热处理变形的原因及分类
热处理变形的原因

热处理变形的原因在实际生产中,热处理变形给后续工序,特别是机械加工增加了很多困难,影响了生产效率,因变形过大而导致报废,增加了成本。
变形是热处理比较难以解决的问题,要完全不变形是不可能的,一般是把变形量控制在一定范围内。
一、热处理变形产生的原因钢在热处理的加热、冷却过程中可能会产生变形,甚至开裂,其原因是由于淬火应力的存在。
淬火应力分为热应力和组织应力两种。
由于热应力和组织应力作用,使热处理后零件产生不同残留应力,可能引起变形。
当应力大于材料的屈服强度时变形就会产生,因此,淬火变形还与钢的屈服强度有关,材料塑性变形抗力越大,其变形程度越小。
1.热应力在加热和冷却时由于零件表里有温差存在造成热胀冷缩的不一致而产生热应力。
零件由高温冷却时表面散热快,温度低于心部,因此表面比心部有更大的体积收缩倾向,但受心部阻碍而使表面受拉应力,而心部则受压应力。
表里温差增大应力也增大。
2.组织应力组织应力是因为奥氏体与其转变产物的比容不同,零件的表面和心部或零件各部分之间的组织转变时间不同而产生的。
由于奥氏体比容最小,淬火冷却时必然发生体积增加。
淬火时表面先开始马氏体转变,体积增大,心部仍为奥氏体体积不变。
由于心部阻碍表面体积增大,表面产生压应力,心部产生拉应力。
二、减少和控制热处理变形的方法1.合理选材和提高硬度要求对于形状复杂,截面尺寸相差较大而又要求变形较小的零件,应选择淬透性较好的材料,以便使用较缓和的淬火冷却介质淬火。
对于薄板状精密零件,应选用双向轧制板材,使零件纤维方向对称。
对零件的硬度要求,在满足使用要求前提下,尽量选择下限硬度。
2.正确设计零件零件外形应尽量简单、均匀、结构对称,以免因冷却不均匀,使变形开裂倾向增大。
尽量避免截面尺寸突然变化,减少沟槽和薄边,不要有尖锐棱角。
避免较深的不通孔。
长形零件避免截面呈横梯形。
3.合理安排生产路线,协调冷热加工与热处理的关系对于形状复杂、精度要求高的零件,应在粗、精加工之间进行预先处理,如消除应力、退火等。
热处理淬火及变形

热处理淬火及变形热处理淬火及变形热处理工艺、操作与变形关系一、预处理淬火前通过对工件进行消除应力、改善组织的预备热处理,对减少淬火变形是非常有利的。
预处理一般包括球化退火、消除应力退火,有些还采用调质或正火处理。
①消除应力退火:在机械加工过程中,工件表层在加工方法、背吃刀量、切削速度等的影响下,会产生一定的残余应力,由于其分布的不均衡,导致了工件在淬火时产生了变形。
为了消除这些应力的影响,淬火前将工件进行一次消除应力的退火是必要的。
消除应力退火的温度一般为500-700℃,在空气介质中加热时,为防止工件产生氧化脱碳可采用500-550℃进行退火,保温时间一般为2-3h。
工件装炉时要注意可能因自重引起的变形,其他操作同一般退火操作。
②以改善组织为目的的预热处理:这种预处理包括球化退火、调质及正火等。
球化退火:球化球退火是碳素工具钢及合金工具钢在热处理过程中必不可少的工序,球化退火后所获得的组织对淬火变形趋势影响很大。
所以可以通过调整退火后的组织来减少某些工件有规律的淬火变形。
其他预处理:为减少淬火变形所采用的预处理方法有很多种,如调质处理、正火处理等。
针对工件产生淬火变形的原因及工件所用材料,合理地选用正火、调质等预处理对减少淬火变形是有效的。
但应对正火后引起的残余应力及硬度提高对机加工的不利影响应给予注意,同时调质处理对含WMn等钢可减少淬火时胀大,而对GCr15等钢种的减少变形作用不大。
在实际生产中要注意分清淬火变形产生的原因,即要分清淬火变形是由残余应力引起的还是由组织不佳引起的,只有这样才能对症处理。
若是由残余应力引起的淬火变形则应进行消除应力退火而不用类似调质等改变组织的预处理,反之亦然。
只有这样,才能达到减少淬火变形的目的,才能降低成本,保证质量。
