行星排配齿及各齿轮设计计算

合集下载

行星齿轮传动设计

行星齿轮传动设计

行星齿轮传动设计1. 介绍行星齿轮传动是一种常见的传动方式,具有紧凑结构、高扭矩传递能力和大减速比等优点,在机械工程中得到广泛应用。

本文将介绍行星齿轮传动的基本原理、设计流程以及一些常见的应用场景。

2. 基本原理行星齿轮传动由太阳轮、行星轮、内齿圈和封闭式外齿圈组成。

太阳轮通过输入轴与外部动力源相连,内齿圈固定在内轴上,而行星轮则由行星支架连接,行星轮的轮毂与内齿圈啮合。

通过这样的结构,实现了输入轴到输出轴的扭矩传递。

在传动过程中,太阳轮通过输入轴提供驱动扭矩,从而使行星轮绕内齿圈做旋转运动。

行星轮通过其自身的轮毂与内齿圈啮合,同时也与外齿圈啮合。

当太阳轮转动时,行星轮绕内齿圈做公转运动,同时自身也绕太阳轮做自转运动。

最终,输出轴通过行星轮和外齿圈的结果传递扭矩。

3. 设计流程3.1 确定传动比传动比是行星齿轮传动设计的重要参数之一,它决定了输入扭矩和输出扭矩之间的比值。

根据具体应用需求和设计要求,可以确定传动比的范围。

传动比的计算公式如下:传动比 = (1 + z2) / (1 + z1)其中,z1为太阳轮齿数,z2为行星轮齿数。

3.2 齿轮几何参数计算行星齿轮传动的设计还需要计算齿轮的几何参数,包括齿数、模数、压力角等。

这些参数可以根据实际情况和应用要求进行确定。

3.3 强度计算在行星齿轮传动的设计过程中,需要对齿轮进行强度计算,以确认其承载能力是否满足设计要求。

常用的强度计算方法包括考虑接触应力、弯曲应力和动载荷分析等。

3.4 材料选择根据行星齿轮传动的使用环境和工作条件,选择合适的材料以确保齿轮的强度和使用寿命。

常用的行星齿轮材料包括合金钢、硬质合金等。

3.5 结构设计与优化根据行星齿轮传动的具体应用,进行结构设计与优化,以满足机械系统的要求。

优化可以从减小传动误差、降低噪声水平、提高传动效率等方面进行。

4. 应用场景行星齿轮传动广泛应用于各个领域,下面列举几个常见的应用场景:4.1 汽车变速器行星齿轮传动在汽车变速器中得到广泛应用,其紧凑的结构和高扭矩传递能力使得汽车变速器可以实现多档位的比例调整。

行星齿轮减速器-课程设计计算说明书

行星齿轮减速器-课程设计计算说明书

目录设计任务书: (2)设计内容: (3)一、评述传动方案 (3)二、电动机的选择及动力参数计算 (4)三、传动零件的校核计算 (6)一)外啮合齿轮传动 (6)二)内啮合齿轮传动 (9)四、轴的设计 (11)一)减速器输入轴Ⅰ (11)二)行星轮轴Ⅱ (17)三)内齿轮轴Ⅲ (20)五、键连接的选择和计算 (23)六、滚动轴承的选择和计算 (25)七、联轴器的选择 (28)八、齿侧间隙 (28)九、轴Ⅱ加工工艺图 (29)十、参考资料 (30)设计任务书:设计内容:一、 评述传动方案牵引速度为 1.5/v m s =,滚筒直径400D mm =,可求出滚筒转速(601000)/w n v =⨯⨯()(60100 1.5)/(400)71.62/min D r ππ=⨯⨯⨯=,由于工作情况为:室外,环境有灰尘,最高温度40℃,两班制,间歇双向运转,反向空转,断续周期工作制(S3),负荷持续率FC=56%,载荷有冲击,故应选YZR 系列电动机为原动机,它的转速约为750~1000r/min ,传动装置速比应为/(750~1000)/71.6210.47~13.96m w i n n === 可选如下图1-1、1-2两种方案:图1-1方案a 采用NW 分流式行星齿轮传动,卷扬机工作时制动器10制动,此时电动机1通过联轴器2驱动行星齿轮减速器,行星架上的滚筒5使钢丝绳7运动,从而牵引重物移动。

