第15章 轴

合集下载

第15章滑动轴承.知识讲解

第15章滑动轴承.知识讲解
缺点: 导热性差,膨胀系数大,容易变形。
应用范围: 一般用于温度不高、载荷不大的 场合。
三、轴瓦结构 整体式
整体轴套
卷制轴套结构
剖分式 剖分式 轴瓦
剖分式
油孔 油沟
油孔 油沟
油沟形状 油沟
轴向油沟
油沟布置不当降低油膜承载能力
普通油室
轴瓦的固定
第四节 润滑剂三、限制滑动速度v
v≤[v] (m/s) (15–4) 式中 [v]––––滑动速度的许用值,
由表15–1查取。
润滑油 润滑脂
固体润滑剂
1、润滑油的选择
选择时应考虑轴承压力、滑动速 度、摩擦表面状况、润滑方法等条件。
润滑油选择的一般原则为:
1)在压力大或冲击、变载等工作条件下, 应选用粘度高一些的油;
2)滑动速度高时,容易形成油膜,为了 减少摩擦功耗,减小温升,应选用粘度低 一些的油; 3)加工粗糙或未经磨合的表面,应选用 粘度高一些的油;
下轴瓦
对开式径向滑动轴承
特点
优点: 装拆方便,可以用减少剖分面处的垫
片厚度来调整轴承间隙。
缺点: 结构复杂,制造费用较高。
应用: 应用广泛。
三、调心式径向滑动轴承
轴承盖 轴瓦
轴承座 B
调心式径向滑动轴承
四、调隙式径向滑动轴承
应用: 常用于一般用途的机床主轴上。
第三节 轴瓦的材料和结构
一、失效形式及轴瓦材料 1、轴瓦的主要失效形式: 磨损 胶合
润滑脂只能间歇供应。 滑动轴承的润滑方法可根据系数k选定
k pv3
式中 p–––平均压强(MPa),p=F/Bd; F–––轴承所受的径向载荷 ( v–N)–; –轴颈的圆周速度(m/s)。

机械设计(第八版)第15章 轴 PPT

机械设计(第八版)第15章 轴 PPT

其它直径
长度: 长度: 毂的长度和相邻零件间必要的间隙决定

装配方案的比较: 装配方案的比较:

四.提高轴的强度的措施: 提高轴的强度的措施:
30˚ B R d/4 d 卸载槽 也可以在轮毂上增加卸载槽 轴 过渡肩环 凹切圆角 B位置d/4 r
三、确定轴的基本直径和各段长度
1.按扭转强度计算(初算轴径) 1.按扭转强度计算(初算轴径) 按扭转强度计算
仅考虑 T 的强度条件 τ T = T ≤ [τ T ] WT
955 × 10 4 P n τT = ≤ [τ T ] 3 0.2d
性,而不是轴的弯曲和扭转刚度。 而不是轴的弯曲和扭转刚度。
注意: )各种钢材、热处理前后其弹性模量差别不大, 注意:1)各种钢材、热处理前后其弹性模量差别不大, 因此要提 的方法获得。 高刚度不能用合金钢或通过热处理 的方法获得。 2)合金钢对应力集中敏感性高,设计时必须从结构上采取措施,减轻应 )合金钢对应力集中敏感性高,设计时必须从结构上采取措施, 力集中,并降低表面粗糙度。 力集中,并降低表面粗糙度。 轴
当轴上有两处动力输出时,为了减小轴上的载荷, 应将输入轮布置在中间。
Ft
T 方案 a 输出 T
Q
方案b 方案 输出 输入 T T2 T T T1+T2
Q
输出
输入 T T
输出
T1
合理
T2
T1+T2轴源自T1Tmax = T1
不合理
Tmax= T1+T2
2.减小应力集中 减小应力集中 合金钢对应力集中比较敏感,应加以注意。 合金钢对应力集中比较敏感,应加以注意。 应力集中出现在截面突然发生变化的。 应力集中出现在截面突然发生变化的。 措施: 措施: 1. 用圆角过渡; 用圆角过渡; 2. 尽量避免在轴上开横孔、切口或凹槽 尽量避免在轴上开横孔、切口或凹槽; 3. 重要结构可增加卸载槽 、过渡肩环、凹切圆角、 重要结构可增加卸载槽B、过渡肩环、凹切圆角、 增大圆角半径。也可以减小过盈配合处的局部应力。 增大圆角半径。也可以减小过盈配合处的局部应力

