以指定圆形模板的参数,包括圆心位置和半径大小。
根据具体的应用需求,可以通过交互方式调整模板参数,以获取最佳的匹配结果。
3.进行模板匹配:使用Halcon的模板匹配函数,将图像和模板作为输入,通过计算相似性度量来获得匹配的结果。
Halcon提供了多种度量方法,如相关系数、均方差、灰度差异等,可以根据具体需求选择合适的度量方法。
4.查找匹配结果:根据模板匹配的结果,通过Halcon提供的区域操作函数,可以提取出与模板最匹配的圆形区域。
通过计算区域的中心坐标,即可获得圆形模板匹配的中心点的位置。
5.后续处理和分析:根据实际需求,可以对匹配到的圆形区域进行进一步的处理和分析。
例如,可以计算圆形的面积、周长等形状参数,或者根据中心点的位置进行其他相关的图像处理操作。
总的来说,Halcon圆形模板匹配的中心点是通过计算相似性度量和区域操作,从预定义的圆形模板中获得的。
图像匹配算法

值 然后把这差值同其它点对的插值累加起来,当累加r次误
差超过 Th,则停下来,并记下次数r,定义SSDA的检测曲面为
min I(i,
j)
r
1 r m2
r k 1
(i,j,mk
,n
k
)
Th
(4)、把 I(i,值j) 大的 (点i, j作) 为匹配点,因为这点 上需要很多次累加才使总误差超过 Th。 特点:非匹配点用较少的计算就可以达到阈值而被丢 去,对非匹配点减少计算量,提高匹配速度。
基于灰度的匹配算法
1、ABS(Absolute Balance Search)算法:用模 板图像和待匹配图像上的搜索窗口之间的像素灰 度值的差别来表示二者的相关性。
计算ABS值有三种方法:
1)、
MD(m, n) max x, y
f1(x, y)
f2 (x m, y n)
2)、 SAD(m, n) f1(x, y) f2(x m, y n) xy
3)、
SSD(m, n)
( f1(x, y) f2(x m, y n))2
xy
特点:(1)、思路简单,实现方便。
(2)、模板图像或待匹配图像任一个发生线性 变换,算法失效。
2、归一化互相关匹配算法(NCC)
(Normalized Cross-Correlation):通过计
算模板图像和待匹配图像上的互相关值来确
^
^
(1)、定义误差值 (i,j,mk ,nk )= Sij(mk ,nk ) S(i, j) T (mk ,nk ) T
其中:
^
S (i,
j)1 M2MSij(m,n)m,n1
(2)、取一不变阈值 Th
^
基于灰度和几何特征的图像匹配算法研究

河北工业大学硕士学位论文基于灰度和几何特征的图像匹配算法研究姓名:宋晓闯申请学位级别:硕士专业:计算机应用技术指导教师:于明20081101河北工业大学硕士学位论文基于灰度和几何特征的图像匹配算法研究摘要图像匹配是计算机视觉和图像处理领域一项重要的研究工作,本文主要对图像匹配领域进行了深入细致的研究。
本文主要研究了两类图像匹配算法:基于灰度信息的算法和基于特征的匹配算法。
对基于灰度信息的算法,主要研究了两种算法,一种是对传统算法进行研究,提出了一种改进的互相关匹配算法,另一种是根据图像编码的思想,对图像进行分块,重点研究了基于灰度值编码的匹配方法。
实验表明,此算法在遥感图像和工件字符定位方面,尤其是在复杂背景(目标与背景难分离下,算法都具有很强的鲁棒性和稳定性。
对基于特征的匹配算法,主要研究了HU不变矩、圆形度、矩形度等几何特征,最后选取几种特征作为特征参数,运用基于欧式距离的匹配方法进行匹配. 对二百多个样本图像进行测试,匹配成功率达到了92.5%。
得到了很好的实验效果。
关键词:计算机视觉模板匹配图像处理互相关i基于灰度和几何特征的图像匹配算法研究The Study of Image Matching Algorithms Based On Gray Value andGeometric FeaturesABSTRACTImage matching is an important research topic in computer vision and image processing. A great deal of work is done in the field of image matching in the paper.It studied two types of image matching algorithms in the paper. gray-scale information-based algorithm and feature-based matching algorithm. About the algorithm based on the information of gray–scale, it mainly studied two algorithms, Firstly it studied the traditional algorithm, Then one new improved cross-correlation algorithm was proposed. The other is based on