不需重物移动时,制动器6制动,制动器10松开,这时行星传动变成定轴传动,电动机和二级同轴式减速器空转,不用频繁地起动和制动电动机。

滚筒用滑动轴承支撑在机架上。

传动比:5~25i =,可满足传动要求。

优点:外形尺寸小(减速器内置),电动机不用频繁启动适合狭窄工况下工作。

缺点:结构复杂,加工安装精度高,成本大,不易维修。

图1-2方案b 采用一级带传动和一级闭式齿轮传动,电动机带动带传动,齿轮传动,从而带动滚筒运动。

行星减速器齿数规律

行星减速器齿数规律

行星减速器齿数规律
行星减速器是一种常见的机械传动装置,它由太阳轮、行星轮、行星架和内齿圈组成。

行星减速器的齿数规律是指这些齿轮的齿数
之间的关系。

在行星减速器中,太阳轮和行星轮的齿数之间存在一
定的规律,可以通过这个规律来计算行星减速器的传动比。

首先,我们来看太阳轮、行星轮和内齿圈之间的齿数关系。


常情况下,行星减速器的齿数规律可以用以下公式表示:
(S + P) / P = (Zs + Zp) / Zs.
其中,S为太阳轮的齿数,P为行星轮的齿数,Zs为内齿圈的
齿数,Zp为行星轮的齿数。

这个公式可以帮助我们计算行星减速器的传动比,也可以根据
已知的传动比来确定各个齿轮的齿数。

传动比是指输入轴与输出轴
的转速之比,通常用i表示。

传动比越大,输出轴的转速就越低,
输出的扭矩就越大。

此外,行星减速器的齿数规律还涉及到齿轮的模数、压力角等
参数。

这些参数的选择会影响行星减速器的传动性能、传动效率和承载能力。

因此,在设计行星减速器时,需要综合考虑这些参数,并进行合理的选择和设计。

总的来说,行星减速器的齿数规律是通过太阳轮、行星轮和内齿圈之间的齿数关系来确定的,这些参数的选择会直接影响到行星减速器的传动性能和工作效果。

在实际应用中,需要根据具体的传动要求和工作条件来合理选择行星减速器的齿数规律,以确保其正常稳定地工作。

大行星齿轮传动比计算公式

大行星齿轮传动比计算公式

大行星齿轮传动比计算公式大行星齿轮传动是一种常用的传动方式,广泛应用于工程机械、汽车等领域。

在设计和分析大行星齿轮传动系统时,计算传动比是非常重要的一步。

本文将介绍大行星齿轮传动比的计算公式及其应用。

一、大行星齿轮传动的基本结构大行星齿轮传动由太阳齿轮、行星齿轮、内齿圈和行星架等部分组成。

其中,太阳齿轮固定不动,内齿圈与外部传动轴相连,行星齿轮通过行星架与太阳齿轮和内齿圈相连。

二、大行星齿轮传动比的定义大行星齿轮传动比是指输入轴(太阳齿轮)的转速与输出轴(内齿圈)的转速之比。

传动比的大小决定了输出轴的转速和扭矩。

三、大行星齿轮传动比的计算公式大行星齿轮传动比可以根据行星齿轮传动的结构特点进行计算。

以下是常用的两种计算公式:1. 太阳齿轮传动比公式传动比=(内齿圈齿数+太阳齿数)/太阳齿数2. 行星齿轮传动比公式传动比=内齿圈齿数/行星齿数以上两种计算公式适用于不同的大行星齿轮传动结构,根据实际情况选择合适的公式进行计算。

