高中数学破题致胜微方法(求函数解析式):4.赋值法求函数解析式 Word版含解析

高中数学破题致胜微方法(求函数解析式):4.赋值法求函数解析式 Word版含解析
高中数学破题致胜微方法(求函数解析式):4.赋值法求函数解析式 Word版含解析

赋值法求函数解析式

赋值法是一种很常用的方法,对于涉及任意量词的题目,要特别注意是否可以通过赋特殊的值,求出函数的解析式。要注意如何选择所赋的值,从而成功得到解析式。

先看例题:

例:已知函数f (x )满足f (0)=1,对任意实数x ,y 有()()()21f x y f x y x y -=--+求函数f (x )的解析式.

解:式子中有两个变量,尽量通过赋值让y 消失,从而找到解析式

方法一:

()()()021,x y f f x x x x ==--+令得

()21f x x x =++

方法二:

()()()001,x f y f y y =-=--+令得

()()211()1f y y y y y -=--+=-+-+

再把-y 看作x ,

得()2

1f x x x =++ 提示:函数的对应法则与使用什么变量无关

整理:

赋值法求函数解析式

若函数的性质是用条件恒等式给出时,可用赋特殊值法求其解析式。

抓住任意性,对自变量合理的取特殊值,分析已知与结论之间的差异进行赋值,从而易于求出函数的表达式,这是求抽象函数解析式的常用方法。

再看一个题目,增加印象

练:已知函数f (x )对任意实数x ,y 有()()222323y x xy f x f x y y y ++-++=,求函数f (x )的解析式

解:如果令y =1,那么f (xy )就会变为f (x ),所以 1y =令得()()2212133f x f x x x =++-++

整理为()22152,f x x =+++

()()22152f x f x x =+++

要求解析式还差f (1)的值,通过分析题目条件,再一次赋值:

()()()11218,18x f f f ==+=-令得

所以函数解析式为()2

514f x x x =+- 变式:已知函数f (x )对任意实数x ,y 有()()222332y x x f x y f y y x y +++++=-,求函数f (x )的解析式

解:

()()20203y f x f x x ==++令得

()()0020,x f f ==令得()00f =

()23,f x x x =+

总结:

1.在遇到函数的性质是由条件恒等式给出时,可用赋特殊值法求其解析式。

2.赋什么值要根据题目条件决定,根据所缺少的内容进行赋值。不要死记硬背。

练习:

1.已知函数)(x f 对于一切实数y x ,都有x y x y f y x f )12()()(++=-+成立,且0)1(=f 。

(1)求)0(f 的值;

(2)求)(x f 的解析式。

2.已知函数f (x )对任意的实数x ,y 都有f (x +y )= f (x )+f (y )+2y (x +y )+1,且f (1)=1,若x ∈N +,试求f (x )

的表达式.

答案:

(2)令y=0,则有,

()(0)(201)(1)f x f x x x x -=+?+=+

所以2

()(1)(0)2f x x x f x x =++=++

2.解:

令x =1,y =0,则有

令y =1

赋值法在二项式定理中的应用

赋值法在二项式定理中的应用 赋值法是给代数式(或方程或函数表达式)中的某些字母赋予一定的特殊值,从而达到便于解决问题的目的.实际上赋值法所体现的是从一般到特殊的转化思想,在高考题中屡见不鲜,特别是在二项式定理中的应用尤为明显,现以例说明. 一、用赋值法解决二项式系数的有关问题 利用二项式定理的展开式与所求问题进行类比转换,实现从一般到特殊的转化,用来证明或求值. 思路设法从已知等式中求出n. (1+2)n = 729,即3n = 36,解得n = 6. 注意:所求式子中缺少一项,不能直接等于26. 二、用赋值法解决项的系数的有关问题 例2 (1997年上海高考题)(3x+1)n(n∈N*)展开式中各项系数和为256,求x2的系数. 设(3x+1)n = a0x n+a1x n-1+a2x n-2+…+a n.①

