极限的产生与应用解读

合集下载

23_函数极限性质4解读

23_函数极限性质4解读

(1)重要极限 lim
sin x 1 x 0 x 由右图可知: S AOB S扇形AOB S AOD ,
B
D
x AB
sin x CB
1 1 1 sin x x tan x , 2 2 2 sin x x tan x,
O
x
tan x AD C A
不等号各边都除以sin x得, x 1 sin x 1 , 或 cos x 1. sin x cos x x
| f ( x ) | M , (x O( x0 ) \ { x0 }).
性质3(局部保号性) 假设 lim f ( x ) A,lim g( x ) B
x x0 x x0
(1)如 A B( B ),则对 x0 的某一去心邻域中的所有 x, 有
f ( x ) g( x )( g( x ))。
由此看来极限 A与 f ( x0 )毫无关系,A 的存在与否 及大小与f ( x0 )的大小甚至f ( x0 )有无定义都无关系.
我们称函数f ( x )在某点 x0的邻域内(或除去x0)的性质 为函数的局部性质.
1.函数极限的性质 性质1 (函数极限的唯一性)假设在同一极限过程中有
x x0
lim f ( x ) A, 和 lim f ( x ) B, 则 A B。
x x0
运算法则有
P ( x ) P ( x0 ) lim . x x0 Q ( x ) Q ( x0 )
但若Q( x0 ) 0,则关于商的极限的运算法则不能应用。
定理 2:(复合函数的极限运算法则)若 lim g( x ) A,
x x0
且g ( x ) A(这里A可以是无穷大 ), lim f ( u) B , 则

极限的精确定义

极限的精确定义

极限的精确定义
极限的精确定义被广泛应用于数学、物理学、工程学等重要领域。

在这些领域中,极限通常指的是一个变量在某一点的趋近于一个特定值的过程。

在这篇文章中,我们将探讨极限的精确定义,并分步骤阐明其含义及用途。

1. 定义
如上所述,极限通常指一个变量在某一点的趋近于一个特定值的过程。

因此,极限的精确定义可以表示为以下公式:
对于任意正实数ε,存在另一个正实数δ,当0<|x-a|<δ时,有|f(x)-L|<ε。

在这个公式中,a是函数f(x)的极限点,L是f(x)在a点的极限值。

ε表示任意小的正数,δ表示一个相应的正数,使得当函数f(x)的自变量接近a点时,函数值f(x)与极限值L的差在ε以内。

2. 解读
在上述定义中,极限点a常常被称为自变量的趋近点。

变量x在a点的趋近过程是无限进行的,因为无论如何选择一个趋近点,我们总可以找到另一个更近的点。

因此,当x趋近于a时,我们通常说"当x 无限接近于a时,f(x)趋近于L"。

在数学上,我们将这种趋近过程的定义称为"按极值趋近"。

需要注意的是,ε和δ并不一定要是相等的。

一般情况下,δ越小,ε就越小,判断极限的精度也就越高。

3. 用途
极限的精确定义是一种重要的数学工具,可以用来解决很多高级数学问题,如微积分,函数分析等。

它还被广泛应用于物理学、工程学等领域中,例如:探究控制系统的性能,预测材料的强度和稳定性等。

总之,极限的精确定义是数学、物理等领域中非常基础、重要的概念。

我们可以通过深入理解它来应对复杂的数学和科学问题。

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限第一章:函数与极限第一节:函数函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。

基础阶段:1.理解函数的概念,能在实际问题的背景下建立函数关系;2.掌握并会计算函数的定义域、值域和解析式;3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质;4.理解复合函数和反函数的概念,并会应用它们解决相关的问题;强化阶段:1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示;2.掌握基本初等函数的性质及其图形,了解初等函数的概念。