四、大行星齿轮传动比的应用大行星齿轮传动比的计算在工程设计和分析中具有重要的意义。

以下是一些常见的应用场景:1. 机械设计中,通过计算传动比可以确定输出轴的转速和扭矩,从而满足设计要求。

2. 汽车传动系统中,大行星齿轮传动被广泛应用于变速器中。

通过计算传动比,可以实现不同档位之间的转速匹配,提高汽车的行驶性能和燃油经济性。

3. 工程机械中,大行星齿轮传动常用于液压马达的传动系统。

通过计算传动比,可以确定液压马达的输出速度和扭矩,从而实现机械装置的正常工作。

五、总结大行星齿轮传动比的计算是大行星齿轮传动系统设计和分析中的重要环节。

本文介绍了大行星齿轮传动比的计算公式及其应用,希望对读者理解和应用大行星齿轮传动有所帮助。

六、参考文献1. 《机械设计基础》(杨文彬、陈涛著,中国水利水电出版社)2. 《汽车传动系统设计与分析》(郑敏著,机械工业出版社)。

行星齿轮计算iso9085

行星齿轮计算iso9085
0.031602869 0.042190653
-0.247 1.104 13.617 1.489 18.369 12.907
1.995 0.034 0.046
系数Bk 动载系数KV
Bk=|1c'*Ca/((Ft*Ka)/ b)| KV=N(Cv1*B p+Cv2*Bf+Cv 3*Bk)+1
单位载荷Fm/b(小于100时 Fm/b=Ft*KA*
mt=mn/cosβ sinβb=sinβ*cos αn gα =1/2*((da1^2db1^2)^0.5+(d a2^2db2^2)^0.5)a*sinαwt pbt=mt*π*cosα t
0.183 13.1740134
15
9
7.174013395
22.174
22.174 196.3480268
d1=Mn*Z1/CO SΒ
0 0.34906585
170
d2=Mn*Z2/CO
分度圆直径d2

180
2 未变位时中心距Ad 3 中心距变动系数Yn 4 啮合角awt
Ad=Mn*(Z1+Z 2)/2COSΒ Yn=(AAd)/Mn tgat=tgan/COS β
at=arctgat COSα wt=Ad/A*COS at
临界转速比N(共振区 0.2~0.5) 总重合的εγ
N=n1/nE1 εγ=εα+εβ
系数Cv1/Cv2/Cv3
齿廓偏差跑合量yp1/yp2 有效基节偏差fpbeH 齿距偏差跑合量yf
0.32 yp=ya=0.075*f pb fpbeH=fpb-yp yf=0.075*fta
有效齿廓形状偏差ffeH ffeH=fta-yf

行星齿轮传动的设计计算——张庆波

行星齿轮传动的设计计算——张庆波

H ab
=
waH
wbH
,所以可将上两式简化为力矩的普遍式
M aiaHbηβ0 + M b =0 (8)
其中η0 为转化机构的效率,其值按定轴轮系计算。β为与啮合效率流动方
向有关的指数,当啮合效率由中心轮 a 流向 b 时,β=+1,当从中心轮 b 流向 a
时,β=-1。这样,就可以得出周转轮系基本构件作用外力矩的关系式:
Φi=2.3μ(1/Z1±1/Z2) (10)
式中:μ—齿面摩擦系数,对于 NGW 型传动,可取μ=0.05~0.10; Z2、Z1—
齿轮副中大小齿轮的齿数,内啮合时 Z2 表示内齿圈的齿数,“+”号用于外啮合,
“—”号用于内啮合。
根据以上理论及公式,对减速机的效率进行验算。
首先计算其转化轮系(即定轴轮系)的传动效率。
机械摩擦损失功率主要取决于各运动副中的作用力、运动副元素间的摩擦因
数和相对运动速度的大小。行星轮系的转化轮系与原行星轮系的差别,仅仅在于
给整个行星轮系附加了一个公共角速度。经过这样的转化后,各构件之间的相对
运动并没有发生改变,而且轮系各运动副中的作用力(当不考虑各构件回转的离
心惯性力时)以及摩擦因数也不会改变。因而行星轮系与其转化轮系中的摩擦损
行星齿轮传动的设计计算
张庆波 1
1. 一重集团大连设计研究院有限公司助理工程师,辽宁 大连 116600 摘要:介绍行星齿轮传动基本参数的计算方法和设计原则。 关键词:行星齿轮;传动比;转速;效率;均载;受力分析;花键
Design Calculation for Planetary Gear Drive ZhangQingbo
Abstract: Planetary gear drive is widespread applied in the field of mechanical drive. This paper introduced its calculating methods and design principles of basic parameters. These parameters are key factors for planetary gear drive design as well as established a foundation for gear box further design. Key words: planetary gear, gear ratio, rotate speed, efficiency, uniform load,force analysis, spline

行星齿轮计算

传动型式高变位1、 太阳轮负变位,行星轮和内齿轮正变位。

即:-x A =x C =x Bx A 和x C 按手册图14-5-4及图14-5-5确定,也可按第一章的方法选择变位方式与变位系在渐开线行星齿轮传动中,合理采用变位齿轮可以获得如载能力,在保证所需传动比前提下得到合理的中心距、在保证装配及同心等条件下使齿数的选择具有较性。