由题意:a0+a1+a2+…+a n = 256. 在①式中令x = 1得 4n = a0+a1+a2+…+a n = 256,解得n = 4. a3)2-(a1+a3)2 = [ ] A.1 B.-1 C.0 D.2 解(a0+a2+a3)2-(a1+a3)2 = (a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4). 上式左边中的两个式子分别是所给展开式中x取1和-1时的表达式. 故选A. 三、综合应用 在综合应用中要求学生能严格区别二项式系数与项的系数,注意项的系数的符号与式子的结构,灵活应用其他相关知识解题. 例4若(1-3x)9 = a0+a1x+a2x2+…+a9x9,则|a0|+|a1|+|a2|+…+|a9| = ________.

探讨高中数学函数的教学策略

探讨高中数学函数的教学策略 发表时间:2015-02-06T10:44:53.783Z 来源:《中小学教育》2015年2月总第198期供稿作者:李国良[导读] 高中函数具有抽象性的特点,而且每个函数都有自己的解析图像,所以这样的知识非常适合采用多媒体加以呈现。 李国良广东省五华县琴江中学514400 摘要:函数在高中数学中占据了非常大的比例,是高中数学教学的重点和难点。为了帮助学生更好地克服函数知识的难点,提高学生的学习效率,教师要改进传统的教学模式,采用多样化的教学方式,根据学生的年龄特征设置教学方案和教学策略。作者结合多年教学实践,在此就高中数学函数教学提出几点建议。 关键词:高中数学函数教学教学策略 高中函数的学习过程,是学生对函数在感性认识的基础上,运用比较、分析、综合、归纳、演绎等思维的基本方法,理解并掌握函数知识,从而获得对函数知识本质和规律的认识能力的过程。教学中,函数的学习虽然并非等于求解函数题目,但学习函数是建立在对函数基本概念、定理、公式理解的基础上,并通过对函数题目的解答来实现的。根据多年的教学经验,我认为应从以下几方面着手:一、加强对函数定义与概念的教学 在初中阶段学生已经学习过函数的“变量”定义以及一些特殊的函数,如一次函数、反比例函数、正比例函数、二次函数的概念以及一些简单的性质,已经初步掌握了函数的基本知识。新教材特别强调了实例的典型性和丰富性,充分运用了表格和图像的作用,让学生体会到函数的其他形式。这样的安排既可以提升学生对函数概念的理解层次,又可以帮助学生更全面、更深刻地理解函数概念中的“对应关系”,在教学中应充分发挥它们的作用。所以,教学中首先要回顾初中函数概念,然后引用课本中的例题,和学生一起分析例题。例如已知:得出炮弹距地面的高度h随时间t变化的规律:h=130t-5t2。分析t和h的变化范围。分别令其为数集A和数集B,从问题的实际意义可知,对于数集A中的任意一个时间t,按照对应关系,在数集B中都有唯一确定的高度h和它对应,进而分析、归纳变量之间关系的共同特点。其次,让学生观察、分析、总结函数的特点,然后教师总结,揭示函数关系的本质是表达两个集合之间的元素按照某些特殊法则所确定的对应关系,从而给出函数的对应说概念以及函数的三要素。 二、联系前后知识,建立知识网络 比如题例:有直线1经过A点(1,2),且在x轴上截距范围在(-3,3)中,求y轴上直线1的截距范围。通过建立函数思想并展开分析:分别设横纵截距为a与b,因A点(0,b),(a,0),(1,2)三点共线,a、b的关系就能求得,如能将b关于a的函数关系建立起来,就能够借助该函数在(-3,3)定义域上的值域,获得最终的答案。 由此可见,高中数学许多知识点的关系都是递进、铺排的,掌握了一个知识点,就能找到与其相关联的前后左右的其他知识点。如果学生在高中数学教学过程中或是在其他教学中将各方面知识点充分调动起来,对单一问题进行有效解决,就能够建立起解题思路,并使解题思路更为多样化。这一点也正是目前我国高中数学教学所侧重的。 三、注重创新数学思维的锻炼 函数和方程思想是中学数学重要的思想方法之一,在不等式教学中巧妙地融合函数与方程的思想解题,能使学生于潜移默化中克服思维定式,领会不等式、方程与函数之间的转化,激发学生思维的灵活性。高中数学函数教学要与函数与方程(不等式)有效地结合,使学生体会到函数、方程、不等式的统一关系,进一步体现出新教材中数形结合的思想,使学生体会到数学知识之间的连续性,可以看出函数与方程、函数与不等式密不可分、紧密联系。 如利用kx+b=0或ax2+bx+c=0可以求函数与x轴的交点坐标问题,利用与0的关系可以判定二次函数与x轴的交点个数等。具体案例为:若直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解即x的值是多少? 四、充分利用多媒体技术等现代教学手段 数学课程标准实施以来,要求老师在教学中要采用现代化教学手段,达到理想的教学效果。高中函数具有抽象性的特点,而且每个函数都有自己的解析图像,所以这样的知识非常适合采用多媒体加以呈现。利用多媒体技术,可以化抽象为形象,化无形为有形,将知识直观形象地展示在学生面前,让学生一目了然。 例如,在绘制“y=x,y=x2,y=a2(a>0且a≠0)(x∈R)的图像”时,就可以组织学生分组活动,要求他们借助计算机中的“几何画板”作图,并分工协作,共同讨论以上函数的性质和规律,以及在实际生活中的应用价值。又如,在验证“y=a2(a>0且a≠0)(x∈R)在改变a 的值”时,可以借助多媒体展示指数函数底不同时对于图像的不同影响,让学生了解指数函数的变化规律,加深学生对指数函数的印象,同时也有助于突破教学难点、突出教学重点,从而全面提高课堂教学效率。 总之,高中数学教师对函数的教学需要以学生为教学的主体,依据学生的实际情况和教学目标,制订相关的教学计划,培养学生的数学思维能力和创新能力,提高学生分析问题和解决问题的能力,使学生的数学能力得到长足的进步。参考文献 [1]刘志旺高中数学函数教学渗透数学思想方法分析[J].中学生数理化(学研版),2011,(9)。 [2]徐志强突破难点,多媒体助力高中数学函数教学[J].中国教育技术装备,2013,(17)。 [3]张敏对高中数学中函数教学方法的探讨[J].数学学习与研究,2011,(15),29。