《机械设计基础》第15章 滑动轴承

《机械设计基础》第15章  滑动轴承

τ
P+dp τ+dτ
雷诺耳实验(1883年)——层流与湍流的现象
雷诺方程:
h0 - h dp = 6ηv dx h3
其中:p——油膜压力 η——润滑油粘度 V——速度 h——间隙厚度(油膜厚度) h0——油膜压力为极限值时的间隙厚度
分析雷诺方程:
(1)当相对运动的两表面 形成收敛油楔时。即能保 证移动件带着油从大口走 u 向小口。 o
形成动压润滑的条件: (1)相对运动的两表面形成收敛油楔时。 (2)两表面必须有一定的相对速度。
(3)润滑油必须有一定的粘度,并供油充分。
(4)油膜的最小厚度应大于两表面不平度之和。
例:试判断下列图形能否建立动压润滑油膜?
v v v v
向心滑动轴承形成动压油膜的过程:
F F FF F
o
o1 o1 o o1 1 o1
润滑脂 (黄油) 固体润滑剂
钙基、钠基、铅基、锂基等。
石墨、二流化钼、聚氟乙烯树脂等 (用于高温下的轴承)。
空气、氢气等(只用于高速、高 温以及原子能工业等特殊场合)
气体润滑剂
●润滑剂的主要指标:
(1) 粘度——是润滑油最重要的物理性能指标,是选择润滑 油的主要依据,它标志着流体流动时内摩擦阻 力的大小。粘度越大,内摩擦阻力越大,即流 动性越差。 (2)凝点——是润滑油冷却到不能流动时的温度。凝点越低越好。 (3) 闪点——是润滑油在靠近试验火焰发生闪燃时的温度。 闪点是鉴定润滑油耐火性能的指标。在工作温度 较高和易燃环境中,应选用闪点高于工作温度 20°~30°C的润滑油。 (4) 油性——是指润滑油湿润或吸附在表面的能力。吸附能力 越强,油性越好。 (5) 滴点——是指润滑脂受热后开始滴落时的温度。润滑脂使 用工作温度应低于滴点20°~30°C,低于40°~ 60°更好。 (6)针入度(稠度)——是表征指润脂稀稠度的指标。针入度越 小,表示润滑脂越稠;反之,流动性越大。

机械设计第15章轴

机械设计第15章轴

轴的尺寸和公差对于安装和使用的准确性 至关重要。
轴与轴套之间的配合对于减小磨损和提高 工作效率非常重要。
轴的强度计算
1
受弯强度
根据轴的几何形状和材料弯曲的强度
扭转强度
2
工程计算。
根据扭矩和轴直径计算轴的扭转强度。
3
受压强度
计算轴在受到压缩力时的强度。
轴的选材原则
1 强度
根据所需强度和负荷条件选择材料。
机械设计第15章轴
轴是机械设计中重要的组件之一,它承受着传递功率和运动的重要任务。本 章将介绍轴的定义、作用以及相关的设计要素和计算方法。
轴的定义和作用Leabharlann 1 定义2 作用轴是一种旋转零件,通常为圆柱形,在机 械中用于传递力和运动。
轴将两个或多个旋转零件连接在一起,传 递动力和承载负载。
轴的分类
按用途分类
3 耐蚀性
在有腐蚀性环境中选择耐蚀性材料。
2 硬度
根据工作环境选择合适的材料硬度以提高 耐磨性。
4 成本
综合考虑材料成本及可用性选择合适的材 料。
轴的制造工艺
1 车削
2 热处理
利用车床和刀具将轴的外形和尺寸加工至 工程要求。
通过热处理工艺改变材料的组织和性能。
3 表面处理
4 装配和检验
对轴进行镀铬、镀锌等表面处理以提高其 耐腐蚀性和装饰性。
传动轴、支撑轴、定位轴等。
按制造材料分类
钢制轴、铜制轴、铝制轴、复合材料轴等。
按工作环境分类
常温轴、高温轴、低温轴、湿环境轴等。
按形状分类
圆轴、方轴、花键轴等。
轴的设计要素
1 刚度
2 强度
轴的刚度对于传递正常工作负荷至关重要。

