小学数学竞赛与圆有关的问题

合集下载

【竞赛题】人教版小学五年级下册数学第01讲《圆与扇形初步》竞赛试题(含详解)

【竞赛题】人教版小学五年级下册数学第01讲《圆与扇形初步》竞赛试题(含详解)
例题 3. 如图,图中的三角形都是等腰直角三角形,求各图中阴影部分的面积.(π 取 3.14)
4
4
4
分析:经过适当的分割和移动,图中不规则的阴影部分可以拼成规则的几何图形.
练习 3. 图中的 4 个圆的圆心恰好是正方形的 4 个顶点,如果每个圆的半径都是 1 厘米,那么阴影部 分的总面积是多少平方厘米?(π 取 3.14)
扇形是指圆上被两条半径和半径之间的弧所包围的部分.其中,圆的半径也称为扇形 的半径,而两条半径所成的夹角称为扇形的圆心角.扇形是圆的一部分.
要想知道扇形的弧长与面积,只要知道它是所在圆的几分之几就可以.它是圆的几分之 几,它的弧长就是圆周长的几分之几,它的面积也同样就是圆面积的几分之几.
扇形弧长= n 2 π r ; 360
直径长度通常用字母 d 来表示,半径长度通常用 r 来表示,圆周长通常用 C 来表示.于 是有圆周长公式:
C 2πr πd .
习惯上,圆面积用字母 S 来表示.它的计算公式为:
S πr2 .
这一计算公式可以通过圆的周长公式推导出来.大家仔细观察下图,想想看应该如何推 导?
练一练 下面的题目中,π 都取为 3.14. 1. 已知一个圆的半径为 3 厘米,那么这个圆的周长为_______厘米; 2. 已知一个圆的周长为 50.24 厘米,那么这个圆的直径为_______厘米; 3. 已知一个圆的半径为 3 厘米,那么这个圆的面积为_______平方厘米; 4. 已知一个圆的面积为 78.5 平方厘米,那么这个圆的半径为_______厘米.
在自然界中,没有像圆那样美的图形了.圆匀称、饱满、光滑、对称,常用来象征吉祥 如意,表达人们的良好愿望:圆满、圆梦、团圆……
古希腊毕达哥拉斯学派认为:“一切立体图形中最美的是球体,一切平面图形中最美的 是圆形”.他们认为,圆是神创造出来的最完美的东西.

小学数学六年级有关圆的组合图形的面积问题

小学数学六年级有关圆的组合图形的面积问题

时间:二O
有关圆的组合图形的面积问题之马矢奏春创作
【典范例题】
1、求下列组合图形暗影部分的面积.
2、①圆的周长是18.84cm,求暗影部分面积.
②长方形的面积和圆的面积相等,已知圆的半径是3cm,求暗影部分的周长和面积.
③求直角三角形中暗影部分的面积.(单位:分米)
④图中暗影①比暗影②面积小48平方厘米,AB=40cm,求BC 的长. ⑤一个圆的半径是4cm,求暗影部分面积.
【变式演习】
1、求下列各图中暗影部分的面积.(单位:厘米)
2、下图中长方形的长是6厘米,宽是5厘米,求暗影部分的面积.
3、如图长方形的面积是45平方厘米,宽是5厘米,求暗影部分的面积.
4、求下列暗影部分面积和周长
5、如右图,暗影部分的面积为2平方厘米为.
6、右图中正方形周长是20厘米.
7、如图,半圆S1的面积是14.1319.625平方厘米.那么长方形(
8、右图中4个圆的圆心是正方形的4
时间:二O 二一年七月二十九日 正方形的中央. 假如每个圆的半径都是1厘米,那么暗影部分的总面积是若干平方厘米?
9、如图所示,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中暗影部分的周长是厘米. ,那么花瓣图形的面积是平方厘米.
11、已知ABCD 是正方形, ED=DA=AF=2厘米,暗影部分的面积是. 12、如图32,大正方形的边长为6厘米,小正方形的边长为4厘米.求
暗影部分的面积.
时间:二O 二一年七月二十九日
E D C B
A G
F。

2008年国际小学数学竞赛

2008年国际小学数学竞赛

2008年国际小学数学竞赛(个人赛)1. 从下图中的中心所在的圆2出发,上,请问要经过四个圆而依序得到数码2,0,0,8的方法?2. 知3只打鸭子和2只小鸭子共重32kg ,4只打鸭子和3只小鸭子共重44kg ,请问2只大鸭子和1只小鸭子共重多少kg ?3. 操场上有一群人,其中一部分人坐在地上,其余的人站着。

如果站着的人中的25%坐下,同时原先坐着的人中25%站起来,那么站着的人数占总人数的70%。

请问原先站着的人占总人数之多少?4. 在高速公路上一辆长3m 的小轿车以每小时110km 的速度超过一辆长17m 以每小时100km 的速度行驶的卡车。

请问小轿车从追及到超越卡车的整个超车过程用了多少秒?5. 用数码0,1,2,3,4和5组成各位数码都不相同的六位数,并按从小到大的顺序排列,请问第502个数是什么?6. 一个七位数,其数码只能是2或3,且没有两个3是相邻的.请问这样的七位数共有多少个?7. 若六位数abcabc 恰有16个正约数,请问这样的 abcabc 的最小值是什么?8. 请问至少出现一个数码3,并且是3的倍数的五位数共有多少个?9. 平行四边形ABCD 中,点M ,N 分别在边AD ,AB 上,且AM=2MD ,AN=2NB ,线段DN 与BM 相交于点O 。

已知四边形ABCD 的面积为60㎝²,请问△NBO 与△MDO 之面积总和为多少cm ²? A M D 10. 两个四位数ACCC 和CCCB 满足,请问ABC 之值是什么?11.如图所示,ABCD 是一边长为4cm 的正方形,E 是AD 的中点,而F 是BC 的中点。

以C 为圆心、半径为4cm 的四分之一圆的圆弧交EF 于G ,以F 为圆心、半径为2cm 的四分之一圆的圆弧交EF 于H 点。

若图中S 1和S 2两块部分的面积之差为m π-n (cm ²)(其中m ,n 为正整数),请问m +n 之值为何?12.有2n 名男生和n 名女生参加象棋比赛,任两人都要互相比赛一场,全部比赛结束后,发现比赛中没有平局,并且女生赢得的比赛总场数与男生赢得的总场数之比为7:5。