高中数学函数解析式求法

函数解析式的表示形式及五种确定方式 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。 例1、设函数(]() ???+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由4 1log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

高中数学破题致胜微方法求函数解析式:4-赋值法求函数

赋值法求函数解析式 赋值法是一种很常用的方法,对于涉及任意量词的题目,要特别注意是否可以通过赋特殊的值,求出函数的解析式。要注意如何选择所赋的值,从而成功得到解析式。 先看例题: 例:已知函数f (x )满足f (0)=1,对任意实数x ,y 有()()()21f x y f x y x y -=--+求函数f (x )的解析式. 解:式子中有两个变量,尽量通过赋值让y 消失,从而找到解析式 方法一: ()()()021,x y f f x x x x ==--+令得 ()21f x x x =++ 方法二: ()()()001,x f y f y y =-=--+令得 ()()211()1f y y y y y -=--+=-+-+ 再把-y 看作x , 得()2 1f x x x =++ 提示:函数的对应法则与使用什么变量无关 整理: 赋值法求函数解析式 若函数的性质是用条件恒等式给出时,可用赋特殊值法求其解析式。 抓住任意性,对自变量合理的取特殊值,分析已知与结论之间的差异进行赋值,从而易于求出函数的表达式,这是求抽象函数解析式的常用方法。 再看一个题目,增加印象 练:已知函数f (x )对任意实数x ,y 有()()22 2323y x xy f x f x y y y ++-++=,求函数f (x )的解析式 解:如果令y =1,那么f (xy )就会变为f (x ),所以