冲刺阶段:1.综合应用函数解决相关的问题;2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。

第二节:极限极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。

在考试大纲中明确要求考生熟练掌握的基本技能之一。

虽在考试中站的分值不大。

但是在其他的试题中得到广泛应用。

因此这部分学习直接营销到整个学科的复习结果基础阶段1.了解极限的概念及其主要的性质。

2.会计算一些简单的极限。

3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。

强化阶段:1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列极限和函数极限的概念(数三;▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式;3.会解决与极限的计算相关的问题(确定极限中的参数;4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。

冲刺阶段:深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

3-2函数极限的性质和函数极限存在条件解读

3-2函数极限的性质和函数极限存在条件解读
x x0
有f ( x) g ( x), 则A B. (反证法)
推论2.若 lim f ( x) A且A B( A B), 则 0, x : 0 x x0
x x0
有f ( x) B( f ( x) B(取 ). g ( x) B)
特别地,B 0时称函数极限的保号性。
x x0 x x0
x : 0 | x x0 | , 有f ( x) g ( x).
证明:取 A B , 0,x : 0 x x0 ,有 2 A B f ( x) g ( x). 2
x x0
推论1. 若 lim f ( x) A, lim g ( x) B, 且 0, x : 0 x x0
定理(函数极限的四则运算)若 lim f ( x) A, lim g ( x) B, 则
x x0 x x0
x x0
lim [ f ( x) g ( x)] A B,
x x0
lim f ( x) g ( x) AB ,
f ( x) A lim (B 0) . x x0 g ( x ) B
n
lim xn x0,xn x0,都有 lim f(xn) A.
注意,此处要求 xn在f(x)之定义域内。
证明“ : ” 0, 0, x : 0 x x0 , 有
f ( x) A , 又已知,对任意xn , 有 lim xn x0 ,
0 0
于是, 0, 0, x : 0 | x x0 | 有 | f ( x) A | . 2 从而,x ', x ": 0 | x ' x f ( x ') f ( x ") || f ( x ') A | | f ( x ") A |

原函数极限等价于分子分母分别求导的极限

原函数极限等价于分子分母分别求导的极限

原函数极限等价于分子分母分别求导的极限数学是一门让人爱恨交加的学科,但其中一些规律和原理却令人惊叹。

其中,有一个非常重要的定理,即“原函数极限等价于分子分母分别求导的极限”。

这个定理在微积分领域中应用广泛,本文将分步骤阐述这一定理,并从不同角度探究它的实际应用。

首先,我们来回顾一下“极限”的概念。

熟练掌握极限概念,是理解这一定理的基础。

极限可以被理解为一种趋势,即当函数趋近于一定值时的趋势。

在上述“原函数极限等价于分子分母分别求导的极限”的定理中,分子分母其实都是“函数”,只是分别在两个表述中提到了。

下面,我们来具体探究这个定理。

假设我们有一个函数f(x),它的导数为f'(x)。

根据定义,f(x)余弦部分的极限为L,当x趋近于a 时,f(x)的分子和分母分别为u(x)和v(x)。

那么,根据我们的定理,我们可以得出以下等式:limit [ (u(x)/v(x)) - L ] = 0现在,根据洛必达定理,我们可以将上述等式写成:limit [ u'(x)/v'(x) ] = L我们可以从以上两个等式推导出一个有用的结论:原函数f(x)的极限等于函数u(x)和v(x)的极限之比。

这个结论可以应用于许多不同的数学问题中,如求极限、求导数等等。

那么,这个定理有什么实际应用呢?下面我们以三个例子,分别从求导数、求狄利克雷级数和判断比较函数大小三个角度来探究其应用。

第一个例子涉及到求导数。

考虑函数f(x)=sin(x)/x,其导数为(cos(x)-sin(x)/x^2),在x=0时f(x)的值等于1,而导数f'(x)的值为0.这就证明了这个定理在求导数中的应用。