以上各种预处理的具体操作同其他相应操作,此处不赘述。
二、淬火加热操作①淬火温度:淬火温度对工件的淬火变形影响很大。
其影响淬火变形趋势的一般规律如图所示。
薄壁件热处理变形

薄壁件热处理变形
薄壁件热处理变形是指在薄壁件进行热处理过程中,由于温度变化引起的尺寸变化和形状变化。
薄壁件在热处理过程中,由于温度的变化,会导致材料的热膨胀或收缩,从而引起尺寸的变化和形状的变化。
薄壁件热处理变形的主要原因有以下几点:
1. 热膨胀:材料在加热过程中会发生热膨胀,导致尺寸的增大。
而在冷却过程中,材料会发生收缩,导致尺寸的减小。
这种热膨胀和收缩的差异会引起薄壁件的形状变化。
2. 相变:在热处理过程中,材料可能会发生相变,如晶体结构的改变,从而引起尺寸和形状的变化。
3. 内应力释放:在热处理过程中,材料内部的应力可能会得到释放,从而引起尺寸和形状的变化。
为了减小薄壁件热处理变形,可以采取以下措施:
1. 控制热处理温度和时间:合理选择热处理温度和时间,避免过高的温度和过长的时间,从而减小热膨胀和收缩的差异。
2. 采用适当的冷却方式:选择适当的冷却方式,如快速冷却或缓慢冷却,可以控制材料的热膨胀和收缩,减小变形。
3. 采用适当的工艺参数:调整热处理的工艺参数,如加热速度、冷却速度等,可以减小薄壁件的变形。
4. 采用适当的夹具和支撑:在热处理过程中,使用适当的夹具和支撑,可以控制薄壁件的形状变化,减小变形。
薄壁件热处理变形是一个复杂的问题,需要综合考虑材料的性质、热处理工艺参数等因素,采取合适的措施来减小变形。
金属材料热加工处理发生形变的因素以及优化方法分析

金属材料热加工处理发生形变的因素以及优化方法分析摘要:本文主要对金属材料热加工处理发生形变的因素以及优化方法进行了研究,运用了文献调查法、资料收集法等研究方法,介绍了热处理工艺的材料变形类型,分析了热处理形变的因素,提出了热处理形变的改进方法,包括预处理控制、优化淬火方法、合理选择冷却方法与机械处理方法等,以为相关技术人员提供一定参考。
关键词:金属材料;热加工处理;形变;因素;优化方法引言:在对金属材料进行可塑性加工期间,热加工处理工艺属于常用技术之一,通过对金属进行热处理加工,可使金属材料形状及规格满足设计要求。
不过在对金属材料进行热处理过程中也存在一些缺陷,比如会受到应力状态、淬火介质以及预处理等因素影响导致材料发生形变问题。
所以在对金属材料进行热处理加工期间,需要高度关注导致热处理形变的因素,针对性的采取热处理形变改进方法,通过有效控制形变,保证金属材料加工质量。
一、热处理工艺的材料变形类型在对金属合金进行热加工处理过程中不可避免会发生形变,而大部分加工工艺应用中所产生的形变主要有两种类型:其中一种属于比容形变,这和金属材料当中所包含的碳元素以及部分微量金属元素密切相关。
曾有研究人员发现金属合金材料在热处理环节普遍存在比容形变,这类现象和游离碳、铁素体以及比容变化等都存在着密切关联。
对于金属合金材料来说,其比容形变体现出各向同性特点,即在对均质金属进行热加工处理期间,虽然金属材料的形变朝向不同方向,但各方向所发生的形变是相同的[1]。
合金材料在出现比容形变之后,尺寸大小较之前会有较大变化;而另外一种在对金属材料进行热加工处理期间发生的形变主要为内应力塑性形变,出现这种形变根本性原因在于金属块温度分布不均,也就是在对金属块实现热加工期间,不同的金属块位置有着不同温度,在温度分布不均情况下,使得不同位置有着差异化的冷却速度,在温度逐步下降过程中,不同的金属位置所产生的热胀冷缩效应也是不尽相同的,由此所导致的不良形变即为热应力塑性形变。
201不锈钢热处理变形

201不锈钢热处理变形201不锈钢是一种高强度、耐腐蚀性能优异的不锈钢材料,广泛应用于航空航天、化工、石油、电子等领域。