1y =令得()()2212133f x f x x x =++-++ 整理为()22152,f x x =+++ ()()22152f x f x x =+++ 要求解析式还差f (1)的值,通过分析题目条件,再一次赋值: ()()()11218,18x f f f ==+=-令得 所以函数解析式为()2514f x x x =+- 变式:已知函数f (x )对任意实数x ,y 有()()222332y x x f x y f y y x y +++++=-,求函数f (x )的解析式 解: ()()20203y f x f x x ==++令得 ()()0020,x f f ==令得()00f = ()23,f x x x =+ 总结: 1.在遇到函数的性质是由条件恒等式给出时,可用赋特殊值法求其解析式。 2.赋什么值要根据题目条件决定,根据所缺少的内容进行赋值。不要死记硬背。 练习: 1.已知函数)(x f 对于一切实数y x ,都有x y x y f y x f )12()()(++=-+成立,且0)1(=f 。 (1)求)0(f 的值; (2)求)(x f 的解析式。 2.已知函数f (x )对任意的实数x ,y 都有f (x +y )= f (x )+f (y )+2y (x +y )+1,且f (1)=1,若x ∈N +,试求f (x ) 的表达式. 答案:

高中数学函数解题技巧方法总结(高考)

高中数学函数知识点总结 1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 2. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是 y x x x = --432 lg ()()()(答:,,,)022334Y Y 函数定义域求法: ● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。 ● 正切函数x y tan = ??? ??∈+≠∈Z ππk k x R x ,2,且 ● 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且 ● 反三角函数的定义域 函数y =arcsinx 的定义域是 [-1, 1] ,值域是 ,函数y =arccosx 的定义域是 [-1, 1] , 值域是 [0, π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R , 值域是 (0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。 3. 如何求复合函数的定义域? [] 的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。 [] (答:,)a a - 复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。 例 若函数)(x f y =的定义域为?? ? ???2,21,则)(log 2x f 的定义域为 。 分析:由函数)(x f y =的定义域为?? ? ???2,21可知:221≤≤x ;所以)(log 2x f y =中有2log 212≤≤x 。 解:依题意知: 2log 2 1 2≤≤x 解之,得 42≤≤x ∴ )(log 2x f 的定义域为{} 42|≤≤x x

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

曲靖市必修第一册第三单元《函数概念与性质》测试卷(包含答案解析)

一、选择题 1.已知0.31()2 a =,12log 0.3 b =,0.30.3 c =,则a b c ,,的大小关系是( ) A .a b c << B .c a b << C .a c b << D .b c a << 2.定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,当0x y <<时,都有 ()()f x f y >,且112f ?? = ??? ,则不等式()()32f x f x -+-≥-的解集为( ) A .[)1,0- B .[)4,0- C .(]3,4 D .[) (]1,03,4- 3.已知幂函数2 242 ()(1)m m f x m x -+=-在(0,)+∞上单调递增,函数()2x g x t =-,任意 1[1,6)x ∈时,总存在2[1,6)x ∈使得()()12f x g x =,则t 的取值范围是( ) A .128t << B .128t ≤≤ C .28t >或1t < D .28t ≥或1t ≤ 4.函数y =的值域是( ) A .11,22?? - ???? B .[]0,1 C .10,2?????? D .[)0,+∞ 5.定义在R 上的奇函数()f x 满足()20210f =且对任意的正数a ,b (a b ),有 ()()0f a f b a b -<-,则不等式() 0f x x <的解集是( ) A .()()2021,02021,-+∞ B .()()2021,00,2021- C .() (),20212021,-∞-+∞ D .() (),20210,2021-∞- 6.已知函数2()2+1,[0,2]f x x x x =-+∈,函数()1,[1,1]g x ax x =-∈-,对于任意 1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( ) A .(,3]-∞- B .[3,)+∞ C .(,3][3,) -∞-+∞ D .(,3)(3,)-∞-?+∞ 7.定义在R 上的奇函数()f x 满足()10f =,且对任意的正数a 、b (a b ),有 ()()0f a f b a b -<-,则不等式() 202 f x x -<-的解集是( ) A .()()1,12,-+∞ B .()(),13,-∞-+∞ C .() (),13,-∞+∞ D .() (),12,-∞-+∞ 8.设函数()()1x f x x R x =-∈+,区间[,]M a b =,集合{(),}N y y f x x M ==∈,则使M N 成立的实数对(,)a b 有( )

