真应力应变曲线

合集下载

名义应力应变曲线和真实应力应变曲线

名义应力应变曲线和真实应力应变曲线

名义应力应变曲线和真实应力应变曲线引言在材料力学的研究中,应力和应变是两个重要的概念。

应力是对物体单元面积上的内部力的描述,而应变是物体在受到外力作用下的形变程度。

材料的力学性质可以通过应力-应变曲线来描述。

然而,由于不同的测量方法和条件,得到的应力-应变曲线可能存在一定的差异。

本文将详细探讨名义应力应变曲线和真实应力应变曲线之间的关系。

一. 名义应力应变曲线名义应力应变曲线是指在无外界影响下,通过直接测量外力和承受力的比值得到的应力应变关系曲线。

在测试材料的强度、刚度和塑性等力学性质时,常使用名义应力应变曲线进行研究。

名义应力应变曲线由弹性阶段、屈服点、塑性阶段和破坏点四个主要区域组成。

1. 弹性阶段在名义应力应变曲线的弹性阶段,应变与应力成线性关系,材料在这个阶段内具有完全弹性变形能力。

如果外力移除,材料能够完全恢复其原始形状。

这是因为在弹性阶段内材料分子间发生的位移微小,分子间的作用力可以通过弹性形变来恢复原状。

2. 屈服点当外力继续增大,超过弹性极限时,材料发生塑性变形。

在名义应力应变曲线中,屈服点是指材料从弹性变形进入塑性变形的临界点。

在屈服点之前,应力和应变之间存在一个线性关系,这个线性关系称为胶性区。

屈服点之后的应力应变曲线呈现非线性增长,形成了塑性区。

3. 塑性阶段在塑性阶段,应力应变曲线表现出非线性增长的特点。

由于材料内部发生了位移和位错的形成,原子和分子之间的排列发生改变,使材料的原始形状无法恢复。

塑性阶段内材料受外力的影响,会发生塑性变形和变形硬化。

材料的塑性行为在这个阶段内得到了充分的表现和研究。

4. 破坏点在名义应力应变曲线的最后一个阶段,材料不再具备耐久性能,终会达到破坏点。

此时材料无法承受更多的应力,产生破裂。

破坏点是在研究材料强度时的一个重要参数,它可以反映材料的破坏极限。

二.真实应力应变曲线真实应力应变曲线是指在考虑材料体积的变化后得到的应力应变关系曲线。

由于在受力过程中材料会发生体积的改变,名义应力应变曲线难以完整描述真实的应力应变行为,因此需要引入真实应力的概念。

真实应力-应变曲线

真实应力-应变曲线

§3.6 真实应力-应变曲线
应力-应变曲线反映变形体变形时应力随应变强化的规律。
初始屈服应力S
一般屈服应力( 流动应力S ,Y ) 真实应力:变形体内实际承受应力的大小。
影响流动应力的因素
材料属性, 温度, 应变, 应变速率
建立真实应力-应变曲线方法
拉伸试验,
压缩试验,
扭转试验
流动应力S 的公式表达形式
失稳点b,Fb = Fmax。
dF A0 edS Sed 0
dS Sd 0
dS
d
b
Sb
二、 压缩试验曲线
拉伸试验曲线:失稳,精确范围( < 0.3); 压缩试验曲线:摩擦(S ),精确范围( 2);
1、直接消除摩擦的圆柱体压缩法
S
P A
P A0e
ln H0
H
2、外推法 摩擦力影响和式样尺寸D0/H0 有关,根据不同的D0/H0 , 外推出D0/H0 = 0时的S,得到 真实应力-应变曲线。
1 1
Fd F(0)
1、拉伸图和条件应力-应变曲线
0
F A0
l
l0
b d
c
Fb= Fmax
Fp Fc
三个变形阶段:
ph
特征点:弹性极限点p,屈服点c,失稳点b,断裂点k。
?
k
Δl()
2、真实应力-应变曲线 用真实应力与应变表示的曲线。
S( ) ; S( ) ; S( )
2 2t
24
1 3 平面应变问题
2
3
1 2 2 2 3 2 3 1 2
2 3
6 1 1.1551
S 800 0.25
8001.151 0.25 443