小学五年级数学《圆》易错题

小学五年级数学《圆》易错题

小学五年级数学《圆》易错题第一篇:小学五年级数学《圆》易错题《圆》易错题集锦一、填空1、在一个长8厘米、宽4厘米的长方形纸片上剪下一个最大的半圆,半圆的周长是()厘米。

2、如果一个圆的半径由2厘米增加到4厘米,周长要增加()厘米。

3、两圆半径的比为4:5,则直径的比为():(),周长比为():(),面积比为():()。

4、李平想在一个长5厘米、宽6厘米的长方形中画一个最大的圆,这个圆的周长是()厘米,面积是()平方厘米。

二、判断1、因为d=2r,所以同一个圆的任何两条半径都能组成一条直径。

()2、周长相等的两个圆,面积也一定相等。

()3、圆的半径扩大3倍,面积也扩大3倍。

()4、半径是2厘米的圆,它的周长和面积相等。

()5、圆的位置是由圆心决定的,圆的大小是由半径决定的。

()6、两圆的半径比是2:1,则其周长的比是4:1。

7、圆规两脚间的距离是3厘米,所画的圆的直径就是3厘米。

()8、两端都在圆上的线段中,直径最长。

()9、圆周率π=3.14.()10、圆的直径扩大到原来的2倍,周长也扩大到原来的2倍。

()11、半圆的周长就是圆周长的一半。

()12、圆有无数条对称轴。

()13、圆的周长与它直径的比的比值是π。

()14、两端在圆上的线段是圆的直径。

()15、圆规两脚间的距离是4厘米,画出的圆的周长是12.56厘米。

()三、画图1、画一个半径是1.5厘米的圆。

(1)用字母标出圆心、半径和直径。

(2)画出它的一条对称轴。

2、四、计算阴影部分的面积。

(单位:dm)五、解决问题1、依墙而建的鸡舍围城半圆形,其直径是5米。

(1)需要多长的篱笆才能把鸡舍全围起来?(2)如果将鸡舍的直径增加2米,需要增加多长的篱笆?2、用20米的钢筋制作直径为20米的铁环,最多能制作多少个?如果铁环的直径是35厘米,要制作20个铁环,至少需要多少米的钢筋?3、圆形水池四周种了40棵树,每两棵树之间的距离是1.57米。

这个水池的半径是多少米?4、一张桌面直径为2米的桌子,如果要给桌面铺上同样大小的玻璃,这块玻璃的面积是多少平方米?如果在桌面周围镶上金属条,需要多少米?5、用一张长是3米,宽是2米的长方形铁板,切割出一个最大的圆,圆的面积是多少?剩余部分的面积是多少?6、一个圆形旱冰场的直径是30米,扩建后半径增加了5米。