在使用过程中,不锈钢材料经过热处理会发生一定的变形。
本文将探讨201不锈钢热处理变形的原因及其解决方法。
一、201不锈钢热处理变形的原因热处理是通过改变材料的组织结构和性能来满足特定的使用要求。
201不锈钢在热处理过程中,由于内部应力的释放和晶粒的长大,往往会出现一定程度的变形。
主要原因包括:1. 内应力的释放:在不锈钢材料的加热和冷却过程中,由于热膨胀系数的不同,不同部位的温度变化不一致,导致内部产生应力。
这些内应力在热处理过程中会得到释放,引起材料的变形。
2. 晶粒长大:在热处理过程中,不锈钢材料的晶粒会发生长大,这种长大往往会引起材料的变形。
晶粒长大是因为在高温下,晶界的迁移速度增加,晶粒逐渐长大。
3. 机械应力导致的变形:在热处理过程中,如果材料受到机械应力的作用,也会导致材料的变形。
这种机械应力可以是由于材料本身的形状不均匀或者外部施加的载荷等。
针对201不锈钢热处理变形的问题,可以采取以下解决方法:1. 控制热处理温度和时间:合理控制不锈钢材料的热处理温度和时间,可以减少材料的变形。
通过优化热处理工艺参数,可以使材料内部应力和晶粒长大趋于平衡,减少材料的变形。
2. 采用适当的退火工艺:针对201不锈钢的热处理变形问题,可以采用适当的退火工艺进行处理。
退火可以通过恢复应力、减小晶粒尺寸等方式来减少材料的变形。
3. 加强材料的支撑和固定:在热处理过程中,可以采取合理的支撑和固定措施,防止材料发生变形。
通过加强材料的支撑和固定,可以减少材料的机械应力导致的变形。
4. 优化材料的化学成分:合理控制201不锈钢材料的化学成分,可以改善材料的热处理性能,减少材料的变形。
通过调整材料的合金元素含量和比例,可以降低材料的内应力和晶粒长大的程度。
总结起来,201不锈钢热处理变形是由内应力的释放、晶粒长大和机械应力导致的。
五金弹簧在热处理过程中变形的主要原因与解决

五金弹簧在热处理过程中变形的主要原因与解决一、五金弹簧在热处理过程中变形的主要原因是什么?(1)相信大家经常订弹簧的都知道,弹簧在热处理的时候有时有出现变形的情况,那么出现这个情况的主要原因是什么呢?其实在东莞五金弹簧的常规热处理中,零件形状变化的主要原因是热处理和淬火过程中的热应力和相变应力。
如果加热速度过快,零件与加热炉相比过大,并且每个零件的温度不同,就会导致热变形。
在保温过程中,会释放残余应力,产生变形,零件自重也会导致变形。
(2)在冷却过程中,由于零件不同部位的冷却速度不同,会形成热应力,使零件变形。
即使冷却速度相同,表面冷却总是快,中心冷却总是慢。
因此,第一相变表面使非相变中心发生塑性变形,如果材料表面出现合金成分偏析或脱碳,则相变应力更不均匀,更容易引起零件变形。
另外,如果零件厚度不均匀,冷却速度也会不同。
(3)在锻件热处理中,减少变形的零件按以下方式放置:一是尽量垂直悬挂,二是垂直放置在炉底,三是用两点水平支撑,支点位置在全长的三分之一到四分之一之间,四是,水平放置在耐热钢工具上。
在零件的冷却过程中,淬火介质的种类、冷却性能和淬透性与变形有关。
冷却性能的变化可以通过改变粘度、温度、液体压力、使用添加剂、搅拌等来调节。
淬火油的粘度和温度越高,椭圆变形越小。
静态时,变形较小。
二、哪些方法可以有效地减小变形(1)盐浴淬火;(2)高温油淬火;(3)QSQ方法;(4)解压淬火;(5)一浴三级淬火。
(6)盐浴淬火与高温油淬火相似,都是在马氏体相变温度下淬火,使马氏体相变的均匀性增加。
Qsq为双液淬。
减压淬火是降低淬火介质的液体压力,从而延长蒸汽膜的级数,降低高温区的冷却速度,使零件各部位的冷却速度均匀。
一浴三段淬火结构简单。
首先将零件从淬火温度油中冷却到略高于MS点的温度,然后将其出炉,保存在大气中,使零件的整体温度均匀,然后用油冷却,使马氏体转变均匀进行,变形不规则性大大改善。
热处理变形的原因