第二个例子是求狄利克雷级数。

一个著名的狄利克雷级数为:1-1/3+1/5-1/7+......这个级数可以表示为f(x)=arctan(x)/x的无穷和,其极限为pi/4。

根据我们的定理,我们可以将上述级数表示为:lim[x->∞]{(arctan(x)-π/2-x/2) /x}在这个问题中,我们应用了定理中的“求极限”这个概念。

函数极限解读

函数极限解读

定义1 设函数f x 在a, 内有定义, A 为定数. 若对任给的
xM
0
,存在正数M( a )使得当
x x0 时函数的极限 定义2 设函数 f x 在点 x 的某个空心邻域U 0 x0; 0
时有 f x A , f x A 则称函数 f x 当 x 时以A为极限.xlim
函数 1 x2在其定义区间[1,1] 端点 x 1处的极限, x 1 的右侧和点 x 1 的左侧来分别讨论. 也只能在点 这样就需要下面给出的单侧极限的定义:
首页
×
定义3 设函数 f 在U ( x0; ') (或 U ( x0 ; ') )内有定义,
A为定数.若对任给的 0 ,存在正数 ( ') ,使
得当 x0 x x0 (或x0 x x0 )时有
f ( x) A 则称数 A为函数 f 当 x 趋于 x0 (或 x0 )时的右(左)极限, 记作 lim f ( x ) A ( lim f ( x ) A) 或 f x A x x0
横带内,
但 点 x0 , f ( x0 ) 可能例外(或 无意义).
首页
×
三、单侧极限
引例 函数
x 2 , x 0, f ( x) x, x 0
(5)
势;当 x 0 而趋于0时,则应按 f ( x ) x 来考察.
2 f ( x ) x 当 x 0 而趋于0时,应按 来考察函数值的变化趋
f ( x) A .
M
首页
×
2 ( x0 1) 例4 证明 lim 1 x 2 1 x0 x x0

函数的极限与连续性解读

函数的极限与连续性解读

函数的极限与连续性高考要求1了解函数极限的概念2掌握极限的四则运算法则;会求某些数列与函数的极限3 了解函数连续的意义,4理解闭区间上连续函数有最大值和最小值的性质知识点归纳1、函数极限的定义:(1)当自变量x取正值并且无限增大时,如果函数f(x)无限趋近于一个常数a,就说当x趋向于正无穷大时,函数f (x)的极限是a,记作:lim f(x)= a,或者一当X T +8时,f(x) T a(2) 当自变量x取负值并且绝对值无限增大时,如果函数f(x)无限趋近于一个常数a ,就说当x趋向于负无穷大时,函数 f (x)的极限是a,记作lim f (x)= a或者当x T—8时,x-^_oC —f(x) T a(3) 如果lim f (x)= a且lim f (x)= a,那么就说当x趋向于无穷大时,函数 f (x)的X T说x_^_oc极限是a,记作:lim f (x)= a或者当x T8时,f (x) T ax—ljpc ——2、常数函数f(x)= c ( x € R),有lim f(x)= clim f(x)存在,表示lim f(x)和lim f(x)都存在,且两者相等,所以lim f(x)中的既有X °X •X ・. x ■ ■+8,又有一^的意义,而数列极限lim a n中的仅有+8的意义。