变位齿轮有高变位和角变位,两者在渐开线行星齿轮传动中都有应用。

高变位主要用于消除根切和使轮的滑动比及弯曲强度大致相等。

角变位主要用于更灵活地选择齿数,拼凑中心距,改善啮合特性及提力。

由于高变位的应用在某些情况下受到限制,因此角变位在渐开线行星齿轮传动中应用更为广泛。

常用行星齿轮传动变位方式NGW 1、 太阳轮正变位,行星轮和内齿轮负变位。

即:x A =-x C =-x Bx A 和x C 按手册图14-5-4及图14-5-5确定,也可按第1章的方法选择4<B AX i 4≥B AX i角变位1、不等角变位应用较广。

通常使啮合角在下列范围外啮合:α'AC =24º~26º30'(个别甚至达29º50')内啮合:α'CB =17º30'~21º此法是在z A 和z B 不变,而将z C 减少1~2齿的情况下实现的。

这样可以显著提高外啮合的承载能力。

根据初选齿数,利用图14-5-4预计啮合角大小(初定啮合角于上述范围内);然后计算出x ∑AC 、x ∑CB ,最后按图14-5-5或第一章的方法分配变位系数2、等角变位各齿轮齿数关系不变,即:z A +z C =z B -z C变位系数之间的关系为:x B =2x C +x A变位系数大小以齿轮不产生根切为准。

总变位系数不能过大,否则影响内齿轮弯曲强度。

通常取啮合角α'AC =α'CB =22º对于直齿轮传动,当z A <z C 时推荐取 x A =x C =0.53、当传动比 时,推荐取α'AC =24º~25º,α'CB =20º,即外啮合为角变位,内啮合为高变位。

行星齿轮传动设计

行星齿轮传动设计引言行星齿轮传动是一种常见的机械装置,广泛应用于工业、汽车、航空航天等领域。

其特点是结构紧凑、传动比大、承载能力强等优点。

本文将介绍行星齿轮传动的基本原理和设计步骤。

基本原理行星齿轮传动由太阳轮、行星轮和内齿轮组成。

太阳轮是固定不动的,行星轮绕太阳轮旋转,内齿轮与行星轮上的齿轮啮合。

传动比由太阳轮的齿数、行星轮的齿数和内齿轮的齿数共同决定。

行星齿轮传动的基本原理如下:1.太阳轮转动一周,行星轮转动n周;2.太阳轮齿数与行星轮齿数之比为1:n;3.太阳轮齿数与内齿轮齿数之比为1:(n+1);根据上述原理,可以计算出行星齿轮传动的传动比和输入输出的转速关系。

设计步骤进行行星齿轮传动的设计,需要按照以下步骤进行:1.确定输入和输出参数:包括输入功率、输入转速、输出转速、传动比等;2.选择行星轮和太阳轮的齿数:根据传动比和输入输出转速关系,选择合适的行星轮和太阳轮的齿数;3.确定行星轮的位置:行星轮通常有几颗,需要确定每颗行星轮的位置,以及行星轮与太阳轮的啮合方式;4.计算内齿轮的齿数:根据太阳轮和行星轮的齿数,计算出内齿轮的齿数;5.绘制行星齿轮传动的示意图:根据上述计算结果,绘制行星齿轮传动的示意图;6.进行传动效率计算:根据输入功率和输出功率,计算传动效率;7.进行强度计算:根据输入功率、传动比和材料强度等参数,计算行星齿轮传动的承载能力。

实例演示为了更好地理解行星齿轮传动的设计过程,以下是一个实例演示:假设输入功率为100W,输入转速为1000rpm,输出转速为500rpm,要求传动比为2:1。

1.根据输出转速和传动比,可以计算得到太阳轮的转速为250rpm;2.假设行星轮的齿数为30,太阳轮的齿数为60,可以得到行星轮的转速为500rpm;3.根据太阳轮和行星轮的齿数,可以计算出内齿轮的齿数为20;4.根据齿数的要求,确定行星轮位置为太阳轮外侧,并与太阳轮以外啮合城sk1;5.绘制行星齿轮传动的示意图如下:行星齿轮传动示意图行星齿轮传动示意图6.计算传动效率:根据输入功率和输出功率,可以计算传动效率为80%;7.强度计算:根据输入功率、传动比和材料强度等参数,可以计算行星齿轮传动的承载能力为xxx。