小学奥数4-4-2 圆与扇形(二).专项练习及答案解析

小学奥数4-4-2 圆与扇形(二).专项练习及答案解析

研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积2πr =;扇形的面积2π360nr =⨯;圆的周长2πr =;扇形的弧长2π360nr =⨯.一、 跟曲线有关的图形元素:①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n. 比如:扇形的面积=所在圆的面积360n⨯;扇形中的弧长部分=所在圆的周长360n⨯扇形的周长=所在圆的周长360n⨯+2⨯半径(易错点是把扇形的周长等同于扇形的弧长) ②弓形:弓形一般不要求周长,主要求面积.一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)③”弯角”:如图: 弯角的面积=正方形-扇形④”谷子”:如图: “谷子”的面积=弓形面积2⨯二、 常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)板块二 曲线型面积计算例题精讲圆与扇形【例 1】 如图,已知扇形BAC 的面积是半圆ADB 面积的34倍,则角CAB 的度数是________.DCBA【考点】圆与扇形 【难度】3星 【题型】填空【解析】 设半圆ADB 的半径为1,则半圆面积为21ππ122⨯=,扇形BAC 的面积为π42π233⨯=.因为扇形BAC 的面积为2π360n r ⨯,所以,22ππ23603n ⨯⨯=,得到60n =,即角CAB 的度数是60度.【答案】60度【例 2】 如下图,直角三角形ABC 的两条直角边分别长6和7,分别以,B C 为圆心,2为半径画圆,已知图中阴影部分的面积是17,那么角A 是多少度(π3=)67CBA【考点】圆与扇形 【难度】4星 【题型】解答【解析】 167212ABC S =⨯⨯=△,三角形ABC 内两扇形面积和为21174-=,根据扇形面积公式两扇形面积和为2π24360B C∠+∠⨯⨯=°,所以120B C ∠+∠=°,60A ∠=°. 【答案】60度【例 3】 如图,大小两圆的相交部分(即阴影区域)的面积是大圆面积的415,是小圆面积的35.如果量得小圆的半径是5厘米,那么大圆半径是多少厘米?【考点】圆与扇形 【难度】3星 【题型】解答【解析】 小圆的面积为2π525π⨯=,则大小圆相交部分面积为325π15π5⨯=,那么大圆的面积为422515ππ154÷=,而2251515422=⨯,所以大圆半径为7.5厘米.【答案】7.5【例 4】 有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如图),此时橡皮筋的长度是多少厘米?(π取3)CBA【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 由右图知,绳长等于6个线段AB 与6个BC 弧长之和.将图中与BC 弧相似的6个弧所对的圆心角平移拼补,可得到6个角的和是360︒, 所以BC 弧所对的圆心角是60︒,6个BC 弧合起来等于直径5厘米的圆的周长. 而线段AB 等于塑料管的直径,由此知绳长为:565π45⨯+=(厘米). 【答案】45【例 5】 如图,边长为12厘米的正五边形,分别以正五边形的5个顶点为圆心,12厘米为半径作圆弧,请问:中间阴影部分的周长是多少?(π 3.14=)【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 如图,点C 是在以B 为中心的扇形上,所以AB CB =,同理CB AC =,则ABC∆是正三角形,同理,有CDE ∆是正三角形.有60ACB ECD ∠=∠=,正五边形的一个内角是1803605108-÷=,因此60210812ECA ∠=⨯-=,也就是说圆弧AE 的长度是半径为12厘米的圆周的一部分,这样相同的圆弧有5个,所以中间阴影部分的周长是()122 3.1412512.56cm 360⨯⨯⨯⨯=.【答案】12.56【例 6】 如图是一个对称图形.比较黑色部分面积与灰色部分面积的大小,得:黑色部分面积________灰色部分面积.【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 图中四个小圆的半径为大圆半径的一半,所以每个小圆的面积等于大圆面积的14,则4个小圆的面积之和等于大圆的面积.而4个小圆重叠的部分为灰色部分,未覆盖的部分为黑色部分,所以这两部分面积相等,即灰色部分与黑色部分面积相等.【答案】相等【例 7】 如图,大圆半径为小圆的直径,已知图中阴影部分面积为1S ,空白部分面积为2S ,那么这两个部分的面积之比是多少?(圆周率取3.14)【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 如图添加辅助线,小圆内部的阴影部分可以填到外侧来,这样,空白部分就是一个圆的内接正方形.设大圆半径为r ,则222S r =,2212S r r π=-,所以()12: 3.142:257:100S S =-=.移动图形是解这种题目的最好方法,一定要找出图形之间的关系.【答案】57:100【例 8】 用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 大圆直径是小圆的3倍,半径也是3倍,小圆面积∶大圆面积22π:π1:9r R ==,小圆面积13649=⨯=,7个小圆总面积4728=⨯=,边角料面积36288=-=(平方厘米).【答案】8【例 9】 如图,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径都是1.求阴影部分的面积.【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 由于直接求阴影部分面积太麻烦,所以考虑采用增加面积的方法来构造新图形.由右图可见,阴影部分面积等于16大圆面积减去一个小圆面积,再加上120︒的小扇形面积(即13小圆面积),所以相当于16大圆面积减去23小圆面积.而大圆的半径为小圆的3倍,所以其面积为小圆的239=倍,那么阴影部分面积为21259π1π 2.5636⎛⎫⨯-⨯⨯== ⎪⎝⎭.【答案】2.5【例 10】 如图所示,求阴影面积,图中是一个正六边形,面积为1040平方厘米,空白部分是6个半径为10厘米的小扇形.(圆周率取3.14)CA【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 所要求的阴影面积是用正六边形的面积减去六个小扇形面积、正六边形的面积已知,现在关键是小扇形面积如何求,有扇形面积公式2π360n R S =扇.可求得,需要知道半径和扇形弧的度数,由已知正六边形每边所对圆心角为60°,那么120AOC ∠=︒,又知四边形ABCO 是平行四边形,所以120ABC ∠=︒,这样就可求出扇形的面积和为21206π10628360⨯⨯⨯=(平方厘米),阴影部分的面积1040628412=-=(平方厘米).【答案】412【例 11】 (09年第十四届华杯赛初赛)如下图所示,AB 是半圆的直径,O 是圆心,AC CD DB ==,M 是CD 的中点,H 是弦CD 的中点.若N 是OB 上一点,半圆的面积等于12平方厘米,则图中阴影部分的面积是 平方厘米.【考点】圆与扇形【难度】3星【题型】填空【解析】如下图所示,连接OC、OD、OH.本题中由于C、D是半圆的两个三等分点,M是CD的中点,H是弦CD的中点,可见这个图形是对称的,由对称性可知CD与AB平行.由此可得CHN∆的面积与CHO∆的面积相等,所以阴影部分面积等于扇形COD面积的一半,而扇形COD的面积又等于半圆面积的13,所以阴影部分面积等于半圆面积的16,为11226⨯=平方厘米.【答案】2【巩固】如图,C、D是以AB为直径的半圆的三等分点,O是圆心,且半径为6.求图中阴影部分的面积.【考点】圆与扇形【难度】3星【题型】解答【解析】如图,连接OC、OD、CD.由于C、D是半圆的三等分点,所以AOC∆和COD∆都是正三角形,那么CD与AO是平行的.