x-^ic3、趋向于定值的函数极限概念:当自变量x无限趋近于X。

( X=X0 )时,如果函数y = f(x)无限趋近于一个常数a,就说当x趋向X。

时,函数y = f(x)的极限是a,记作lim f(x) =X ]*Q特别地,lim C = C ;lim x = x Q・X—jX Q ^X Q4、lim f(x)=a:= lim f (x) = lim f (x) = aX—X—JK Q —^X Q十5对于函数极限有如下的运算法则: 如果lim f (x)二A, Ilim g (x) = B那么lim [f(x) g(x)] =A B , lim [ f (x) g(x)^ A B ,X—X o X )X o当 C 是常数,n 是正整数时:lim[Cf(x)]=Climf(x),lim[f(x)]n=[lim f(x)]nO o o o这些法则对于Xr 的情况仍然适用=0=0=lim x r ::2x 2 1 2x 、x 2 13x 6 1【变式】 求下列各极限: (1) lim 3X-1 3x=(x 1)(2)计算 x m 1r解: (1)3x 3 -1 3-(丄)3 (2) 1(X 1)lim.x■1 3 (1 -)3 3(1 0) Xlim rx=0 , •X ・1 -r x limx x 「1rxlim (1 - r XX)亠.6、 函数在一点连续的定义:如果函数 f(x)在点x=x o 处有定义,lim f(x)存在,且一 X olim f(x)=f(x o ),那么函数f(x)在点X=X o 处连续X 內-7、函数f(x)在(a , b)内连续的定义:如果函数f(x)在某一开区间(a , b)内每一点处连续,就 说函数f(x)在开区间(a ,b)内连续,或f(x)是开区间(a ,b)内的连续函数 8函数f(x)在]a , b ]上连续的定义:如果 f(x)在开区间(a , b)内连续,在左端点x=a 处有lim f(x)=f(a),在右端点x=b 处有lim f(x)=f(b),就说函数f(x)在闭区间[a , b ]上连续,或f(x) x _ax _b一是闭区间]a , b ]上的连续函数 9、 最大值:f(x)是闭区间]a , b ] 上的连续函数,如果对于任意 x €[ a ,b ],f(x i )>f(x),那么f(x)在点x 1处有最大值=业必10、最小值:f(x)是闭区间]a , b ]上的连续函数,如果对于任意 x €[ a , b ], f(x 2)< f(x),那么f(x)在点X 2处有最小值=f(x) 11、 最大值最小值定理如果f(x)是闭区间]a , b ]上的连续函数,那么 f(x)在闭区间]a , b ]上有最大值和最 小值* . 题型讲解【例1】 求下列各极限: (1)lim ( J(x+a)(x+b)—x ); (2)、X 匸3X 61解:(1)原式=lim --------------------------------^^\:x 2 +(a +b)x +ab +x(a b)x ab=a+b23x lim M lim X )0 | X | X^ " | X |(3) 因为 lim — =1,而=lim — =— 1, — + |X| T —|X| 极限存在=左、右极限存在且相等.【变式】下列函数在 x =— 2的左极限、右极限,其中哪些函数在23.x -3 (x 占 一2)(1)g (x )=4x +3; (2) v (x )=3 '(X (xv-2)所以limX不存在.X 50| X |x =- 2处极限不存在?2.lim —x23x匸3, x 3 3lim 1": x-1 r x x-lim rx iTr x11Xim(7-1)lim 』X —- X1): jX 丿存limX —3罟1lim 二2 ^:z3x 3 3上0「11 0lim 上3不存在.x匸3, X 3 3【例2】求下列函数在指定处的左极限、右极限,其中哪些函数在指定处极限不存在? (1)f(x)=y^ (在 X =— 2 处);(2)h(x)=X~"2)(在 x= — 2 处);(3) f (X)x+2"州 X<-2)X |X|(在x=0 处)3 2x+ 2x 2解:(1)f(x)==x (X M — 2)x + 2lim f (x )= lim x 2=4. lim f (x )= lim x 2=4. /• lim f (x )=4.x ・,_2 …X r 2 …x > -2x —. 2x '.-2(2)lim h (x )= lim (x+1)= — 2+1= — 1.X T-2 —X T-2 —lim h(x)= lim (2x+3)=2( — 2)+3= — 1.x 「. 2x•'•lim h(x)= — 1.X解:(1) lim g(x)= lim (4x+3)=4 • (-2) +3= - 29.^^2 — '^^2 —3 3lim g(x)= lim (4x +3)=4 X (-2) +3= - 29. • • lim g(x)= — 29.X 》2(2) lim v(x)= lim x 3=( - 2)3= - 8. X T -2 _x _^_2 —解:(1 )原式=lim 士孕 ® = lim —X T 2 x-4X T 2 x+2点评:解题时常需对函数式变形!