真应力应变曲线和工程应力应变曲线

真应力应变曲线和工程应力应变曲线

真应力应变曲线和工程应力应变曲线
真应力应变曲线和工程应力应变曲线是材料力学中常用的两种
应力应变关系曲线。

真应力应变曲线是指在材料受力的过程中,考虑到材料的几何形状和尺寸的变化所得到的应力应变曲线。

该曲线描述了材料在受力过程中的真实应力和真实应变的关系。

真应力是指材料受到的外力与材料初始横截面积之比,真应变是指材料的形变与材料初始长度之比。

由于考虑了材料的变形,真应力应变曲线能够提供更准确的材料性能评价。

工程应力应变曲线是指在材料受力的过程中,忽略了材料的几何形状和尺寸的变化所得到的应力应变曲线。

该曲线描述了材料在受力过程中的工程应力和工程应变的关系。

工程应力是指材料受到的外力与材料初始横截面积之比,工程应变是指材料的形变与材料初始长度之比。

由于忽略了材料的变形,工程应力应变曲线在工程设计和材料选择中更常用。

真应力应变曲线和工程应力应变曲线之间存在着一定的差异。

在强度屈服点之前,两者的曲线基本一致,但在屈服点之后,由于考虑了材料的几何形状和尺寸的变化,真应力应变曲线会出现更大的应力和应变。

这是因为材料在受力过程中会发生局部收缩和延长,导致应力增大。

相比之下,工程应力应变曲线在屈服点之后呈现出更平缓的曲线。

在工程实践中,真应力应变曲线和工程应力应变曲线都具有重要的作用。

真应力应变曲线可用于材料性能评价和材料强度分析,而工程应力应变曲线则常用于结构设计和材料选择。

不同的材料和应用领域可能会选择不同的应力应变曲线进行分析和设计,以满足具体的工程需求。

真应力应变曲线和工程应力应变曲线

真应力应变曲线和工程应力应变曲线

真应力应变曲线和工程应力应变曲线一、引言在材料力学中,真应力应变曲线和工程应力应变曲线是两个常用的曲线,用于描述材料在受力时的变形情况。

本文将详细探讨这两种曲线的定义、区别以及应用。

二、真应力应变曲线真应力应变曲线又称为物理应力应变曲线,是指在材料受到外力作用时,通过测量材料内部各点的变形情况得到的应力应变曲线。

2.1 定义真应力是指材料在受力过程中所受到的内部分子间相互作用力,真应变是指材料在受力过程中由于分子间相互作用引起的变形程度。

真应力和真应变可以表示为以下公式:真应力 = 真应力/受力面积真应变 = - ln(1 + 真应变)2.2 特点真应力应变曲线通常具有以下特点: - 在小的应力范围内,真应力与工程应力之间的差别较小; - 随着应力的增大,真应力与工程应力的差别逐渐增大; - 真应力应变曲线通常呈现出非线性的特点; - 在材料破裂前,真应变曲线可能发生多次折线。

三、工程应力应变曲线工程应力应变曲线是指在工程实际应用中常用的应力应变曲线,它是通过测量外部载荷和材料变形量得到的应力应变曲线。

3.1 定义工程应力是指外力作用下的应力,工程应变是指外力作用下的变形程度。

工程应力和工程应变可以表示为以下公式:工程应力 = 外力/原始截面积工程应变 = 变形量/原始长度3.2 特点工程应力应变曲线通常具有以下特点: - 在小的应力范围内,工程应力与真应力之间的差别较小; - 随着应力的增大,工程应力与真应力的差别逐渐增大; - 工程应力应变曲线通常呈现出线性的特点; - 在材料破裂前,工程应变曲线可能发生多次折线。