很多客户在咨询热处理加工的时候,就告诉小编要求不变形,每次对于这样的要求,小编都感到无能为力。
热处理变形的原因究竟是什么呢?今天小编就带大家一起了解下热处理变形的那些事。
(1)凡是牵涉到加热和冷却的热处理过程,都可能造成工件的变形。
工件变形更主要是冷却方面。
由于冷却过程中,零件表面与中心的冷却速度不同,从而造成温度差,其体积收缩在表面与中心也就不一样,产生热应力。
另一方面是钢在转变时比体积发生变化(马氏体是各种组织中比体积最大的一个;奥氏体比体积小),由于工件截面上各处转变先后不同,产生组织应力。
工件淬火变形就是热应力和组织应力综合作用影响的结果。
(2)工件的结构形状、原材料质量、热处理前的加工状态、工件的自重以及工件在炉中加热和冷却时的支承或夹持不当,冷却投入方向、方法和冷却时在冷却中的动作不当等也能引起变形。
加热温度高,冷却速快,故淬火变形最为严重。
(3)工件热处理后的不稳定组织和不稳定的应力状态,在常温和零下温度长时间放置或使用过程中,逐渐发生转变而趋于稳定,也会伴随引起工件的变形,这种变形称为时效变形。
时效变形虽然不大,但是对于精密零件和标准量具也不许的。
实际生产中必须予以防止。
(4)热处理过程中产生的内应力有
热应力和相变应力,它们的形成原因和作用是不同的。
这种应力在热处理过程中对变形影响是主要的原因。
钢件热处理变形的原因总结

钢件热处理变形的原因总结
引起热处理变形的因素颇多,总括起来,基本上有三点:
1、固态相变时,各相质量体积的变化必然引起体积的变化,造成零件的胀与缩的尺寸变化;
2、热应力,包括急热热应力和急冷热应力,当它们超过零件在该温度下所具有的屈服极限时,将使零件产生塑性变形,造成零件的形状变化,即歪扭,或称为畸变;
3、组织应力也会引起形状的改变,即畸变。
一般说,淬火工件的变形总是由于以上的两种或三种因素综合作用的结果,但究竟哪一个因素对变形的影响较大,则需要具体情况作具体的分析。
总的来说,体积变化是由相变时比容的改变而引起的。
马氏体的质量体积比钢的其他组成相的质量体积要大,热处理时钢由其他组成相转化为马氏体时,必然引起体积的增加。
而奥氏体的质量体积要比钢的其他组织质量体积要小,在热处理时由其他组成相转变为奥氏体时,则引起体积的减小。
关于形状的变化,歪扭或称为畸变,主要是由于内应力或者外加应力作用的结果。
在加热、冷却过程中,因工件各个部位的温度有差别,相变在时间上有先后,有时发生的组织转变也不一致,而造成内应力。
这种内应力一旦超过了该温度下材料的屈服极限,就产生塑性变形,引起形状的改变。
此外工件内的冷加工残余应力在加热过程中的松弛,以及由于加热时受到较大的外加应力也会引起形状的变化。
在热处理时可能引起体积变化和形状变化的原因见下表。
表中“体积变化原因” 一栏未列入钢因热胀冷缩现象而产生的体积变化,钢由淬火加热温度到零下温度进行冷处理,均随温度的变化而有相应的体积变化,因热胀冷缩而引起的体积变化不均匀乃是热应力产生的原因,而且对变形有相当的影响。
热处理可能引起体积变化和形状变化的原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一变形的原因
钢的变形主要原因是钢中存在内应力或者外部施加的应力。
内应力是因温
度分布不均匀或者相变所致,残余应力也是原因之一。
外应力引起的变形主要
是由于工件自重而造成的“塌陷”,在特殊情况下也应考虑碰撞被加热的工件,或者夹持工具夹持所引起的凹陷等。
变形包括弹性变形和塑性变形两种。
尺寸
变化主要是基于组织转变,故表现出同样的膨胀和收缩,但当工件上有孔穴或
者复杂形状工件,则将导致附加的变形。
如果淬火形成大量马氏体则发生膨胀,如果产生大量残余奥氏体则相应的要收缩。
此外,回火时一般发生收缩,而出
现二次硬化现象的合金钢则发生膨胀,如果进行深冷处理,则由于残余奥氏体