所以ACD∆的面积与OCD∆的面积相等,那么阴影部分的面积等于扇形OCD的面积,为21π618.846⨯⨯=.【答案】18.84【例 12】如图,两个半径为1的半圆垂直相交,横放的半圆直径通过竖放半圆的圆心,求图中两块阴影部分的面积之差.(π取3)O【考点】圆与扇形【难度】4星【题型】解答【解析】本题要求两块阴影部分的面积之差,可以先分别求出两块阴影部分的面积,再计算它们的差,但是这样较为繁琐.由于是要求面积之差,可以考虑先从面积较大的阴影中割去与面积较小的阴影相同的图形,再求剩余图形的面积.如右图所示,可知弓形BC 或CD 均与弓形AB 相同,所以不妨割去弓形BC .剩下的图形中,容易看出来AB 与CD 是平行的,所以BCD ∆与ACD ∆的面积相等,所以剩余图形的面积与扇形ACD 的面积相等,而扇形ACD 的面积为260π10.5360⨯⨯=,所以图中两块阴影部分的面积之差为0.5. 【答案】0.5【例 13】 如图,两个正方形摆放在一起,其中大正方形边长为12,那么阴影部分面积是多少?(圆周率取3.14)AFEAFE【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 方法一:设小正方形的边长为a ,则三角形ABF 与梯形ABCD 的面积均为()122a a +⨯÷.阴影部分为:大正方形+梯形-三角形ABF -右上角不规则部分=大正方形-右上角不规则部分=14圆.因此阴影部分面积为:3.1412124113.04⨯⨯÷=.方法二:连接AC 、DF ,设AF 与CD 的交点为M ,由于四边形ACDF 是梯形,根据梯形蝴蝶定理有ADM CMF S S =△△,所以DCF S S =阴影扇形 3.1412124113.04=⨯⨯÷=【答案】113.04【巩固】如右图,两个正方形边长分别是10和6,求阴影部分的面积.(π取3)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 (法1)观察可知阴影部分面积等于三角形ACD 的面积减去月牙BCD 的面积,那么求出月牙BCD 的面积就成了解题的关键.月牙BCD 的面积为正方形BCDE 的面积减去四分之一圆:166π6694⨯-⨯⨯⨯=;则阴影部分的面积为三角形ACD 的面积减去月牙BCD 的面积,为:()110669392S =⨯+⨯-=阴影.(法2)观察可知AF 和BD 是平行的,于是连接AF 、BD 、DF .则ABD ∆与BDF ∆面积相等,那么阴影部分面积等于BDF ∆与小弓形的面积之和,也就等于DEF ∆与扇形BED 的面积之和,为:211(106)6π63924-⨯⨯+⨯⨯=.【答案】39【例 14】 如图,ABC 是等腰直角三角形,D 是半圆周的中点,BC 是半圆的直径.已知10AB BC ==,那么阴影部分的面积是多少?(圆周率取3.14)DD【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 连接PD 、AP 、BD ,如图,PD 平行于AB ,则在梯形ABDP 中,对角线交于M 点,那么ABD ∆与ABP ∆面积相等,则阴影部分的面积转化为ABP ∆与圆内的小弓形的面积和.ABP ∆的面积为:()10102225⨯÷÷=; 弓形面积: 3.145545527.125⨯⨯÷-⨯÷=; 阴影部分面积为:257.12532.125+=.【答案】32.125【例 15】 图中给出了两个对齐摆放的正方形,并以小正方形中右上顶点为圆心,边长为半径作一个扇形,按图中所给长度阴影部分面积为 ;(π 3.14=)A【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 连接小正方形AC ,有图可见 ACD ABC S S S S =+-△△阴影扇形∵211144222AC ⨯=⨯⨯ ∴232AC =同理272CE =,∴48AC CE ⨯=∴148242ACD S =⨯=△290π412.56360S =⨯=扇形,14482ABC S =⨯⨯=△∴2412.56828.56S =+-=阴影【答案】28.56【例 16】 如图,图形中的曲线是用半径长度的比为2:1.5:0.5的6条半圆曲线连成的.问:涂有阴影的部分的面积与未涂有阴影的部分的面积的比是多少?【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 假设最小圆的半径为r ,则三种半圆曲线的半径分别为4r ,3r 和r .阴影部分的面积为:()()22222111π4π3ππ5π222r r r r r -++=,空白部分的面积为:()222π45π11πr r r -=, 则阴影部分面积与空白部分面积的比为5:11. 【答案】5:11【例 17】 (西城实验考题)奥运会的会徽是五环图,一个五环图是由内圆直径为6厘米,外圆直径为8厘米的五个环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等,已知五个圆环盖住的面积是77.1平方厘米,求每个小曲边四边形的面积.(π 3.14=)【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 ⑴每个圆环的面积为:22π4π37π21.98⨯-⨯==(平方厘米); ⑵五个圆环的面积和为:21.985109.9⨯=(平方厘米); ⑶八个阴影的面积为:109.977.132.8-=(平方厘米); ⑷每个阴影的面积为:32.88 4.1÷=(平方厘米). 【答案】4.1【例 18】 已知正方形ABCD 的边长为10厘米,过它的四个顶点作一个大圆,过它的各边中点作一个小圆,再将对边中点用直线连擎起来得右图.那么,图中阴影部分的总面积等于______方厘米.(π 3.14=)【考点】圆与扇形 【难度】4星 【题型】填空 【解析】 39.25 【答案】39.25【例 19】 如图,ABCD 是边长为a 的正方形,以AB 、BC 、CD 、DA 分别为直径画半圆,求这四个半圆弧所围成的阴影部分的面积.(π取3)DCBAaDCBAa【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 这道题目是很常见的面积计算问题.阴影部分是一个花瓣状的不规则图形,不能直接通过面积公式求解,观察发现阴影部分是一个对称图形,我们只需要在阴影部分的对称轴上作两条辅助线就明了了.如图,这样阴影部分就划分成了4个半圆减去三角形,我们可以求得,()4S S S =⨯-阴影半圆三角形21142222a a a π⎡⎤⎛⎫=⨯⨯⨯-⨯⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦212a =【答案】12a【巩固】如图,正方形ABCD 的边长为4厘米,分别以B 、D 为圆心以4厘米为半径在正方形内画圆.求阴影部分面积.(π取3) D BA DB【考点】圆与扇形 【难度】3星 【题型】解答【解析】 由题可知,图中阴影部分是两个扇形重叠的部分,我们可以利用容斥原理从图形整体上考虑来求阴影部分面积;同样,我们也可以通过作辅助线直接求阴影部分的面积.解法一:把两个扇形放在一起得到1个正方形的同时还重叠了一块阴影部分.则阴影部分的面积为=21π44482⋅⋅-⨯=;解法二:连接AC ,我们发现阴影部分面积的一半就是扇形减去三角形的面积,所以阴影部分面积=212π444284⨯⋅⋅-⨯÷=().【答案】8【例 20】 (四中考题)已知三角形ABC 是直角三角形,4cm AC =,2cm BC =,求阴影部分的面积.【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 从图中可以看出,阴影部分的面积等于两个半圆的面积和与直角三角形ABC 的面积之差,所以阴影部分的面积为:2214121ππ42 2.5π4 3.8522222⎛⎫⎛⎫⨯+⨯-⨯⨯=-= ⎪ ⎪⎝⎭⎝⎭(2cm ). 【答案】3.85【例 21】 (奥林匹克决赛试题)在桌面上放置3个两两重叠、形状相同的圆形纸片.它们的面积都是100平方厘米,盖住桌面的总面积是144平方厘米,3张纸片共同重叠的面积是42平方厘米.那么图中3个阴影部分的面积的和 是平方厘米.