变形的基本途径有三条: 在分式极限lim 丄凶 中除以x 的最高次幕;X 护 g(x)在分式极限lim 丄凶 中约去可能存在的零因子 (x-x 0)k (k ・N *);X f g(x)当lim f (x)与lim g (x)均不存在时,求lim [ f (x)二g(x)]时,应该对f (x) 一 g(x)进 X 0X r X 0X >x 0行运算X 2 —11 2 1 3 【变式】求下列各极限1. (1) lim^(2)lim[( 3)- x( 2)3], (3)X T X 2+X _2XT L'X 丿X【例3】求下列各极限: 41x 2_ 31(1) lim (2) ; ( 2) lim ( 2),lim v(x)= lim (x 2- 3)=( — 2)2—3=1. • lim v (x )不存在.x .2 'x .2 'x - _2(3) x 2 -1lim 2x 12x -x-1(4)cosxlimx >nx . x 2 cos sin2 2(2) limx 汩rmX 2 -x-2= lim (x 哄-2) x^(x 1)x —1) Jimi 土2 2x —1-1一1 2(4) “4x 12x 1limx 12凹X+111 22 113原式=lim2X . 2 X cos sin -2 2X . X cos - sin 22x x *— =lim (cos +sin )= 、2(3)(x-1)(x 1) (x-1)(2x 1) n n*4 +x - 2 lim ------------- 八09 x - 3..J9 +x +3 3+3 3 二 lim x 0, 4 x 22 222x b【例4】(1)设f (x ) = 0x 0,x =0,试确定b 的值,使lim f (x)存在; ^^0解:(1) lim f (x ) = limx ―0十^^0十lim f (x ) = lim (1+2x ) =2,x 刃…x 0 -当且仅当b=2时,lim f (x ) = limx _^0 '(2)由于f (x )是多项式,且 limx ^-)pC32•可设 f (x ) =4x +x +ax+b (a 、b 为待定系数)1 2xx :::0, (2) f (x )为多项式,且 limx —f (x) - 4x3 =1, limx_0匸凶=5,求 f (x )的表达式xx 2/解:(1) lim 〒I x 2+x —2xm (x 2一1)2(呼)-122-13!im (x 2 x_2)—(pm%2 jimx_2_ 22 2_2_L23(2)原式=lim(13x) _(12x)x _0x 22 2 31 6x 9x -(1 6x 12x 8x )x 2= lim-厂8"x0 x 2(3) lim4 x -2 x9 二 limx -3“ (.4 x - 2)( . 4 x 2) (\ 9 x - 3)( 一 4 x 2)^(79 x -3)(,4 x 2)側(厂3忙3)xQ (*9 x -3)(. 4 x 2)=b,(2x+b ) 故b=2时,原极限存在f (x ),x j0 -3f(x) -4x =12 _丨,x又•- lim 3=5,x )0x即 lim (4x2x )0+x+a+ b) =5, x••• a=5,b=0,即 f (x ) =4x 3+x 2+5x【变式】已知下列极限,x 2 1 x 1(2) lim :C x 2 _ x 1 _ ax _ b) = 0解:(i)lim( x —Jpc?x 2 1x 1 (1 -a)x - (a b)x (1 - b)- ax -b) =limX —)::1-b(1 -a)x-(a b) =limx1 1-b 如果 1 —0, ••• lim 0, lim0 , /• limx ^pc xxx _jpc(1 —a)x — (a b) 1 -x存在•如果 1- a=0 ,v limx _^C(1 - a)x -(a b)匕x-(a b) 0(a+b)=O 即 a+b=01 -a = 0—\a b =0b = -1⑵ lim (. x 2 - x 1 - ax - b)(»;x 2 —x +1—ax —b)(px 2 —x +1 +ax + b) =limx )::,x 2 - x 1 ax b2 2 2= l im (1 -a )x -(1 2ab)x (1 -b )x )::.x 2 - x 1 ax b2、 ■( = lim x : im x'x+tQx+b)2 x 匚.x 2 _ x 1 ax b21-b 2(1 _a 2)x _ (1 2ab) -------------- x丸1 1 b 1 —丄——丄a¥ xx 2-(1 2ab)即 1+2ab=0, a+1工0.21 -a =0•-丿1 +2ab = 0(2) f(X )x —1,0 C x 兰 12 — x,1 c x 兰 3,点 % _1要使极限存在1-a 2=0.【例5】讨论下列函数在给定点处的连续性(1) f (x) = x 4,点x = 2 ;x —22x+1(x>0)(3)设函数f(x)=』a(x = 0),在x=0处连续,求a , b 的值.K-^Jr^x-1) (x<0)L.X解(1)因为f (x)在点x =2处无定义,所以f (x)在点x=2处不连续f (x) = x 「1,所以 lim lf (x)二呵。