the thinking of image coding. This algorithm divided the image into certain size blocks called R-block. It focused on the algorithms of gray value image coding. Through t he experiments, It is found that the algorithm had a very strong robustness and stability ,When it was used in remote sensing images and Optical Character positioning, particularly in the Complex background(with the background of the difficult goal of separation. About the feature-based matching algorithm, Firstly, it mainly studied HU invariant moments, elongated-ness, roundness and other geometric features. Finally it selected a few features from them as the features of the parameters. Then it was calculated and matched with the algorithm based on template matching of Euclidean distance. Two hundred of samples was tested and experimented, and the average accuracy rate is 92.5%. The result shows that the system is good enough to meet the needs of real-time reaction and high recognition rate.KEY WORDS: computer vision,template matching, image pre process, correlationii原创性声明本人郑重声明:所呈交的学位论文,是本人在导师指导下,进行研究工作所取得的成果。
机器视觉模板匹配算法

机器视觉模板匹配算法
机器视觉模板匹配算法是一种基于图像处理技术的图像识别与
匹配方法。
该算法的基本思想是先将需要识别的目标图像称为模板,然后通过将其与待识别图像进行比对,找出相似度最高的区域,以识别目标。
在这个过程中,模板匹配算法可以通过像素级别的比较,快速准确地实现对目标区域的检测与识别。
模板匹配算法主要包含以下几个步骤:首先,需要将模板图像与待识别图像进行灰度化处理,以便进行像素级别的比较。
接着,将模板图像覆盖在待识别图像上,逐个像素比较,得到一个相似度矩阵。
其中,相似度矩阵中的每一个元素代表了图像上对应像素的相似程度。
最后,通过寻找相似度矩阵中的最大值,即可找到待识别图像中与模板图像最相似的区域。
目前,模板匹配算法已经广泛应用于各种领域,如医学影像分析、工业视觉检测、安防监控等。
在实际应用中,模板匹配算法可以通过不同的算法组合和参数设置,实现不同场景下的目标检测和识别。
- 1 -。
基于灰度特征和模板匹配的人眼定位

基于灰度特征和模板匹配的人眼定位内容摘要:摘要提出一种基于灰度特征和模板匹配的人眼定位方法。
在人脸图像中寻找与实际眼睛大小相似而且比其相邻区域灰度值低的区域作为可能的眼睛块,然后利用人脸器官分布的一些先验知识进一步判定真正可能的眼睛块,最后利用双眼模板匹配提高眼睛定位的正确性。
关键词灰度特征;模板匹配;人眼定位;人脸检测1引言人脸检测技术在身份识别、安全监控、图像与视频检索和智能人机接口等方面的广泛运用,已成为计算机视觉和模式识别领域内的热门研究课题。
广义来说,人脸检测可以分为两项内容,一项是人脸位置、大小和方向的确定;另一项是面部主要器官的定位,特别是人眼的定位。
人眼作为人脸最显著的特征,比嘴、鼻能够提供更可靠、更重要的信息。
常用的人眼定位方法有阈值分割法[1]、灰度投影法[2]和模板匹配法[3]。
阈值分割法首先对人脸的二值图像进行区域分割,然后设定一系列经验值和支持函数粗定位眼睛。
该方法对于如人眼闭合、戴眼镜等一些情况定位效果较差。
灰度投影法对人脸图像进行水平和垂直方向的投影,根据波峰波谷的分布信息来定位眼睛。
这种方法定位速度较快,但波峰、波谷的分布对不同的人脸和姿态的变化非常敏感,因此定位精度较差,并且容易陷入局部最小而导致定位失败。
模板匹配[5]是一种有效地模式识别技术,它能利用图像信息和有关识别模式的先验知识,更加直接地反映图像之间的相似度,传统的模板匹配方法首先要分别得到左眼和右眼模板,然后分别用左右眼模板在图像中进行匹配,得到两个相似度最大的点作为定位的眼睛,这种方法比较简单,但计算量较大,定位准确率较低。