【考点】圆与扇形 【难度】4星 【题型】填空 【解析】 根据容斥原理得1003242144S ⨯--⨯=阴影,所以100314424272S =⨯--⨯=阴影(平方厘米)【答案】72【例 22】 如图所示,ABCD 是一边长为4cm 的正方形,E 是AD 的中点,而F 是BC 的中点.以C 为圆心、半径为4cm 的四分之一圆的圆弧交EF 于G ,以F 为圆心、半径为2cm 的四分之一圆的圆弧交EF 于H 点,若图中1S 和2S 两块面积之差为2π(cm )m n -(其中m 、n 为正整数),请问m n +之值为何?S 2S 1G HFE DC B AS图1S 2S 1G HF E DC B A【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】国际小学数学竞赛【解析】 (法1)2248cm FCDE S =⨯=,21π44π4BCD S =⨯⨯=扇形2(cm ),21π2π4BFH S =⨯⨯=扇形2(cm ),而124ππ8FCDE BCD BFH S S S S S -=--=--扇形扇形3π8=-2(cm ),所以3m =,8n =,3811m n +=+=.(法2)如右上图,1S S +=BFEA BFH S S -=扇形2422π48π⨯-⨯⨯÷=-2(cm ), 24444π4164πABCD BCD S S S S +=-=⨯-⨯⨯÷=-扇形2(cm ),所以,12(8π)(164π)3π8S S -=---=-2(cm ),故3811m n +=+=. 【答案】11【巩固】在图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差.(圆周率取3.14)【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 我们只要看清楚阴影部分如何构成则不难求解.左边的阴影是大扇形减去小扇形,再扣除一个长方形中的不规则白色部分,而右边的阴影是长方形扣除这块不规则白色部分,那么它们的差应为大扇形减去小扇形,再减去长方形.则为:ππ4422423 3.148 1.4244⨯⨯-⨯⨯-⨯=⨯-=. 【答案】1.42【例 23】 如图,矩形ABCD 中,AB =6厘米,BC =4厘米,扇形ABE 半径AE =6厘米,扇形CBF 的半径CB =4厘米,求阴影部分的面积.(π取3)CB A【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 方法一:观察发现,阴影部分属于一个大的扇形,而这个扇形除了阴影部分之外,还有一个不规则的空白部分ABFD 在左上,求出这个不规则部分的面积就成了解决这个问题的关键. 我们先确定ABFD 的面积,因为不规则部分ABFD 与扇形BCF 共同构成长方形ABCD ,所以不规则部分ABFD 的面积为2164π4124⨯-⨯⨯=(平方厘米),再从扇形ABE 中考虑,让扇形ABE 减去ABFD 的面积,则有阴影部分面积为21π612154⨯⨯-=(平方厘米).方法二:利用容斥原理2211π6π4461544EAB BCF ABCD S S S S =+-=⨯+⨯-⨯=阴影扇形扇形长方形(平方厘米)【答案】15【巩固】求图中阴影部分的面积.【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 阴影部分面积=半圆面积+扇形面积-三角形面积22211211π()π121241.042282=⨯+⨯-⨯=. 【答案】41.04【巩固】如右图,正方形的边长为5厘米,则图中阴影部分的面积是 平方厘米,(π 3.14=)【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 观察可知阴影部分是被以AD 为半径的扇形、以AB 为直径的半圆形和对角线BD 分割出来的,分头求各小块阴影部分面积明显不是很方便,我们发现如果能求出左下边空白部分的面积,就很容易求出阴影部分的面积了,我们再观察可以发现左下边空白部分的面积就等于三角形ABD 的面积减去扇形ADE 的面积,那么我们的思路就很清楚了. 因为45ADB ∠=︒,所以扇形ADE 的面积为:224545π 3.1459.8125360360AD ⨯⨯=⨯⨯=(平方厘米),那么左下边空白的面积为:1559.8125 2.68752⨯⨯-=(平方厘米),又因为半圆面积为:215π9.812522⎛⎫⨯⨯= ⎪⎝⎭(平方厘米),所以阴影部分面积为:9.8125 2.68757.125-=(平方厘米). 【答案】7.125【例 24】 如图所示,阴影部分的面积为多少?(圆周率取3)33B A33A1.51.51.545︒45︒B33【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 图中A 、B 两部分的面积分别等于右边两幅图中的A 、B 的面积.所以()()229271.5π 1.5343π3328498416A B S S +=-⨯÷+-⨯⨯÷=÷+÷=.【答案】2716【巩固】图中阴影部分的面积是 .(π取3.14)333【考点】圆与扇形 【难度】3星 【题型】填空【解析】 如右上图,虚线将阴影部分分成两部分,分别计算这两部分的面积,再相加即可得到阴影部分的面积.所分成的弓形的面积为:22131199π3π2242168⎡⎤⎛⎫⨯-⨯⨯=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;另一部分的面积为:221199π33π8484⨯-⨯=-;所以阴影部分面积为:99992727πππ 1.92375 1.9216884168-+-==-=≈.【答案】1.92【例 25】 已知右图中正方形的边长为20厘米,中间的三段圆弧分别以1O 、2O 、3O 为圆心,求阴影部分的面积.(π3=)OO 3B【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 图中两块阴影部分的面积相等,可以先求出其中一块的面积.而这一块的面积,等于大正方形的面积减去一个90︒扇形的面积,再减去角上的小空白部分的面积,为:()()()2142020π202020100π4754S S S S ⎡⎤---÷=⨯-⨯-⨯-÷=⎡⎤⎣⎦⎣⎦圆正方形正方形扇形(平方厘米),所以阴影部分的面积为752150⨯=(平方厘米). 【答案】150【例 26】 一个长方形的长为9,宽为6,一个半径为l 的圆在这个长方形内任意运动,在长方形内这圆无法运动到的部分,面积的和是_____.(π取3)【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 方法一:圆在长方形内部无法运动到的地方就是长方形的四个角,而圆在角处运动时的情况如左下图,圆无法运动到的部分是图中阴影部分,那么我们可以先求出阴影部分面积,四个角的情况都相似,我们就可以求出总的面积是阴影部分面积的四倍.阴影部分面积是小正方形面积减去扇形面积,所以我们可以得到:每个角阴影部分面积为290111π13604⨯-⨯⨯=;那么圆无法运动到的部分面积为 1414⨯=方法二:如果把四个角拼起来,则阴影如右上图所示,则阴影面积为222311⨯-⨯=【答案】1【例 27】 已知半圆所在的圆的面积为62.8平方厘米,求阴影部分的面积.(π 3.14=)B【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 由于阴影部分是一个不规则图形,所以要设法把它转化成规则图形来计算.从图中可以看出,阴影部分的面积是一个45°的扇形与一个等腰直角三角形的面积差.由于半圆的面积为62.8平方厘米,所以262.8 3.1420OA =÷=. 因此:22210AOB S OA OB OA =⨯÷=÷=△(平方厘米).由于AOB ∆是等腰直角三角形,所以220240AB =⨯=.因此:扇形ABC 的面积24545ππ4015.7360360AB =⨯⨯=⨯⨯=(平方厘米).所以,阴影部分的面积等于:15.710 5.7-=(平方厘米). 【答案】5.7【例 28】 如图,等腰直角三角形ABC 的腰为10;以A 为圆心,EF 为圆弧,组成扇形AEF ;两个阴影部分的面积相等.求扇形所在的圆面积.