极限和连续、导 数

极限和连续、导 数

【极限和连续】解决两个问题:○1如何求极限;○2如何解读、应用极限 (一)数列极限1、常用数列的极限:①lim n →∞C=C (常数列的极限就是这个常数)②1lim0n n→∞= ③设||1q <,则lim 0n n q →∞=;1,lim 1nn q q →∞==;,1-=q 或nn q q ∞→>lim ,1不存在。

其它不数列常常通过以下方式:○1分子分母同时除以n 的最高次项(最该次项系数比);○2分子分母同时除以 |底数|大的,从而产生设||1q <,则lim 0n n q →∞=进行应用; ○3分子分母有理化 ○4若无穷等比数列1,,,,11<-q aq aq a n 叫无穷递缩等比数列,其所有项的和(各项的和)为: 2、数列极限的运算法则:如果lim n n a A →∞=,lim n n b B →∞=,那么见右上注意:数列极限运算法则运用的前提:(1)参与运算的各个数列均有极限;(2)运用法则,只适用于有限个数列参与运算,当无限个数列参与运算时不能直接运算,应该先华无 限为有限。

如:数列求和等。

【典型题目】1、求极限:○1n n n n 2312lim 22++∞→= ; ○2 22322lim n n n n n→∞+++= ○3135(21)lim 2462n n n →∞+++⋅⋅⋅+-+++⋅⋅⋅+=_____ ○4lim n →∞(3221n n --2)21n n =+ ○5 1123lim 23n n n n n --→∞-=- ○6)n n →∞= 2、s 表示(12)n x +展开式中各项系数和,t 表示(13)nx +的二项式系数之和,则._____lim =+-∞→ts ts n3、设等差数列{}n a 的前n 项和为n S ,若6312a S ==,则2lim nn S n →∞=4、n a 是(1)nx +展开式中含2x 的项的系数,则)111(lim 32nn a a a +⋅⋅⋅++∞→等于 【函数极限】:分清楚类型1、lim ()x f x →+∞、lim ()x f x →-∞、lim ()x f x →∞的理解;lim ()lim ()lim ()x x x f x a f x f x a →∞→+∞→∞=⇔==、(存在且相等)思考:“lim ()x f x →+∞存在且lim ()x f x →-∞存在”是“lim ()x f x →∞存在”的什么条件?(必要不充分)求法:数列极限是函数极限的特殊情况,所以数列极限求法相似可以类推到函数极限中,但是也得注意函数极限的一般性,如:lim 2xx →∞、1lim()2x x →∞、小心lim xx a →∞2、0lim ()x x f x →、0lim ()x x f x +→、0lim ()x x f x -→的理解;000lim ()lim ()lim ()x x x x x x f x a f x f x a -+→→→=⇔==、(存在相等)求法:代入求值,如果代入分母出现零因式,一般通过因式分解把零因式约掉,在从新代入;(洛比达法则):00//()()lim lim ()()x x x x f x f x g x g x →→== 到无零因式为止,在代入求极限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要........................................- 2 -Abstract ......................................- 3 -引言..........................................- 4 -1.极限思想的产生及发展.......................- 4 -1.1极限思想的产生........................................... - 4 -1.2极限思想的发展........................................... - 5 -1.3极限思想的完善.......................................... - 6 -2、极限思想的概念及其性质.....................- 7 -2.1极限的现代定义........................................... - 7 -2.2函数极限的性质........................................... - 7 -3 极限思想在解题中的应用......................- 7 -3.1在开方方面的应用......................................... - 7 -3.2 在求某一点的应用........................................ - 9 -3.4 在解析几何中的应用..................................... - 12 -4 探索极限思想在各个领域的应用............... - 15 -4.1在物理学中的应用........................................ - 15 -4.2 在化学中的应用......................................... - 16 -4.3在建筑学中的应用........................................ - 17 -4.4 在宏观经济学中的应用................................... - 17 -4.4.1计划经济.......................................... - 18 -4.5 在微观经济学中的应用................................... - 20 -4.5.1完全竞争市场...................................... - 20 -参考文献..................................... - 22 -致谢......................................... - 24 -摘要极限思想作为一种数学思想,由远古的思想萌芽,到现在完整的极限理论,其漫长曲折的演变历程布满了众多数学家们的勤奋、智慧、严谨认真、孜孜以求的奋斗足迹。

极限思想的演变历程,是数千年来人类认识世界和改造世界的整个过程的一个侧面反应,是人类追求真理,始终不渝地求实、创新的生动写照。

极限思想的产生与完善是社会实践的需要,它的产生为数学的发展增加了新的动力,成为了近代数学思想和方法的基础和出发点。

极限思想是微积分理论的基础,而微积分与经济学、物理学、机械自动化等与生活息息相关的学科是密不可分的。

尤其是对于经济学来说,是一个透过现象看本质的必不可少的工具,经济学的核心词语“边际”便是一个将导数经济化的概念。

关键词:极限思想;应用;微积分;经济学AbstractLimit thought as a mathematical idea of the mankind from the ancient to the present limits of the full theory of the evolution of its long and tortuous journey filled with hard work of many mathematicians, intelligence, conscientiousness and pursued the struggle footprint. Limit the evolution of thought process that is thousands of years of human knowledge and transform the world's response to one aspect of the process, the human pursuit of truth, the pursuit of ideals, always realistic, vivid portrayal of innovation.Limit the production and improvement of ideological and social needs of practice, it produces for the development of mathematics has added a new impetus, as the ideas and methods of modern mathematics foundation and starting point. Theoretical limit of thought is the basis of calculus, and calculus and economics, physics, mechanical and automation disciplines and daily life are inseparable. Especially in economics, is a look at the nature of the phenomenon through the essential tools, the core of economics, the word "marginal" is one of the guide number of economic concepts.Key Words:Limit thought;Application;Calculus;Economics极限思想的产生与应用引言数学是对现实世界数与形简洁的、高效的、优美的描述, 是有其内部抽象和外部有效性的一门学科。