第15章滑动轴承

第15章滑动轴承

pv与功耗成正比,它表征了轴承的发热因素, pv越大,温升越高,越容易引起油膜的破裂
二, 推力轴承
p
F ≤[p]
d1 d2
F
d2
d1
F
2 (d 2 d12 ) z
4 pvm=[pv]
z----轴环数, 考虑承载的不均匀性, [p],[pv]应降低20~40%
§15-6
动压润滑的基本原理
一,动压润滑的形成和原理和条件 两平形板之间不能形成压力油膜!
轴承座
联接螺栓 轴承 螺纹孔
轴承盖 整体式向心滑动轴承
剖分轴瓦
榫口
轴承座 剖分式向心滑动轴承
整体轴套
卷制轴套 薄壁轴瓦 厚壁轴瓦
轴瓦非承载区内表面开有进油口和油沟,以利于润滑油均匀分 布在整个轴径上.
F 进油孔 油沟
油沟形式
B
d
设计:潘存云
轴承中分面常布置成与载荷垂直或接近垂直.载荷倾斜时结构如图 大型液体滑动轴承常设计成两边供油的形式,既有利 于形成动压油膜,又起冷却作用.
45
设计:潘存云
宽径比B/d----轴瓦宽度与轴径直径之比.重要参数 液体润滑摩擦的滑动轴承: B/d=0.5~1 非液体润滑摩擦的滑动轴承: B/d=0.8~1.5
二, 推力滑动轴承 作用:用来承受轴向载荷 结构特点: 在轴的端面,轴肩或安装圆盘做成止推面. 在止推环形面上,分布有若干有楔角的扇形块.其数量 一般为6~12. 用来承受停 固定式 ---倾角固定,顶部预留平台, 车后的载荷. 类型 可倾式 ---倾角随载荷,转速自行调整,性能好.
表15-1 常用轴瓦及轴承衬材料的性能 [p] [pv] HBS 最高工作 轴径硬度 材料及其代号 金属型 砂型 温度℃ Mpa Mpa.m/s

机械设计第十五章课后习题答案

机械设计第十五章课后习题答案

15-1答滑动轴承按摩擦状态分为两种:液体摩擦滑动轴承和非液体摩擦滑动轴承。

液体摩擦滑动轴承:两摩擦表面完全被液体层隔开,摩擦性质取决于液体分子间的粘性阻力。

根据油
膜形成机理的不同可分为液体动压轴承和液体静压轴承。

非液体摩擦滑动轴承:两摩擦表面处于边界摩擦或混合摩擦状态,两表面间有润滑油,但不足以将两
表面完全隔离,其微观凸峰之间仍相互搓削而产生磨损。

15-2解( 1)求滑动轴承上的径向载荷
( 2)求轴瓦宽度
( 3)查许用值
查教材表 15-1,锡青铜的,
( 4)验算压强
( 5)验算值
15-3解(1)查许用值
查教材表 15-1,铸锡青铜ZCuSn10P1的,
( 2)由压强确定的径向载荷
由得
( 3)由值确定的径向载荷

轴承的主要承载能力由值确定,其最大径向载荷为。

15-4解( 1)求压强
( 5)求值
查表 15-1,可选用铸铝青铜ZCuAl10Fe3 ,
15-5证明液体内部摩擦切应力、液体动力粘度、和速度梯度之间有如下关系:
轴颈的线速度为,半径间隙为,则
速度梯度为
磨擦阻力
摩擦阻力矩
将、代入上式。

机械设计基础 第15章 轴 承

机械设计基础 第15章  轴    承

15.6 滚动轴承的密封装置 15.7 滑动轴承和滚动轴承的性能对比
1.轴承材料 (1)金属材料。 (2)粉末冶金材料。 (3)非金属材料。
15.2.3 滑动轴承的润滑
1.润滑剂的选择 2.润滑方式及装置的选择
(1)间歇供油。 (2)连续供油。
第15章 轴 承
第15章 轴 承
15.3 滚动轴承 15.3.1 概述 1.滚动轴承的基本构造
第15章 轴 承
2.滚动轴承的类型和特性 (1)按轴承承受载荷的方向或公称接触角的不同分类。 (2)按滚动体的形状分类。 (3)按工作时能否调心分类。 (4)按游隙能否调整分类。
机械设计基础
第15章 轴 承
15.1 概述 15.2 滑动轴承 15.2.1 滑动轴承的结构 1.径向滑动轴承 (1)整体式径向滑动轴承。
第15章 轴 承
(2)对开式径向滑动轴承。
第15章 轴 承
(3)自位滑动轴承。
第15章 轴 承
2.推力滑动轴承
第15章 轴 承
15.2.2 滑动轴承的材料
第15章 轴 承
15.3.5 滚动轴承的寿命计算 1.基本概念 (1)轴承寿命。 (2)可靠度。 (3)基本额定寿命。 (4)基本额定动载荷。 (5)当量动载荷。 2.寿命计算的基本公式
L