四、真应力应变曲线与工程应力应变曲线的区别与应用真应力应变曲线与工程应力应变曲线之间存在着一些区别,主要体现在以下几个方面。

4.1 测量原理真应力应变曲线是通过测量材料内部各点的变形情况得到的,而工程应力应变曲线是通过测量外部载荷和材料变形量得到的。

因此,两者的测量原理不同。

4.2 曲线形状真应力应变曲线通常呈现出非线性的特点,可能发生多次折线;而工程应力应变曲线通常呈现出线性的特点,不会发生折线现象。

名义应力应变曲线和真实应力应变曲线

名义应力应变曲线和真实应力应变曲线

名义应力应变曲线和真实应力应变曲线一、名义应力应变曲线和真实应力应变曲线的基本概念名义应力应变曲线和真实应力应变曲线是材料力学中常见的两个概念,它们分别描述了材料在外部受到载荷时的变形情况。

其中,名义应力指的是外部载荷与截面积之比,即σ=F/A;而真实应力则指的是在考虑材料内部各种因素(如材料微观结构、晶粒大小等)影响后得到的载荷与截面积之比,即σ'=F/A。

二、名义应力应变曲线和真实应力应变曲线的区别1. 名义应力-应变曲线名义应力-应变曲线通常是指在不考虑材料内部各种因素对其性能影响时得到的载荷与截面积之比随着材料受到外界作用而发生的相对伸长量(即形变)之间的关系图。

该图通常呈现出一个典型的S型弯曲形状,其中包含了四个主要阶段:弹性阶段、屈服阶段、塑性流动阶段和断裂阶段。

其中,弹性阶段是指材料在受到外界作用时,其形变量与载荷之间呈线性关系的阶段;屈服阶段则是指当材料的应力达到一定值时,其形变量不再随载荷增加而线性增长,而是开始出现非线性变化的阶段;塑性流动阶段则是指当材料的应力继续增大时,其形变量将会进一步增加,并逐渐呈现出一个稳定的流动状态;断裂阶段则是指当材料无法承受更大的应力时,其形变量将会突然增加并最终导致材料破裂。

2. 真实应力-应变曲线真实应力-应变曲线通常是指在考虑了材料内部各种因素对其性能影响后得到的载荷与截面积之比随着材料受到外界作用而发生的相对伸长量之间的关系图。