的马氏体化而进一步膨胀,这些组织的比容都随着含碳量的增加而增大,故含
碳量增加也使尺寸变化量增大。
二淬火变形的主要发生时段1加热过程:工件在加热过程中,由于内应力逐渐
释放而产生变形。
2保温过程:以自重塌陷变形为主,即塌陷弯曲。
3冷却过程:由于不均匀冷却和组织转变而至变形。
三加热与变形
当加热大型工件时,存在残余应力或者加热不均匀,均可产生变形。
残余
应力主要来源于加工过程。
当存在这些应力时,由于随着温度的升高,钢的屈
服强度逐渐下降,即使加热很均匀,很轻微的应力也会导致变形。
一般,工件的外缘部位残余应力较高,当温度的上升从外部开始进行时,
外缘部位变形较大,残余应力引起的变形包括弹性变形和塑性变形两种。
加热时产生的热应力和想变应力都是导致变形的原因。
加热速度越快、工
件尺寸越大、截面变化越大,则加热变形越大。
热应力取决于温度的不均匀分
布程度和温度梯度,它们都是导致热膨胀发生差异的原因。
如果热应力高于材
料的高温屈服点,则引起塑性变形,这种塑性变形就表现为“变形”。
相变应力主要源于相变的不等时性,即材料一部分发生相变,而其它部分
还未发生相变时产生的。
加热时材料的组织转变成奥氏体发生体积收缩时可出
现塑性变形。
如果材料的各部分同时发生相同的组织转变,则不产生应力。
为此,缓慢加热可以适当降低加热变形,最好采用预热。
此外,由于加热中因自重而出现“塌陷”变形的情况非常多,加热温度越高,加热时间越长,“塌陷”现象越严重。
四冷却与变形
冷却不均时将产生热应力导致变形发生。
因工件的外缘和内部存在冷却速
度差异,该热应力是不可避免的,淬火情况下,热应力与组织应力叠加,变形
更为复杂。
加之组织的不均匀、脱碳等,还会导致相变点出现差异,相变的膨
胀量也有所不同。
总之,“变形”是相变应力和热应力共同所致,但并非全部应力都消耗在
变形上,而是一部分作为残余应力存在于工件中,这种应力就是导致时效变形
和时效裂纹的原因。
因冷却而导致的变形表现为以下几种形式:1件急冷初期,急冷的一侧凹陷,然后转为凸起,结果快冷的一面凸起,这种情况属于热应力引起的变形大于相变引起的变形。
2由热应力所引起的变形是钢料趋于球形化(见图1),而由相变应力所引起的变形则使之趋于绕线轴状(见图2)。
因此淬火冷却所致的变形表现为两者的结合(图3),按照淬火方式的不同,表现出不同的变形如图4所示。
3仅对内孔部分淬火时,内孔收缩。
将整个环形工件加热整体淬火时,其外径总是增大,而内径则根据尺寸的不同时涨时缩,一般内径大时,内孔涨大,内径小时,内孔收缩。
五冷处理与变形
冷处理促进马氏体转变,温度较低,产生的变形比淬火冷却要小,但此时产生的应力较大,由于残余应力、相变应力和热应力等的叠加容易导致开裂。
六回火与变形
工件在回火过程中由于内应力的均匀化、减小甚至消失,加上组织发生变化,变形趋于减小,但同时,一旦出现变形,也是很难矫正的。
为了矫正这种变形,多采用加压回火或喷丸硬化等方法。
七重复淬火与变形
通常情况下,一次淬火后的工件未经过中间退火而进行重复淬火,将增大变形。
图5为重复淬火引起的变形,经过重复淬火,其变形累加而趋于球状,容易产生龟裂,但形状相对稳定了,不再容易产生变形了,因此重复淬火前应增加中间退火,重复淬火次数应小于等于2次(不含首次淬火)。
八残余应力与变形
加热过程中,在450℃左右,钢由弹性体转变为塑性体,因此很容易呈上升塑性变形。
同时,残余应力在约高于此温度时也将因再结晶而消失。
因此,快速加热时,由于工件内外部存在温度差,外部达到450℃变成了塑性区,受而内部温度较低处存在残余应力作用而发生变形,冷却后,该区域就是出现变形的地方。
由于实际生产过程中,很难实现均匀、缓慢加热,淬火前进行消除应力退火是非常重要的,除了通过加热消除应力外,对于大型零件采用振动消除应力也是有效的。