高中数学函数概念的变式教学方法研究

龙源期刊网 https://www.360docs.net/doc/859045884.html, 高中数学函数概念的变式教学方法研究 作者:范粤 来源:《教育界·上旬》2018年第11期 【摘要】高中数学对于学生而言是难度十分高的一门学科,相较于初中数学具有更加抽象的数学理念、数学定理,使高中阶段的学生学习经过与理解行为变得更加烦琐。因此,文章根据高中数学函数概念的变式教学方法展开了一系列的分析和论述。 【关键词】高中数学;函数概念;变式教学 一、引言 函数在高中数学课程中起到贯穿知识点的作用,是高中数学课程中一个非常重要的组成部分。函数的概念比较抽象,所以教师在教学过程中经常运用丰富的实际例子和一些易懂的变式进行教学,帮助学生对抽象函数思想进行理解,以便学生运用抽象的函数思想解决实际函数问题,让学生的理解能力和解决问题能力得到提高。在函数的教学中,教师和学生都要注重对函数概念的认识,加强对三种基本函数模式的应用。 二、变式教学及其在函数教学中的作用 首先,我们要了解一下函数概念的发展历史。每一个数学上的突破,都需要经历一个漫长的过程和很多数学家的努力。“函数”一词最早在1673年由德国数学家莱布尼茨在进行自变量数学研究时提出的,之后,函数概念就开始被很多数学家使用。函数概念从形成到应用经历了三个阶段。 (一)变量说 “变量说”有一个经典的函数符号,即,其含义是,函数是一个由变量与一些常数以任何一种方式组成的解析表达式。 (二)对应说 “对应说”是针对函数式中取值取值的对应关系,就是有不同的取值,那么就会有一个与之对应的值,称为是的函数。 (三)关系说 “关系说”是在19世纪末期被数学家提出的,它把函数的定义域和值域均突破了以往数集的限制,扩展到任意集合。在现代函数的数学教学中,把现代函数的“函数观”以集合的形式展

高中数学函数解题技巧及方法

专题1 函数 (理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。

求函数解析式常用的方法

求函数解析式常用的方法 求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。 以下主要从这几个方面来分析。 (一)待定系数法 待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。 解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得 22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得22(2)()1ax a b x a b c ax b c x c +++++=++++ 得 212211120011()22 a a b b a b c c b c c f x x x ?=?+=+????++=+?=????=?=??? ∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x (k≠0);f(x)为

二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0) (二)换元法 换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例2 :已知1)1,f x =+求()f x 的解析式。 解析: 1视为t ,那左边就是一个关于t 的函数()f t , 1t =中,用t 表示x ,将右边化为t 的表达式,问题即可解决。 1t = 2220 1 ()(1)2(1)1()(1)x t f t t t t f x x x ≥∴≥∴=-+-+=∴=≥ 小结:①已知f[g(x)]是关于x 的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。 注意:换元后要确定新元t 的取值范围。 ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。 (三)配凑法 已知复合函数[()]f g x 的表达式,要求()f x 的解析式时,若[()]f g x 表达式右边易配成()g x 的运算形式,则可用配凑法,使用