该图通常呈现出一个相对平缓、光滑且无明显弯曲点的形态。

这主要是因为在考虑了各种因素影响后,真实应力与名义应力之间存在一定程度上的差异。

具体来说,在弹性阶段,真实应力与名义应力之间的差异较小,但随着载荷的增加,该差异将会逐渐增大,并在材料进入屈服阶段时达到最大值。

此后,在塑性流动阶段中,真实应力与名义应力之间的差异将会逐渐减小,并最终趋于一致。

三、两种曲线的意义和应用1. 名义应力-应变曲线的意义和应用名义应力-应变曲线是描述材料在外部受到载荷时变形情况的重要工具。

压缩真应力应变曲线计算

压缩真应力应变曲线计算

压缩真应力应变曲线计算一、曲线拟合1. 定义:曲线拟合是指通过数学方法,将实验或测量得到的离散数据点拟合成一条连续的曲线。

2. 目的:通过拟合曲线,可以更好地描述材料的力学性能,如弹性模量、屈服极限、强度极限等。

二、应变计算1. 应变定义:应变是指物体在受到外力作用时,其形状和尺寸发生的变化。

2. 应变计算:通过测量试样在压缩过程中的变形量,结合试样的原始尺寸,可以计算得到试样的应变。

三、弹性模量1. 定义:弹性模量是指材料在弹性变形范围内,单位应变所对应的应力。

2. 计算:通过拟合得到的应力应变曲线,可以计算得到材料的弹性模量。

四、泊松比1. 定义:泊松比是指材料在横向拉伸或压缩时,横向应变与纵向应变之比。

2. 计算:通过拟合得到的应力应变曲线,可以计算得到材料的泊松比。

五、强度极限1. 定义:强度极限是指材料在受到外力作用时所能承受的最大应力。

2. 计算:通过拟合得到的应力应变曲线,可以找到曲线的最大应力点,该点所对应的应力即为材料的强度极限。

六、屈服极限1. 定义:屈服极限是指材料在受到外力作用时开始产生塑性变形的应力。

2. 计算:通过拟合得到的应力应变曲线,可以找到曲线的转折点,该点所对应的应力即为材料的屈服极限。

七、应变硬化1. 定义:应变硬化是指材料在受到外力作用时,其应力应变曲线逐渐上升的现象。

2. 计算:通过拟合得到的应力应变曲线,可以观察到曲线的上升趋势,从而判断材料是否具有应变硬化特性。

八、塑性变形1. 定义:塑性变形是指材料在受到外力作用时,其形状和尺寸发生不可逆的变化。

2. 判断:通过拟合得到的应力应变曲线,可以观察到曲线在达到屈服极限后,应变仍然继续增加的现象,这表明材料发生了塑性变形。

九、残余变形1. 定义:残余变形是指材料在卸载后仍然保留的部分变形量。

2. 计算:通过测量试样在卸载后的变形量,可以计算得到试样的残余变形。

十、循环加载1. 定义:循环加载是指材料在受到反复的加载和卸载作用。

真应力-应变曲线介绍

在应力-应变曲线中,应力是F除以试样的原始横截面积,应变是△L除以试样的标距L。

然而在拉伸过程中,试样原始截面逐渐变小,所以实际的应力应该是瞬时试验力F除以瞬时截面面积S。

而实际的真应变,则是瞬时伸长与瞬时长度之比的积分。

由此我们可以得到真应力-应变曲线。

真应力-应变曲线,横坐标为e,表示真实应变值,de=dl/l。

纵坐标为s,表示真应力,s=F/A。

其中F、A、l均表示瞬时值。

OP段仍为弹性变形部分。

PB段为产生颈缩前的均匀变形阶段,斜率D=ds/de为材料的形变强化模数,这个阶段的D随变形增加而减少。

BK段为局部变形阶段,试样开始发生颈缩。

BK前段部分,D为一常数,代表形变强化趋于稳定。

曲线最后发生翘曲,由于颈缩发展到一定程度之后,三向应力不利于变形造成的。

从真实应力-应变曲线可以看出,材料抵抗塑性变形的能力随应变增加而上升的,也就是发生加工硬化。

所以真实应力-应变曲线又称为硬化曲线。

第3[1].6章 真实应力应变曲线


Y
F A
真实应力-应变曲线可分为三类:
(1)Y ; (2)Y ; (3)Y
华侨大学模具技术研ຫໍສະໝຸດ 中心一、拉伸试验曲线2. 三种应变之间的关系(在均匀变形范围内) ε-ψ: l l0 l l0 1 1 l0 l0 l 1

A0 A A l 1 1 0 A0 A0 l 1
华侨大学模具技术研究中心
一、拉伸试验曲线
或 F YA 在失稳点
Yb
dF YdA AdY
dF Yb dAb Ab dYb 0
Ab dYb dAb
A0l0 Al 常数
d ( Al ) ldA Adl 0
dA dl d A l A dYb Yb b dYb dAb d b


1
ε-∈:
ln l l l l0 ln 0 ln(1 ) 或 l0 l0

e 1
∈ -ψ:
e 1 1 1 e 1 1 1
华侨大学模具技术研究中心
一、拉伸试验曲线
3. 真实应力-应变曲线的绘制
Y B (0 ) (0 )
分两段:
Y s
6、弹塑性硬化 Y B (0 ) 分两段: Y s D( - 0 ) (0 )
D tan ——硬化模量
华侨大学模具技术研究中心
三、 真实应力-应变曲线的简化形式
二、抛物线型(指数硬化)应力应变曲线的经验方程
华侨大学模具技术研究中心
一、拉伸试验曲线
方法步骤:
A.由拉伸图作Y- ∈曲线
a.求出屈服点σs(一般略去弹性变形)