数学科学是知识和思想方法的有机组合。

本文主要论述极限思想的产生与发展,极限思想的概念及应用。

极限思想是荷兰数学家斯泰文在考察三角形重心问题的过程中改进了古希腊人的穷竭法时产生的。

他借助几何直观,大胆地运用极限思想思考问题,放弃了归谬的证明,而牛顿莱布尼茨对极限思想的建立作出了极创造性的贡献。

本文最后探讨了创造性的贡献。

在[1]中主要论述了中国古代极限思想的产生与发展,而[2]主要说明了极限思想在古代数学中的应用,这对于探索当代极限思想的应用,指明了方向。

而[3],[4],[5],[6]分别就极限在解题中的应用做出了明确的证明和论述。

分别解释说明了极限思想在开方方面,在求解某一点问题,立体几何以及解析几何中的应用。

在本文中,除了探讨极限思想的产生与发展,在解题中的应用海探索极限思想在其他方面的应用。

这其中包括在物理学建筑学经济学化学中的应用。

1.极限思想的产生及发展1.1极限思想的产生极限思想的产生和其他科学思想一样,是必须经过历代古人的思考与实践一步一步渐渐积累起来的,它也是社会实践的产物。

极限的思想可以追溯到古代,刘徽的割圆术是建立在直观基础上的一种原始的极限思想的应用;古希腊人的穷竭法也蕴含了极限思想,但由于希腊人“对无限的恐惧”,他们避免明显的“取极限”,而是借助于间接证法—归谬法来完成有关的证明1。

提到极限思想,就不得不提到著名的阿基里斯悖论——一个困扰了数学界十几个世纪的问题。

阿基里斯悖论是由古希腊的著名哲学家芝诺提出的,他的话援引如下:“阿基里斯不能追上一只逃跑的乌龟,因为在他到达乌龟所在的地方所花的那段时间里,乌龟能够走开。

然而即使它等着他,阿基里斯也必须首先到达他们之间一半路程的目标,并且,为了他能到达这个中点,他必须首先到达距离这个中点一半路程的目标,这样无限继续下去。

从概念上,面临这样一个倒退,他甚至不可能开始,因此运动是不可能的。

”就是这样一个从直觉与现实两个角度都不可能的问题困扰了世人十几个世纪,直至十七世纪随着微积分的发展,极限的概念得到进一步的完善,人们对“阿基里斯”悖论造成的困惑才得以解除。

无独有偶,我国春秋战国时期的哲学名著《庄子》记载着惠施的一句名言“一尺之锤,日取其半,万事不竭。

”也就是说,从一尺长的竿,每天截取前一天剩下的一半,随着时间的流逝,竿会越来越短,长度越来越趋近于零,但又永远不会等于零。

这更是从直观上体现了极限思想。

我国古代的刘徽和祖冲之计算圆周率时所采用的“割圆术”则是极限思想的一种基本应用。

所谓“割圆术”,就是A就用半径为R的圆的内接正多边形的边数n一倍一倍地增多,多边形的面积n越来越接近于圆的面积πR。

在有限次的过程中,用正多边形的面积来逼近圆的面积,只能达到近似的程度。

但可以想象,如果把这个过程无限次地继续下去,就能得到精确的圆面积2。

1.2极限思想的发展极限思想是到了16世纪才得以进一步发展的,那时的极限思想是在欧洲资本主义萌芽时期,生产力得到极大发展,生产和技术中大量问题无法用初等数学解决的前提下,一批先进数学家们才进入极限思想的领域深入研究的,这时极限思想的发展与微积分的建立越来越紧密相连了。

科学家们为了获得更高的生产力,不断的进入了极限思想的研究中,这是促进极限发展、建立微积分的社会背景。

起初牛顿和莱布尼茨以无穷小概念为基础建立微积分,后来因遇到了逻辑困难,所以在他们的晚期都不同程度地接受了极限思想。

牛顿的极限观念也是建立在几何直观上的,因而他无法得出极限的严格表述。

正因为当时缺乏严格的极限定义,微积分理论才受到了人们的怀疑与攻击。

英国哲学家、大主教贝克莱对微积分的攻击最为激烈,他说微积分的推导是“分明的诡辩”。

贝克莱之所以激烈地攻击微积分,一方面是为宗教服务,另一方面也由于当时的微积分缺乏牢固的理论基础,连牛顿自己也无法摆脱极限概念中的混乱。

相关文档
最新文档