本文提出的人眼定位方法是通过寻找灰度图像中可能的眼睛区域并进行模板匹配来实现的。
2基于灰度特征的眼睛定位在人脸的灰度图像中,由于眼睛虹膜、瞳孔和上眼框部位的灰度值明显比其邻近区域(眼部周围皮肤)灰度值要低[4]。
因此在人脸图像中找出与实际眼睛大小相似且比其相邻区域灰度值低的区域作为可能的眼睛块;利用人脸器官分布的一些先验知识建立人眼位置的判定准则;如果一对可能的眼睛块大小在一定的范围内,而且满足人的双眼的几何关系,进一步确定为可能眼睛块。
基于灰度的模板匹配原理

基于灰度的模板匹配原理English:Grayscale template matching is a popular technique used in image processing and computer vision to locate a template image within a larger image. The principle behind grayscale template matching is to compare the grayscale intensities of the pixels in the template image with those in the larger image at all possible positions. This is done by sliding the template image over the larger image and computing a similarity measure at each position. The similarity measure can be computed using different methods such as the sum of squared differences (SSD), normalized cross-correlation (NCC), or other statistical measures. Once the similarity measure is computed for each position, the position with the highest similarity is considered the location of the template within the larger image. Grayscale template matching is widely used in various applications such as object detection, pattern recognition, and medical image analysis due to its simplicity and effectiveness in locating and identifying objects or patterns in complex images.中文翻译:灰度模板匹配是图像处理和计算机视觉中常用的技术,用于在较大的图像中定位模板图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于图像灰度的模板匹配方法
图像匹配技术是数字图像信息处理和计算机视觉领域中
的—个基本问题,并在卫星遥感、空间飞行器的自动导航、武器
投射系统的末制导和寻的、光学和雷达的图像目标跟踪、地球
资源分析与检测、气象预报、医疗诊断、文字读取以及景物分析
中的变化检测等许多领域中得到广泛应用㈣。
一般来说,由于图像在不同时间、不同传感器、不同视角获得的成像条件不同,因此即使是对同一物体,在图像中所表现出来的几何特性、光学特性、空间位置都会有很大的不同,如果考虑到噪声、干扰等影响会使图像发生很大差异,
图像匹配就是通过这些不同之处找到它们的相同点。
图像匹配算法主要分为两类口:一类是基于灰度匹配的方
法;另一类是基于特征匹配的方法。
前者主要用空间的一维或
二维滑动模板进行图像匹配,不同算法的区别主要在模板及相
关准则的选择方面,这类方法一般匹配率高,但计算量大,速度
较慢;后者则通过在原始图像中提取点、线、区域等显著特征作
为匹配基元,进而用于特征匹配,一般匹配速度较陕,但匹配精
度不一定高。
1.概念解释:
①数字图像:数字图像是由被称做像素的小块区域组成的二维像素矩阵。
一般把图像分成3种形式:单色图像,灰度图像和彩色图像。
②像素:表示图像颜色的最小单位
③灰度图像:灰度图是指只含亮度信息,不含色彩信息的图像,就像平时看到的黑白照片:亮度由暗到明,变化是连续的。
灰度图的每个像素的亮度用一个数值来表示,通常数值范围在0—255之间,即可用一个字节来表示,0表示黑,255表示白,而其他表示灰度。
④点阵图:显示器的屏幕由可以发光的像素点组成. 并且从几何位置看, 所用这
些像素点构成一个矩形的阵列.利用计算机控制各像素点按我们指定的要求发光,
就构成了我们需要的图形.这种方式构成的图形我们可称之为点阵图形.