【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 题目已经明确告诉我们ABC 是等腰直角三角形,AEF 是扇形,所以看似没有关系的两个阴影部分通过空白部分联系起来.等腰直角三角形的角A 为45度,则扇形所在圆的面积为扇形面积的8倍.而扇形面积与等腰直角三角形面积相等,即11010502S =⨯⨯=扇形,则圆的面积为508400⨯= 【答案】400【例 29】 如图,直角三角形ABC 中,AB 是圆的直径,且20AB =,阴影甲的面积比阴影乙的面积大7,求BC 长.(π 3.14=)乙甲CBA【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 因为两块阴影部分都是不规则图形,单独对待它们无法运用面积公式进行处理,而解题的关键就是如何把它们联系起来,我们发现把两块阴影加上中间的一块,则变成1个半圆和1个直角三角形,这个时候我们就可以利用面积公式来求解了.因为阴影甲比阴影乙面积大7,也就是半圆面积比直角三角形面积大7.半圆面积为:21π101572⨯⨯=,则直角三角形的面积为157-7=150,可得BC =2⨯150÷20=15. 【答案】15【巩固】三角形ABC 是直角三角形,阴影I 的面积比阴影II 的面积小225cm ,8cm AB =,求BC 的长度.I IAB C I【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 由于阴影I 的面积比阴影II 的面积小225cm ,根据差不变原理,直角三角形ABC面积减去半圆面积为225cm ,则直角三角形ABC 面积为218π258π2522⎛⎫⨯+=+ ⎪⎝⎭(2cm ), BC 的长度为()8π25282π 6.2512.53+⨯÷=+=(cm ).【答案】12.53【巩固】 如图,三角形ABC 是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB 长40厘米.求BC 的长度?(π取3.14)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 图中半圆的直径为AB ,所以其面积为2120π200 3.146282⨯⨯≈⨯=.有空白部分③与①的面积和为628,又②-①28=,所以②、③部分的面积和62828656+=.有直角三角形ABC 的面积为12AB BC ⨯⨯=1406562BC ⨯⨯=.所以32.8BC =厘米.【答案】32.8【例 30】 图中的长方形的长与宽的比为8:3,求阴影部分的面积.【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】十三分,入学测试题 【解析】 如下图,设半圆的圆心为O ,连接OC .从图中可以看出,20OC =,20416OB =-=,根据勾股定理可得12BC =. 阴影部分面积等于半圆的面积减去长方形的面积,为:21π20(162)12200π3842442⨯⨯-⨯⨯=-=.【答案】244【例 31】 如图,求阴影部分的面积.(π取3)【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 如图,图中阴影部分为月牙儿状,月牙儿形状与扇形和弓形都不相同,目前我们还不能直接求出 它们的面积,那么我们应该怎么来解决呢?首先,我们分析下月牙儿状是怎么产生的,观察发现月牙儿形是两条圆弧所夹部分,再分析可以知道,两条圆弧分别是不同圆的圆周的一部分,那么我们就找到了解决问题的方法了.阴影部分面积=12小圆面积+12中圆面积+三角形面积-12大圆面积=2221111π3π434π52222⋅⋅+⋅⋅+⨯⨯-⋅⋅ =6【答案】6【例 32】如图,直角三角形的三条边长度为6,8,10,它的内部放了一个半圆,图中阴影部分的面积为多少?68【考点】圆与扇形【难度】4星【题型】解答【解析】S S S=-阴影直角三角形半圆,设半圆半径为r,直角三角形面积用r表示为:6108 22r rr ⨯⨯+=又因为三角形直角边都已知,所以它的面积为168242⨯⨯=,所以824r=,3r=所以1249π=24 4.5π2S=-⨯-阴影【答案】24 4.5π-【例 33】大圆半径为R,小圆半径为r,两个同心圆构成一个环形.以圆心O为顶点,半径R为边长作一个正方形:再以O为顶点,以r为边长作一个小正方形.图中阴影部分的面积为50平方厘米,求环形面积.(圆周率取3.14)【考点】圆与扇形【难度】3星【题型】解答【关键词】华校第一学期,期中测试,第6题【解析】环形的面积应该用大圆的面积减去小圆的面积,但分别求出两个圆的面积显然不可能.题中已知阴影部分的面积,也就是2250R r-=平方厘米,那么环形的面积为:2222πππ()π50=157R r R r-=-=⨯(平方厘米).【答案】157【巩固】图中阴影部分的面积是225cm,求圆环的面积.【考点】圆与扇形 【难度】3星 【题型】解答【解析】 设大圆半径为R ,小圆半径为r ,依题有222522R r -=,即2250R r -=.则圆环面积为:22222πππ()50π157(cm )R r R r -=-==.【答案】157【例 34】 已知图中正方形的面积是20平方厘米,则图中里外两个圆的面积之和是 .(π取3.14)【考点】圆与扇形 【难度】3星 【题型】填空 【关键词】101中学,考题 【解析】 设图中大圆的半径为r ,正方形的边长为a ,则小圆的直径等于正方形的边长,所以小圆的半径为2a,大圆的直径2r 等于正方形的对角线长,即222(2)r a a =+,得222ar =.所以,大圆的面积与正方形的面积之比为:22π:π:2r a =,所以大圆面积为:202π10π÷⨯=;小圆的面积与正方形的面积之比为:22π():π:42aa =,所以小圆的面积为:204π5π÷⨯=;两个圆的面积之和为:10π5π15π15 3.1447.1+==⨯=(平方厘米). 【答案】47.1【巩固】图中小圆的面积是30平方厘米,则大圆的面积是 平方厘米.(π取3.14)【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 设图中大圆的半径为r ,正方形的边长为a ,则小圆的直径等于正方形的边长,所以小圆的半径为2a,大圆的直径2r 等于正方形的对角线长,即222(2)r a a =+,得222a r =.所以,大圆的面积与小圆的面积之比为:222222π:π()::2:12424a a a a r r ===, 即大圆的面积是小圆面积的2倍,大圆的面积为30260⨯=(平方厘米). 【答案】60【巩固】(2008年四中考题)图中大正方形边长为a ,小正方形的面积是 .【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 设图中小正方形的边长为b ,由于圆的直径等于大正方形的边长,所以圆的直径为a ,而从图中可以看出,圆的直径等于小正方形的对角线长,所以22222a b b b =+=,故2212b a =,即小正方形的面积为212a .【答案】212a【巩固】一些正方形内接于一些同心圆,如图所示.已知最小圆的半径为1cm ,请问阴影部分的面积为多少平方厘米?(取22π7=)【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】台湾小学数学竞赛选拔,复赛 【解析】 我们将阴影部分的面积分为内圈、中圈、外圈三部分来计算. 内圈等于内圆面积减去内部正方形的面积,也就是2π1222π2⨯-⨯÷=-.内圆的直径为中部正方形的边长,即为2,中部正方形的对角线等于中圆的直径,于是中圈阴影部分面积是22π(22)4222π4⨯+÷-⨯=-.中圆的直径的平方即为外部正方形的面积,即为22228+=,外部正方形的对角线的平方即为外圆的直径的平方,即为8216⨯=,所以外圈阴影部分的面积是π16484π8⨯÷-=-.所以阴影部分的面积是227π1471487-=⨯-=(平方厘米).【答案】8【例 35】 图中大正方形边长为6,将其每条边进行三等分,连出四条虚线,再将虚线的中点连出一个正方形(如图),在这个正方形中画出一个最大的圆,则圆的面积是多少?(π 3.14=)。