赋值法在高中数学中的应用

赋值法在高中数学中的应用 康乐一中 倾转莉 摘要: 赋值法在高中数学中应用广泛,本文总结了赋值法在高中数学中主要应 用有函数方程,二项式定理,算法,恒成立问题,解选择题与填空题等。 关键字:赋值法 抽象函数 二项式定理 算法 恒等变化 赋值法就是给变量赋予特殊的数值。可以把抽象的问题具体化,把普遍的问题特殊化。赋值法在高中数学中的应用常见在以下几个方面: 一.赋值法在抽象函数性质中的应用 赋值法在函数性质中应用最广,特别是应用在抽象函数中用来的判断函数的奇偶性,讨论函数的单调性,求函数的值域,判断函数的周期性,求函数的解析式等方面。 (一)判断函数的奇偶性 例1 已知函数y =f (x )(x ∈R ,x ≠0),对任意非零实数x 1x 2都有f (x 1x 2)=f (x 1)+f (x 2),试判断f (x )的奇偶性。 解:取x 1=-1,x 2=1得f (-1)= f (-1)+(1),所以f (1)=0 又取x 1=x 2=-1,得f (1)=f (-1)+f (-1), 所以f (-1)=0再取x 1=x ,x 2=-1,则有f (-x )= f (x ),即f (-x )=f (x ) 因为f (x )为非零函数,所以f (x )为偶函数。 (二)讨论函数的单调性 例2. 设f (x )定义于实数集R 上,当x >0时,f (x )>1,且对任意x ,y ∈R ,有f (x +y )= f (x )f (y ),求证f (x )在R 上为增函数。 证明:由f (x +y )=f (x )f (y )中取x =y =0得f (0)=f 2(0)。 若f (0)=0,令x >0,y =0,则f (x )=0,与f (x )>1矛盾。 所以f (0)≠0,即有f (0)=1。 当x >0时,f (x )>1>0,当x <0时,f (-x )>1>0,而0) (1)( x f x f -= ,又x =0时,f (0)=>0,所以f (x )∈R ,f (x )>0。 设x 10,f (x 2-x 1)>1,所以f (x 2)= f [x 1+(x 2-x 1)]=f (x 1)·f

高中数学函数知识点总结

高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||2 2301 若,则实数的值构成的集合为B A a ? 3. 注意下列性质: {}()集合,,……,的所有子集的个数是;1212a a a n n 要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n 个子集。 当然,我们也要注意到,这2n 种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n - ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 有些版本可能是这种写法,遇到后要能够看懂 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式 的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 注意映射个数的求法。如集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 的映射个数有n m 个。 如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。 函数)(x y ?=的图象与直线a x =交点的个数为 个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型?

高中数学破题致胜微方法(求函数解析式):12.利用周期性求函数解析式 Word版含解析

利用周期性求函数解析式 周期性是函数的一种性质,当我们通过题目的已知条件,能够判断函数是周期函数时,再相关性质,求函数的解析式,就能简单一些了。今天我们就根据实际例子,看看如何利用周期性,求函数的解析式。 先看例题 例:设f (x )是定义在区间(,)-∞+∞上,且以2为周期的函数,对k Z ∈,用k I 表示区间(21,21)k k -+,已知当0x I ∈时,2 ()f x x =,求f (x )在k I 上的解析式 解:由已知,当k =0时,0(1,1)I =- 我们利用区间转移的方法,如果k x I ∈ 即0(21,21)2x k k x k I ∈-+?-∈ 121x k ?-<-< 则有:2 (2)(2)f x k x k -=- 又因为该函数以2为周期,所以有(2)(),f x k f x -= 所以函数在k I 上的解析式为:2()(2)f x x k =- 一般规律: 区间转移: 将未知区间上的自变量加(或减)周期的整数倍后,转化到已知区间。 进而求出,该区间上的函数解析式 再看一个例题加深印象 练:设f (x )是定义在R 上的奇函数,且其图象关于直线x =1对称,当[]2,0x ∈-时,()22.f x x x +=

当[]2,4x ∈时,求f (x )的解析式 首先通过题目条件,证明函数为周期函数 因为函数关于x =1对称,且函数为奇函数 所以有()(2)()f x f x f x +=-=- 又因为(2)()f x f x +=- 所以:()()(4)(2)[]f x f x f x f x +=-+=--= 所以函数为周期函数,且周期T =4 因为函数在[]2,0x ∈-上的解析式已知,所以 由[]2,4,4[2,0],x x ∈-∈- 可得:()22(4)2(4)(4)68.f x f x x x x x ----==+=+ 总结: 1.根据题目条件,判断、证明函数为周期函数. 2.将未知区间上的自变量加(或减)周期的整数倍后,转化到已知区间. 3.根据题目条件,以及函数性质,确定所求区间上的解析式 练习: 1.设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间2,3]上时,f (x )=-2(x -3)2+4,求当x ∈1,2]时f (x )的解析式.若矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值. 2.已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在0,1]上是一次函数,在1,4]上是二次函数,且在x =2时,函数取得最小值,最小值为-5. (1)证明:f (1)+f (4)=0; (2)试求y =f (x ),x ∈1,4]的解析式; (3)试求y =f (x )在4,9]上的解析式. 答案:

数量关系解题方法之赋值法

数量关系解题方法之赋值法 赋值法是数量关系考试中比较常用的方法之一,用途比较广泛和常见,同时也是比较容易操作的方法,下面就跟着华图于老师来一起学习一下赋值法。 赋值法的使用是有一定前提和特征的,不是任何一个数量关系的题目都可以用赋值法去解题,下面老师要给各位亲爱的考生说明一下,什么时候赋值法,赋值法怎么使用即对那个量进行赋值,让这个量为那个具体数字。 小的时候我们都做过这样一道题:一项工程,由小王一个人做需要30天,由小刘一个人做需要20 天,求两人一起合作需要多少天完成?我们做这个题时,让工作总量为1,小王的工作效率是1 30 ,小刘 的工作效率是1 20 ,合作需要的天数是 1 =12 11 + 2030 天 。相信大家都记得这个题,小时候经常做到,这个题 目使用的方法就是赋值法。工作总量题干中是没有的,是我们认为的假设出来的。像这样的方法,认为的给某个量假设一个数值,从而方便计算的方法就是赋值法。那么这个题有什么特征呢?首先,有公式:工作总量=工作时间×工作时间。只告诉一个量工作时间,另外两个量已知中都没有涉及,所以为了能够进一步的去计算,我们认为的假设一个数值。也就是说满足A B C =?,已知中只有一个已知量,或是一个已知量都没有,那么此时采用赋值法。那么可以用赋值法的题型有:工程问题、行程问题、溶液问题、经济利润问题等,出现比例、倍数情形时;其次,赋值不变量或是相等的量。减少计算过程。所以本题对工作总量进行赋值;最后,赋值的数字为已知的数值的公倍数。这样就能避免出现分数,方便计算。 下面我们练习一下: (2017年-河北-54)某件刺绣产品,需要效率相当的三名绣工8天才能完成;绣品完成50%时,一人有事提前离开,绣品由剩下的两人继续完成;绣品完成75%时,又有一人离开,绣品由最后剩下的那个人做完。那么,完成该件绣品一共用了: A.10天B.11天 C.12天D.13天 解析:审题:工程问题,已知中包含工作的天数,但是关于工作总量和工作效率没有涉及,而要继续做出这道题,需呀知道工作总量和工作效率才能继续算下去。此时采用赋值法。由于已知中三名绣工的效率相当,即效率相等,对效率进行赋值。假设三名绣工的工作效率都是1,三个的效率和是3,工作总量为:38=24 ?。完成50%,即三人完成12个工作量,需4天;50%-75%,即6个量是两个绣工一起完成的,需要3天;剩下的25%即6个量由一个人完成需要6天。共用了13天。选择C。 练习题:

(完整word版)【高中数学讲义】函数求值域的十种方法.docx

前言: 总有人求助如何学好数学,这个问题很宽泛,并非寥寥数语能够厘清。有一点很明确,学好数学的必要条件是了解数学。 高中数学可以归结为两个“三位一体” :教学体系的三位一体和知识结构的三位一体。 知识结构的三位一体:数学思想,数学方法,典型习题。 三要素之间的关系:典型习题归纳数学思想,数学思想指导数学方法,数学方法解决典型习题。 数学思想举例:数形结合的思想等。 数学方法举例:配方法、反证法、倍差法等。 典型习题举例:恒成立问题、是否存在问题等。 教学体系的三位一体:教、学、练。 老师教什么:数学思想和数学方法。熟练掌握各种方法的是优秀学生,深入理解各种思想的是顶尖学生。 学生怎么学:课堂紧跟老师,课下善于提问。 如何做练习: 01,选题:中学数学最大的误区就是题海战术,有的老师不学无术只 会告诉你多做题。多做题没用,多做类型才有用。典型习题,做一顶