真实应力应变曲线


基于拉伸实验确定真实应力-应变曲线
2、真实应力-应变曲线
真实应力-应变曲线分类
真实应力,简称真应力,也就是瞬时的流动应力Y,用单向均匀拉
伸(或压缩)时各加载瞬间的载荷P与该瞬间试样的横截面积A之比
来表示,则
YP A
真实应力-应变曲线可分为三类:
(1)Y ;(2)Y ;(3)Y
基于拉伸实验确定真实应力-应变曲线
2、变形速度对真实应力-应变曲线的影响 速度增加→位错运动加快→ 需要更大的切应力→流动应力提高 速度增加→硬化得不到恢复→ 流动应力提高
但如果速度很大→温度效应大→ 流动应力降低
在冷变形时,温度效应显著,强化被软化所抵消,最终表现出的是: 变形速度的影响不明显,动态时的真实应力—应变曲线比静态时略高 一点,差别不大。
基于拉伸实验确定真实应力-应变曲线
1、标称应力(名义应力、条件应力)-应变曲线
标称应力-应变曲线上的三个特征点
oc(弹性变形阶段)——cb(均匀塑性变 形阶段)——bk(局部塑性变形阶段)
屈服点c:
弹性变形与均匀塑性变形的分界点,对应
应力为屈服点 s ,或屈服强度 0.2
基于拉伸实验确定真实应力-应变曲线
Y- ∈曲线的修正
由于缩颈,即形状变化而产生应力升高的现象称 形状硬化。
基于压缩实验和轧制实验确定真实应力-应变曲线
1.基于圆柱压缩实验确定真实应力—应变曲线
拉伸Y- ∈曲线受塑性失稳的限制,精度较低, ∈<0.3,实际塑性成
形变形量较大,如锻造≤1.6,反挤≤2.5,拉伸试验曲线不够用。需要
压缩Y- ∈曲线。
换算:σ1=0, σ3=p, ∈2=0, σ2=p/2
1
2

第4章 真实应力——应变曲线


➢ 简单拉伸的名义应力——名义应变曲线

D B
名 义 应
C A

O
名义应变

➢ 简单拉伸的真应力—真应变曲线

D B
真应力名义应力
C A
O
名真义应应变变

三、拉伸真实应力——应变曲线塑性失稳点的特征
设某一瞬间,轴向力P、断面F、真实应力S
当在塑性失稳点时,P有极大值
dp=0
在塑性失稳点,S=Sb 、∈=∈b 、代入上式: ∈=1 失稳点特性
材料的硬化认为是线性的。 其数学表达式为
s
S s B2
➢适合于经过较大的冷
变形量之后,并且其加
工硬化率几乎不变的金 属材料
O

S
幂指数硬化材料模型的数学表达式为
n=1
n = 0.3
适合于大多数金属材料
硬化指数n 是表明材料加工硬化特性的一个重要参数, n 值越大,说明材料的应变强化能力越强。对金属材 料, n 的范围是0 < n < 1 。B 与n 不仅与材料的化学 成分有关,而且与其热处理状态有关,常用材料的B 和n 可查相关手册。
第4章 真实应力——应变曲线
一、拉伸图和条件应力-应变曲线
条件应力----应变曲线 最大拉力点b----强度极限。b点以后继续拉伸 ,试样断面出现局部收缩,形成所谓缩颈,此后,应力逐渐减小,曲 线下降,直至k点发生断裂。
对于大多数金属,没有明显的屈服点(屈服平台),典型的应力-应变曲线如下图 所示。这时的屈服应力规定用ε=0.2%时的应力表示,即σ0.2
n=0 理想刚塑性 线弹性