C P

Lh

106 C 60n P

Lh

106 60n
ftC fpP

C
fpP ft

60n 106
Lh
1/
第15章 轴 承
3.当量动载荷的计算 4.角接触轴承的载荷计算 (1)内部轴向力。 (2)轴向载荷的计算。 5.轴承寿命计算示例

轴

第十五章 轴
2)其它:由轴上零件相对位置定。
LII
5-10 C2 C1 L
l1 e0 e m B 3
LII=l1+e0+e+m
箱体内壁到轴承 端面的距离: 3=10-15mm(脂) 3= 3- 5mm(油)
箱体内壁到齿轮 端面的距离: 2=10-15mm
第十五章 轴
轴结构设计具体考虑的几个问题(具体) (一)拟定轴上零件的装配方案; (二)轴和轴上零件的定位; (三)轴和轴上零件的固定; (四)轴段直径与长度确定; (五)轴的结构工艺性; (六)提高轴强度的常用措施。
装配过程:
第十五章 轴
第十五章 轴
轴上零件的装配方案不同,则轴的结构形状也不相同。设 计时可拟定几种装配方案,进行分析与选择。
方案二:

需要一个长套

筒。长套筒带

来几个问题。
方 案 二
第十五章 轴
轴结构设计具体考虑的几个问题(具体) (一)拟定轴上零件的装配方案; (二)轴和轴上零件的定位; (三)轴和轴上零件的固定; (四)轴段直径与长度确定; (五)轴的结构工艺性; (六)提高轴强度的常用措施。
第十五章 轴
(二) 轴及轴上零件的定位
(1)定位轴肩(轴环)
定位:指轴及轴上零件须有准确位置。 优缺点:
方法:
定位方便可靠;
1、轴肩(轴环):阶梯轴上截面变化处 但轴肩处有应力集中;
轴肩过多不利加工。
高度:
h (0.07~0.1)d; 安滚动轴承处应低于
轴轴承内圈高度。
注意:轴肩处圆角
第十五章 轴
15-1、概述 15-2、轴的结构设计 15-3、轴的计算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十五章轴
§15-1概述
§15-2轴的结构设计§15-3轴的设计计算
§15-1概述
轴在机器中是一个起着“核心”作用的关键零件。

轴一般都是非标准件。

本章主要讨论轴的设计方法和步骤。

轴的设计主要包括强度设计和结构设计两大部分。

功用:用来支撑旋转的机械零件,如齿轮、带轮、链轮、凸轮等。

类型
转轴——传递扭矩又承受弯矩按承受载荷分有
分类:
按轴的形状分有传动轴——只传递扭矩心轴——只承受弯矩
直轴光轴
阶梯轴
曲轴
挠性钢丝轴
一、轴的用途及分类
二、轴设计的主要内容N
粗估轴径结构设计
轴的承载能力验算
验算合格?
结束
Y 选择材料

碳素钢:35、45、50、Q235三、轴的材料正火或调质处理。

§15-2 轴的结构设计
设计任务:使轴的各部分具有合理的形状和尺寸。

设计要求:1.轴应便于制造,轴上零件要易于装拆;
2.轴和轴上零件要有准确的工作位置;
3.各零件要牢固而可靠地相对固定;(固定)
4.改善应力状况,减小应力集中。

轴端挡圈带轮轴承盖套筒齿轮滚动轴承
典型
轴系
结构
轴的结构是没有标准的,它是根据具体情况进行设计,因此,轴的结构设计具有较大的灵活性和多样性
轴的主要结构:
⒈轴颈——轴与轴承配合部分,起支承作用。

⒉轴头——轴上安装传动件轮毂的部分。

⒊轴身——连接轴颈和轴头的部分。

一、拟定轴上零件的装配方案
装配方案:确定轴上零件的装配方向、顺序、和相互关系二、轴上零件的定位
定位方法:轴肩、套筒、圆螺母、双螺母、轴端挡圈、轴承端盖、弹性挡圈、紧定螺钉等。