百。 02,做题:一题多解。对于选定的习题,运用尽量多的方法去解决,然后比较各个方法的优劣,归纳出某类型题对应的最佳方法。 03,总结:针对错题。大量统计表明,我们在考试中所犯的错误大多是重复性的。通过总结,避免两次踏入同一条水沟。 由上可知,我讲数学的特点是方法论、重总结。 工欲善其事,必先利其器:各种数学方法就是我们解决难题的利器。总喊看题就没思路的童鞋,回忆一下高中阶段你能说出多少种方法。说不出?有思路才怪! 言归正传,今天我们就来总结一下“函数求值域的十种方法” (高中数学最重要就是函数,函数之于高中数学好比力学之于高中物理。 高中数学函数的要点无非:三要素,四变换,五常见,六性质。 三要素中的求值域就是本讲的主题) 方法一:配方法 用于解决二次函数值域问题,考试中几乎不会单独考察配方法(太简单),但常与其他方法综合使用。

高中数学函数解题技巧与方法

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

(完整版)高中数学三角函数解题技巧和公式(已整理)

关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θ θθθcos sin 1 故:1212122+=?=-n m n m ,选B 。 例3 已知:tg α+ctg α=4,则sin2α的值为( )。

赋值法在函数方程中的应用

赋值法在函数方程中的应用 赋值法是指给定的关于某些变量的一般关系式,赋予恰当的数值或代数式后,通过运算推理,最后得出结论的一种解题方法。下面介绍它在函数方程中的应用。 一、判断函数的奇偶性 例1 若f(x+y)=f(x)+f(y)中令x=y=0,得f(0)=0。 又在f(x+y)=f(x)+f(y)令y=-x,f(x-x)=f(x)+f(-x),即f(0)=f(x)+f(-x),又f(0)=0. 所以f(-x)=-f(x)。 由于f(x)不恒为零,所以f(x)是奇函数。 例2 已知函数y=f(x)(x∈R,x≠0),对任意非零实数x1x2都有f(x1x2)=f(x1)+f(x2),试判断f(x)的奇偶性。 解:取x1=-1,x2=1得 f(-1)= f(-1)+(1),所以f(1)=0 又取x1=x2=-1, 得f(1)=f(-1)+f(-1), 所以f(-1)=0 再取x1=x,x2=-1,则有f(-x)= f(x),即f(-x)=f(x) 因为f(x)为非零函数,所以f(x)为偶函数。 例3.对任意x、y∈R,有(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,判断f(x)的奇偶性。 解:令x=y=0得f(0)+f(0)=2f2(0),因为f(0)≠0,所以f(0)=1,又令x=0得f(y)+f(-y)=2f(y),即f(-y)=f(y)。取x=y,得f(-x)=f (y).所以函数y=f(x)。 二、讨论函数的单调性 例4.设f(x)定义于实数集R上,当x>0时,f(x)>1,且对任意x,y∈R,有f(x+y)= f(x)f(y),求证f(x)在R上为增函数。 证明:由f(x+y)=f(x)f(y)中取x=y=0得f(0)=f2(0)。 若f(0)=0,令x>0,y=0,则f(x)=0,与f(x)>1矛盾。 所以f(0)≠0,即有f(0)=1。 当x>0时,f(x)>1>0,当x<0时,f(-x)>1>0,而 ) ( 1 ) ( x f x f ,又 x=0时,f(0)=>0,所以f(x)∈R,f(x)>0。 设x10,f(x2-x1)>1,所以f(x2)= f[x1+(x2-x1)]=f(x1)·f (x2-x1)>f(x1),所以y=(x)在R上为增函数。 三、求函数的值域 例5 已知函数f(x)在定义域x∈R+上是增函数,且满足f(xy)=f(x)+f(y)(x、y∈R+),求f(x)的值域。 解:因为x=y=1时,(1)=2f(1),所以f(1)=0

相关文档
最新文档