小学数学奥数测试题环形跑道问题_人教版

小学数学奥数测试题环形跑道问题_人教版
30.以下图是一个边长90米的正方形,甲、乙两人同时从A点动身,甲逆时针每分行75米,乙顺时针每分行45米.两人第一次在CD边〔不包括C,D两点〕上相遇,是动身以后的第几次相遇?
31.如图,8时10分,有甲、乙两人以相反的速度区分从相距60米的A,B两地顺时针方向沿长方形ABCD的边走向D点.甲8时20分到D点后,丙、丁两人立刻以相反速度从D点动身.丙由D向A走去,8时24分与乙在E点相遇;丁由D向C走去,8时30分在F点被乙追上.问三角形BEF的面积为多少平方米?
26.2021年华校退学试题〕甲、乙两车同时从同一点 动身,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,那么乙车立刻调头;一旦甲车从前面追上一车,那么甲车立刻调头,那么两车动身后第11次相遇的地点距离有多少米?
27.下如右图所示,某单位沿着围墙外面的小路构成一个边长300米的正方形.甲、乙两人区分从两个对角处沿逆时针方向同时动身.假设甲每分走90米,乙每分走70米,那么经过多少时间甲才干看到乙?
43.如下图,甲、乙两人从长为 米的圆形跑道的 点背向动身跑步。跑道右半局部(粗线局部〕路途比拟泥泞,所以两人的速度都将减慢,在正常的跑道上甲、乙速度均为每秒 米,而在泥泞路途上两人的速度均为每秒 米。两人不时跑下去,问:他们第99次迎面相遇的中央距 点还有米。
44.甲、乙二人在同一条椭圆形跑道上作特殊训练:他们同时从同一地点动身,沿相反方向跑,每人跑完第一圈抵达动身点后立刻回头减速跑第二圈,跑第一圈时,乙的速度是甲速度的2/3.甲跑第二圈时速度比第一圈提高了1/3;乙跑第二圈时速度提高了1/5.沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是190米,那么这条椭圆形跑道长多少米?

人教版小学六年级数学上册竞赛试卷附答案.doc

人教版小学六年级数学上册竞赛试卷附答案.doc

人教版小学六年级数学上册竞赛试卷附答案人教版小学六年级数学上册竞赛试卷附答案人教版小学六年级数学上册竞赛试卷题目(一)一、认真思考,仔细填写。

(27分)(1)、0.35的倒数是( )。

(2)、在3:8中,把比的前项加上9,要使比值不变,比的后项应加上()。

(3)、2.5:0.5 化简成最简整数比是(),比值是()。

(4)、15:( )=38 =36 ( )=( )%=( )(小数)=()成(5)、一个圆的半径是5cm,直径是( )cm,周长是( )cm,面积是( )c㎡。

(6)、六(1)班女生人数是男生人数的25,男生比女生多( )() ,女生人数与全班人数的比是( ),男生人数占全班的( ) ()。

(7)、小翔在2008年到银行存款200元,按两年期年利率2.79%计算,到2010年到期时,利息是()元,利息的税金按5%交纳是( )元,可得到本金和税后利息一共()元。

(8)、一件500元的皮衣打折后卖425元,这是打( )折,比原价便宜了()%。

(9)、一根绳子长57 米,平均分成5份,每份占全长的(),每份长()米。

(10)、如果a1112=b12= c34(a、b、c不为0),则( )﹥( )﹥( )。

(11)、班主任张老师带领五(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,男生和女生分别有()名和()名。

二、仔细推敲,认真辨析。

(对的打,错的打)(5分)(1)比的前项和后项都增加或减少相同的数,比值不变。

( )(2)如果大圆和小圆的半径比是5:1,面积和周长的比都是25:1。

( )(3)生产105个零件,全部合格,合格率是100%。

( )(4)甲数比乙数多甲数与乙数的比是1:4。

()(5)10克盐溶解在100克水中,含盐率10%( )三、反复比较,谨慎选择。

(把正确答案的序号填在括号里)(5分)(1)要想更清楚地了解各部分数量同总数之间的关系,应该选用()A.条形统计图B.折线统计图C.扇形统计图(2)在、66.78%和0.67这三个数中最大的一个是( )A. B.66.78% C.0.67(3)画圆时,圆的周长为15.7cm,那么圆规两脚间的距离为()A.2.5cmB.5cm C.15.7cm(4)王红的体重比李云的体重重,那么李云的体重比王红体重轻( )A.B. C.(5)一件20元的商品,先提价15%,再降价15%,这件商品()A.比原价贵B.价钱不变C.比原价便宜四、开动脑筋,灵活计算。

【小升初】名校小升初数学经典难题应用题20题 (16)

【小升初】名校小升初数学经典难题应用题20题 (16)