抛物线型真实应力——应变曲线的经验方程
在失稳点b处, 由于
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真应力应变曲线
真应力应变曲线是材料力学领域中一个重要的概念,它描述了材料在外力作用下产生的变形过程,对于材料的强度和稳定性研究具有重要意义。

一、真应力和真应变的概念
在材料力学中,应力和应变是最基本的概念。

应力是单位面积上的力,即σ=F/A,其中F表示作用在物体上的力,A表示力作用的面积。

应变是物体长度或角度的相对变化,即ε=ΔL/L0或ε=Δθ/θ0,其中ΔL和Δθ分别为变化的长度和角度,L0和θ0分别为原始
长度和角度。

真应力和真应变是对应力和应变的修正,考虑到材料的体积变化。

在材料受力时,材料的体积也会发生变化,因此应力和应变也会发生改变。

真应力是考虑了材料体积变化后的应力,即σt=F/A0,其中
A0为材料的原始横截面积。

真应变是考虑了材料体积变化后的应变,即εt=ΔV/V0,其中ΔV和V0分别为材料的体积变化和原始体积。

二、真应力应变曲线的特点
真应力应变曲线是描述材料受力时真应力和真应变之间关系的
曲线。

这条曲线可以反映材料的力学性质,包括弹性模量、屈服强度、断裂强度等。

真应力应变曲线通常包括弹性阶段、屈服阶段、塑性阶段和断裂阶段等几个阶段。

1. 弹性阶段
在材料受力初期,应力和应变呈线性关系,称为弹性阶段。

在这
个阶段,材料具有良好的弹性恢复性,即当外力消失时,材料会恢复到原始状态。

弹性阶段的斜率即为弹性模量E,该值越大,材料的刚度越高。

2. 屈服阶段
当材料受到足够大的应力时,弹性阶段会结束,材料开始发生塑性变形。

在这个阶段,应力不再与应变成线性关系,而是出现了一段平台区间,称为屈服阶段。

在这个阶段,材料发生了一定的塑性变形,但仍能恢复部分弹性变形。

屈服点是指曲线上的拐点,表示材料开始发生不可逆的塑性变形。

屈服强度是指材料在屈服点处的应力。

3. 塑性阶段
在屈服点之后,曲线开始呈现上升趋势,称为塑性阶段。

在这个阶段,材料发生了大量的塑性变形,应力逐渐增加,而应变也随之增加。

在塑性阶段中,材料的强度不断提高,但材料的韧性也逐渐降低。

4. 断裂阶段
当材料受到足够大的应力时,它会发生断裂。

在真应力应变曲线上,断裂点是指曲线上的最高点,表示材料的最大强度。

断裂强度是指材料在断裂点处的应力。

三、真应力应变曲线的应用
真应力应变曲线是材料力学研究中的一个重要工具,它能够反映材料的力学性质和变形过程。

以下是几个应用领域:
1. 材料强度评估
真应力应变曲线可以用来评估材料的强度和稳定性,比如屈服强
度、断裂强度等。

这些参数对于材料的设计和选择非常重要。

2. 材料加工
真应力应变曲线可以指导材料加工的选择和优化。

比如,在冷加工过程中,应该选择适当的加工参数,以避免材料过度塑性变形,从而导致材料的强度和韧性下降。

3. 材料疲劳
真应力应变曲线可以用来研究材料的疲劳寿命。

在材料受到交变应力时,会发生疲劳损伤,真应力应变曲线可以反映材料在疲劳过程中的变化规律。

四、结论
真应力应变曲线是材料力学中一个重要的概念,它反映了材料在外力作用下产生的变形过程。

通过对真应力应变曲线的研究,可以评估材料的强度和稳定性,指导材料加工和疲劳寿命的研究。

在今后的研究中,应该进一步深入探讨真应力应变曲线的性质和应用,以推动材料力学领域的发展。

相关文档
最新文档