⑤点阵图形的坐标系统:各像素点有一个坐标唯一指定了它的位置.如果点阵图形的大小是N ×M, 那么它的点阵共有M 行N 列, 每个像素点的位置就由它所在的行和列的位置所唯一确定. 这个行和列的位置就给出了点阵图形的坐标系统. 按照前面的顺序, 第m 行, 第n 列的像素点顺序数就是m+(n-1)N.反之, 顺序数为s 的像素点在第s Mod N 行, 第Int(s/N ) + 1列, 这里的s Mod N 是s 除以N 后的余数, Int( s/N ) 是s/N 的整数部分.需要注意的是第m 行, 第n 列的像素点的坐标可能不是(m; n), 而是(m-1; n-1). 这是因为有时为了在计算机中处理的方便, 像素点的行列的排序不是从1, 而是从0开始的. 我们常用的显示器的像素坐标就是如此.
2.数字图像匹配算法设计:
在此软件中我采用了两种图像匹配算法:①基于灰度的模板匹配算法②基于灰度的快速匹配算法。
由于各种各样的原因如(成象条件的差异)图象预处理,引入的误差等,参与图象匹配的模板与潜在的匹配子图象间通常存在着程度不同的不一致,因此根据模板在一幅陌生图象中检测出潜在的匹配对象并得出它在图象中的位置是一件复杂的工作。
⑴基于灰度的摸版匹配算法
模板匹配是指用一个较小的图像,即模板与源图像进行比较,以确定在源图像中是否存在与该模板相同或相似的区域,若该区域存在,还可确定其位置并提取该区域。
模板匹配常用的一种测度为模手术台与源图像对应区域的误差平方和。
设f(x,y)为M ×N 的源图像,t(j,k)为J ×K(J ≤M,K ≤N)的模板图像,则误差平方和测度定义为:
11
200(,)[(,)(,)]J K j k D x y f x j y k t j k --===++-∑∑
由上式展开可得:
111111
2
20000(,)[(,)]2(,)(,)[(,)]J K J K J K j k j k j k D x y f x j y k t j k f x j y k t j k ------=====++-⋅+++∑∑∑∑∑∑令
11
200(,)[(,)]J K j k DS x y f x j y k --===++∑∑
11
00(,)2[(,)(,)]J K j k DST x y t j k f x j y k --===⋅++∑∑
11
200(,)[(,)]J K j k DT x y t j k --===∑∑
DS(x,y)称为源图像中与模板对应区域的能量,它与像素位置(x,y )有关,但随像素位置(x,y )的变化,DS(x,y)变化缓慢。
DST(x,y)模板与源图像对应区域的互相关,它随像素位置(x,y )的变化而变化,当模板t(j,k)和源图像中对应区域相匹配时取最大值。
DT(x,y)称为模板的能量,它与图像像素位置(x,y)无关,只用一次计算便可。
显然,计算误差平方和测度可以减少计算量。
基于上述分析,若设DS(x,y)也为常数,则用DST(x,y)便可进行图像匹配,当DST(x,y)取最大值时,便可认为模板与图像是匹配的。
但假设DS(x,y)为常数会产生误差,严重时将无法下确匹配,因此可用归一化互相关作为误差平方和测度,其定义为:
11
(,)(,)
(,)J K t j k f x j y k R x y --⋅++=∑∑ 下图给出了模板匹配的示意图,其中假设源图像f(x,y)和模板图像t(k,l)的原点都在左上角。
对任何一个f(x,y)中的(x,y),根据上式都可以算得一个R(x,y).当x 和y 变化时,t(j,k)在源图像区域中移动并得出R(x,y)所有值。
R(x,y)的最大值指出了与t(j,k)匹配的最佳位置,若从该位置开始在源图像中取出与模板大小相同的一个区域,便可得到匹配图像。