两级行星齿轮速比计算公式

两级行星齿轮速比计算公式行星齿轮传动是一种常见的机械传动方式,它由太阳轮、行星轮和内齿圈组成。

其中,行星轮和内齿圈可以组成两级行星齿轮传动,通过合理设计齿轮的数量和齿数,可以实现不同的速比。

在工程设计中,计算两级行星齿轮速比是非常重要的,它能够帮助工程师确定传动系统的性能和工作状态。

本文将介绍两级行星齿轮速比的计算公式及其应用。

一、两级行星齿轮速比的计算公式。

1. 行星齿轮传动的速比公式。

在行星齿轮传动中,速比是指输出轴的转速与输入轴的转速之比。

对于两级行星齿轮传动,其速比可以通过以下公式进行计算:速比 = (1 + T1) (1 + T2)。

其中,T1为第一级行星轮与太阳轮的齿数之比,T2为第二级行星轮与内齿圈的齿数之比。

2. 行星齿轮传动速比的推导。

为了更好地理解两级行星齿轮传动的速比计算公式,我们可以通过推导来得到该公式。

首先,我们假设太阳轮的齿数为S、行星轮的齿数为P、内齿圈的齿数为R,输入轴的转速为N1,输出轴的转速为N2。

对于第一级行星齿轮传动,我们可以得到以下关系式:N1 = (S + P) / S N2。

对于第二级行星齿轮传动,我们可以得到以下关系式:N2 = (P + R) / R N3。

将第一级和第二级的关系式合并,可以得到整个两级行星齿轮传动的速比公式:速比 = N1 / N3 = (S + P) / S (P + R) / R。

这就是两级行星齿轮传动的速比计算公式。

二、两级行星齿轮速比的应用。

1. 传动系统设计。

在机械传动系统的设计中,速比是一个非常重要的参数。

通过计算两级行星齿轮传动的速比,可以确定输出轴的转速与输入轴的转速之比,从而确定传动系统的性能和工作状态。

工程师可以根据实际需求来选择合适的齿轮参数,以满足传动系统的要求。

2. 传动系统分析。

在传动系统的分析中,速比可以帮助工程师确定传动系统的工作状态。

通过计算两级行星齿轮传动的速比,可以得知输出轴的转速与输入轴的转速之比,从而判断传动系统是否合理、稳定。

行星齿轮机构的设计与计算课件

优化结果验证
通过仿真验证优化方案的可行性和有效性,为实际应用提供指导和 参考。
05
行星齿轮机构的实例分析
实例一:汽车变速器中的行星齿轮机构
总结词
汽车变速器中的行星齿轮机构是实现动力传递的关键部分,具有高效率、紧凑和可靠的 特点。
详细描述
行星齿轮机构在汽车变速器中起着至关重要的作用,它能够实现动力的变速和传递,具 有高效率、紧凑和可靠的特点。行星齿轮机构通过行星轮、太阳轮和齿圈等主要元件的 相互配合,实现了变速和传递动力的功能。在汽车变速器中,行星齿轮机构的设计和计
大小。
效率计算公式
行星齿轮机构的效率等于输出功率 与输入功率之比,通常以百分数表 示。
计算注意事项
在计算效率时,需要考虑齿轮的摩 擦损失、轴承的摩擦损失以及液力 损失等因素的影响。
行星齿轮机构的强度计算
强度定义
行星齿轮机构的强度是指机构在 传递功率过程中,各部件所承受 的应力、应变和扭矩等参数的大
传动比计算公式
行星齿轮机构的传动比等 于机构中所有齿轮的齿数 乘积与太阳轮齿数的比值 。
计算注意事项
在计算传动比时,需要考 虑齿轮的变位情况,以及 行星轮的数量和分布对传 动比的影响。
行星齿轮机构的效率计算
效率定义
行星齿轮机构的效率是指在传递 功率过程中,有效功率与输入功 率之比,反映了机构能量损失的
模型简化与假设
为了简化计算和提高仿真 效率,可以对模型进行适 当的假设和简化,如忽略 摩擦力、弹性变形等。
模型建立方法
采用数学建模的方法,建 立行星齿轮机构的运动方 程和动力学方程,为仿真 分析提供基础。
仿真分析的方法
运动学分析
对行星齿轮机构进行运动学分析,研究其运动规 律和特性,如转速、传动比等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档