小学数学竞赛难题20题含答案1.下图中每个正方形的边长都表示2厘米。

(1)求出A、B两个图形阴影部分的面积各是多少?(2)在C、D两个正方形里画出与图中阴影部分形状不同但面积相等的两个图形。

A B C D2.在一幅比例尺为15000000的地图上,量得A、B两地之间的公路长度是6cm,甲、乙两车同时从A、B两地出发,相向而行。

已知乙车速度与甲车速度之比是2:3。

两车相遇时,甲车比乙车多行驶了多少千米?3.一列货车和一列客车分别从甲、乙两站同时出发,相向而行。

客车每小时行60千米,货车行完全程需要12小时;两车相遇时,客车一共行驶了全程的47。

甲、乙两站之间的铁路长多少千米?4.无缝钢管每根长4米,它的横截面外直径是16厘米,内直径是14厘米。

如果每立方厘米的钢重7.8克,那么,一辆载重8吨的卡车一次大约可以运多少根这样的钢管?5.如图,长方形的周长是24.84cm,圆的面积与长方形面积正好相等。

图中阴影部分的面积和周长分别是多少?6.已知1988年4月8日是星期五,在此之后的哪一年,4月8日才首次又是星期五? 7.用两块长方形纸片和一块正方形纸片拼成一个大正方形(如图),长方形纸片面积分别是44平方厘米和28平方厘米,原来正方形面积是多少平方厘米?8.小明上学期期末考试,数学、语文、英语三科的平均成绩是92分.如果不算数学成绩两科平均成绩比三科的平均成绩低2分,而英语成绩比语文成绩高3分,小明这三科考试成绩各是多少?9.姐姐和弟弟玩掷骰子的游戏,规则如下:用两个骰子同时掷,每人只掷1次,两人掷到的点数和为6或7算姐姐赢,点数和为8或9算弟弟赢。

请你分析一下谁赢的可能性大,为什么?10.有1996个棋子,两人轮流取棋子,每次允许取其中的2个、4个或8个,谁最后取完棋子,就算谁获胜.那么先取的人为保证获胜,第一次应取几个棋子? 11.原来甲、乙、丙、丁的座位如图①,第1次换座位后如图②,第2次换座位后如图③…请你画出第2018次换座位后,甲、乙、丙、丁的座位情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与圆有关的问题
以下各题中,如无特殊说明,圆周率π按3.14计算。

102 圆形餐桌的直径为2m,高为1m。

铺在桌面上的正方形桌布的四角恰好刚刚接触地面。

求正方形桌布的面积。

103 右图是由直径分别为4cm,6cm和10cm的三个半圆所组成的图形,求图中阴影部分的周长和面积。

104 已知一个半圆形的面积是18πcm2,求这个半圆形的周长。

105 右图是一个半径为5cm的半圆形,在它的圆弧上任意取一点,以A,B及这点为顶点可以画出一个三角形,在所有这样的三角形中,面积最大的是多少?
106 求下列各图中阴影部分的面积(图中长度单位为cm,圆周率按3计算):
107求下列各图中阴影部分的面积(图中长度单位为cm,圆周率按3计算):
108在右图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差。

109在左下图中,阴影部分的面积是5cm2,以OA为直径的半圆的面积是多少?
110 右上图中甲比乙的面积大57cm2,求x。

111 左下图中,正方形的边长是5cm,图形的总面积是多少?
112如右上图所示,平行四边形ABCD的面积是40cm2,求图中阴影部分的面积。

113左下图中阴影部分的面积是25cm2,求圆环的面积。

114右上图中有半径分别为5cm,4cm,3cm的三个圆,图中A部分(即两小圆重叠部分)的面积与阴影部分的面积相比,哪个大?
115在半径为1的圆中内接一个矩形,矩形中有一个菱形(如右图),求菱形的边长。

116左下图中每个小圆的半径都是1cm,求阴影部分的周长。

117求右上图中阴影部分与大圆的面积之比和周长之比。

118两个圆的周长之比是3∶2,面积之差是10cm2,两个圆的面积之和是多少?
119左下图中阴影部分的面积是200cm2,求两个圆之间的圆环面积。

120右上图是一个400m的跑道,两头是两个半圆,每一半圆的弧长是100m,中间是一个长方形,长为100m,求两个半圆的面积之和与跑道所围成的面积之比。

121一块边长为4m的正方形草地,两对角各有一棵树,树上各拴着一只羊,拴羊的绳子长都是4m。

问:两只羊都能吃到草的草地面积是多少?
122一只狗被拴在底座为边长3m的等边三角形建筑物的墙角上(如右图),绳长是4m,求狗所能到的地方的总面积。

123草场上有一个长20m,宽10m的关闭着的羊圈,在羊圈的一角用长30m的绳子拴着一只羊(见右图),这只羊能够活动的范围有多大?
124右图是一个直径为3cm的半圆,让这个半圆以A点为轴沿逆时针方向旋转60°,此时B点移动到B′点,求阴影部分的面积。

125在左下图所示的长方形ABCO中,△ABD的面积比△BCD的面积大10cm2,求阴影部分的面积。

126右上图中圆的半径是4cm,阴影部分的面积是14πcm2,求图中三角形的面积。

127左下两个图中,AB线段的长相等。

问:哪个图中阴影部分的面积最大?
128有七根直径5cm的塑料管,用一根橡皮筋把它们勒成一捆(如右上图),此时橡皮筋的长度是多少?
129右图中三个圆的半径都是5cm,三个圆两两相交于圆心。

求阴影部分的面积和。

130一条直线上放着一个长和宽分别为4cm和3cm的长方形Ⅰ(左下图)。

它的对角线长恰好是5cm。

让这个长方形绕顶点B顺时针旋转90°后到达长方形Ⅱ的位置,这样连续做三次,A点到达E点的位置。

求A点走过的路程的长(圆周率按3计算)。

131将边长为1的正三角形放在一条直线上(如右上图),让三角形绕顶点C顺时针转动到达位置Ⅱ,再继续这样转动到达位置Ⅲ。

求A点走过的路程的长(取π=3)。

132右图中正方形的周长是圆环周长的3倍。

当圆环绕正方形无滑动地滚动一周又回到原来位置时,这个圆环转了几圈?。

相关文档
最新文档