周向固定大多采用键、花键、过盈配合等。

三、各轴段直径和长度的确定
确定轴段直径大小的基本原则:。

1.按轴所受的扭矩估算轴径,作为轴的最小轴径d
min 2.有配合要求的轴段,应尽量采用标准直径,并要求零
件便于装拆。

便于零件的装配,减少配合表面的擦伤的措施:
7/r 6H 7/D 11
H 7/r 6
为了便于轴上零件的拆卸,轴
肩高度不能过大。

(2)配合段前端制成锥度;
(3)配合段前后采用不同的尺寸公差。

(1)在配合段轴段前应采用较小的直径;
四、提高轴的强度的常用措施
1.改进轴上零件的结构
2.合理布置轴上零件
3.改进轴的局部结构可减小应力集中的影响
合金钢对应力集中比较敏感,应加以注意。

应力集中出现在截面突然发生变化或过盈配合边缘处。

措施:
(1) 用圆角过渡;
(2)尽量避免在轴上开横孔、切口或凹槽;
(3)重要结构可增加卸载槽、过渡肩环、
凹切圆角、增大半径等以减小过盈配
合处的局部应力。

④为便于轴上零件的装拆,一般轴都做成从轴端逐渐向中间增大的阶梯状。

在满足使用要求的前提下,轴的结构越简单,工艺性越好。

零件的安装次序
五、轴的结构工艺性
装零件的轴端应有倒角,需要磨削的轴端有砂轮越程槽,车螺纹的轴端应有退刀槽。

②③⑥⑦
⑤①倒角
退刀槽
§15-3轴的设计计算
一、按扭转强度计算
对于只传递扭矩的圆截面轴,强度条件为
设计公式为mm
3
0n
P A ⋅=MPa
][≤T τn
d P 362.01055.9⨯=T T W T =τ336
][2.01055.9≥n P d ⋅⨯τ计算结果为最小直径!
解释各符号的意义及单位
考虑键槽对轴有削弱,可按以下方式修正轴径
轴径d ≤100mm
d 增大5%~7% d 增大10%~15%
轴径d >100mm d 增大3% d 增大7% 有一个键槽
有两个键槽
L 1L 2L 3
A B
C
D
减速器中齿轮轴的受力为典型的弯扭合成。

在完成轴的草图设计后,外载荷与支撑反力的位置即可确定,从而可进行受力分析。

二、按弯扭合成强度计算
1.轴的弯矩和扭矩分析一般转轴强度用这种方法计算,其步骤如下:
2.轴的强度校核
3.按疲劳强度条件进行校核
4.按静强度条件进行校核
A B
C
D
F r
T L 1
L 2
L 3
F NH2
F NH2
F a
F t
F ′NV1F NV2F NV1F NH2F NH2F NV2
F NV1
F r
水平面受力及弯矩图→
铅垂面受力及弯矩图→水平铅垂弯矩合成图→
F ′NV1
F a M a =F a r
1.轴的弯矩和扭矩分析一般转轴强度用这种方法计算,其步
骤如下
M H
M H
M V1M V2M 1
M 2
T
F t 二、按弯扭合成强度计算
因σb 和τ的循环特性不同,折合后得
][≤ 1.01b 32-σd M +W M ca ca =σ3
221.0)(d
T M α+=2.轴的强度校核
对一般钢制轴可按第三强度理论得出的轴的强度条件为折合系数取值α= 0.3——转矩不变0.6——脉动变化1——频繁正反转
mm
]
[1.0≥3
1b ca
-σM d 设计公式
3.按疲劳强度条件进行校核(参见第三章) 二、按弯扭合成强度计算
1. 轴的弯矩和扭矩分析
2.轴的强度校核
4.按静强度条件进行校核
三、轴的刚度校核计算
§15-3
轴的设计计算
一、按扭转强度计算四、轴的临界转速校核计算
y ≤[y ]
θ≤[θ]υ≤[υ]
按弯扭合成强度计算轴径的一般步骤:
1. 将外载荷分解到水平面和垂直面。

求垂直面支承反力F V 和水平面支承反力F H ;
2. 作垂直弯矩M V 图和弯矩M H 图;
3. 作合成弯矩M 图;
4. 作转矩T 图;
5. 弯扭合成,作当量弯矩M ca 图
6. 计算危险截面轴径:2
2ca )
(T M M α+=2
V 2H M M M +=mm
]
[1.0≥3
1b ca -σM d 1.若危险截面上有键槽,则应加大5%;
2.若计算结果大于结构设计初步估计的轴径,则强度不够,应修改结构设计;
3.若计算结果小于结构设计初步估计的轴径,且相说明:。

相关文档
最新文档