计算方法课后习题答案第四章作业

计算方法课后习题答案第四章作业
计算方法课后习题答案第四章作业

(五)课后习题

4.1 对于积分?

-a

a

dx x f )(,以a x x a x ==-=210,0,为节点,构造形如

?

-++≈a

a

x f A x f A x f A dx x f )()()()(221100

的插值型求积公式,并讨论所得公式的代数精度。

解答:??--=------=----=

a

a a a a dx a a a a x x dx x x x x x x x x A 31))(0())(0())(())((2010210

?

?--=-+-+=----=a

a a a a dx a a a x a x dx x x x x x x x x A 34)0)(0())(())(())((2101201

?

?--=-+-+=----=a

a a a a dx a a a x a x dx x x x x x x x x A 31

)0)(()0)(())(())((1202102

易知为Simpson 公式,因此代数精度为3

4.2 确定 下列求积公式中的待定参数,使其代数精度尽量高,并指出所得公式的代数精度。 (1)?

++≈2

210)2()1()0()(f A f A f A dx x f

(2)

?

-?++≈h

h f f h h f f h

dx x f 0

''2)]()0([)]()0([2

)(α

解答:(1)令2

,,1)(x x x f =,假定求积公式均准确成立,从而有: ?++==2

02102A A A dx 21022102

?+?+?==?

A A A xdx

2

221202

221003

8?+?+??==

?A A A dx x 解以上三元线性方程组从得:3

4

,31120===A A A ,显然仍为Simpson 公式,因此代数精度为3

(2)求积公式中只含一个待定参数α,当x x f ,1)(=时,有 ?

++=h

h dx 0

0]11[2,?-++=h h h h

xdx 02)11(]0[2

α

故令2

)(x x f =时求积公式准确成立,即

?

-?++=h

h h h h dx x 0

222]202[]0[2α,解得12

1

将3

)(x x f =代入上述确定的求积公式,有:

?

-++=h

h h h h dx x 0

223

3

]30[12

]0[2,这说明求积公式至少有3次代数精度,再令 4)(x x f =,代入

求积公式时有:

?

-++≠h

h h h h dx x 0

324

4

]40[12

]0[2

故所建求积公式为

?

-++≈h

h f f h h f f h dx x f 0

''

2)]()0([2

)]()0([2)(

4.3 对于x

x

x f sin )(=,利用下表数据,计算8,4=n 时的复合梯形公式84,T T ,以及4=n 复合Simpson 公式4S 的值。

解:9445135.0)]1())75.0()5.0()25.0((2)0([2

41

4=+++?+=

f f f f f T

9456909.0])1()(2)0([161

7

1

8=++=∑=k k f x f f T

))875.0()625.0()375.0()125.0((4)0([24

1

4f f f f f S +++?+=

9460832.0)]1())75.0()5.0()25.0((2=+++?+f f f f (或利用4843

1

34T T S -=)

4.4 如果用复化梯形公式计算定积分

?

1

-x x d e ,要求截断误差不超过0.5×10-4,试问n 至少取多少?

解答;复化的梯形公式的截断误差为1)e (max )(max 1

01

02==''=-≤≤≤≤x

x x x f M 4

-22210?50<121=12-≤

.)(n

M h a b f R N ,n =40.8 ,取n ≥41。

计算方法引论课后答案.

第一章 误差 1. 试举例,说明什么是模型误差,什么是方法误差. 解: 例如,把地球近似看为一个标准球体,利用公式2 4A r π=计算其表面积,这个近似看为球体的过程产生 的误差即为模型误差. 在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 12 222...q q π=? ?? 其中 11 2,3,... n q q n +?=?? ==?? 我们取前9项的乘积作为π的近似值,得 3.141587725...π≈ 这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差. 2. 按照四舍五入的原则,将下列各数舍成五位有效数字: 816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 236 3. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位 三位 六位 四位 4. 若1/4用0.25表示,问有多少位有效数字? 解: 两位 5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +?各有几位有效数字? 解: 已知4311 d 10,d 1022 a b --

计算方法_习题第一、二章答案..

第一章 误差 1 问3.142,3.141,7 22分别作为π的近似值各具有几位有效数字? 分析 利用有效数字的概念可直接得出。 解 π=3.141 592 65… 记x 1=3.142,x 2=3.141,x 3=7 22. 由π- x 1=3.141 59…-3.142=-0.000 40…知 34111 10||1022 x π--?<-≤? 因而x 1具有4位有效数字。 由π- x 2=3.141 59…-3.141=-0.000 59…知 223102 1||1021--?≤-

计算方法——第二章——课后习题答案刘师少

2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过3102 1-?至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(2 11 a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10. 2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过 0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0 ∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间 [0,1]内有唯一实根. 给定误差限ε=0.5×10-4,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211 a b k 即可,亦即 7287.1312 lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14. 2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式: (1)211x x +=,迭代公式2111k k x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。 解:(1)令211)(x x f + =,则3 2)(x x f -=',由于 159.05.112)(33<≈≤='x x f ,因而迭代收敛。 (2)令321)(x x f +=,则322)1(3 2)(-+='x x x f ,由于

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

计算方法课后题答案之习题二

习题二 1. 证明方程043 =-+x x 在区间[1,2]内有一个根。如果用二分法求它具有5位有效数字的根,需要 二分多少次。 证明: (1) 不妨令 4)(3-+=x x x f ,求得: 02)1(<-=f 06)2(>=f 又因为4)(3-+=x x x f 在区间[1,2]内是连续的,所以在区间[1,2]内有至少一个根。 又因为 13)(2'+=x x f 在区间[1,2]内013)(2'>+=x x f ,所以4)(3-+=x x x f 单调。 得证,043 =-+x x 在区间[1,2]内仅有一个根。 (2)具有5位有效数字的根,说明根可以表示成 5 4321.a a a a a ,所以绝对误差限应该是 5a 位上的 一半,即: 4105.0-?=ε。由公式: ε≤-+1 2 k a b 可得到, 14=k 迭代次数为151=+k 次。 ---------------------------------------------------------------------------------------------------------------------- 2. 用二分法求方程 0)2 (sin )(2=-=x x x f 在区间[1.5,2]内的近似根(精确到10-3)。 解:043499.05625.099749.0)25.1(5.1sin )5.1(2 >=-=-=f 009070.0190930.0)22(2sin )2(2 <-=-=-=f 所以0)2 (sin )(2 =-=x x x f 在区间[1.5,2]内有根,又 x cos )('-=x x f 在区间[1.5,2]内 0x cos )('<-=x x f 所以 0)2 (sin )(2=-=x x x f 在区间[1.5,2]内有根,且唯一。符合二分条件,可以用二分法,二分的 次数为:

西工大计算方法作业答案

参考答案 第一章 1 *1x =1.7; * 2x =1.73; *3x =1.732 。 2. 3. (1) ≤++)(* 3*2*1x x x e r 0.00050; (注意:应该用相对误差的定义去求) (2) ≤)(*3*2*1x x x e r 0.50517; (3) ≤)/(*4*2x x e r 0.50002。 4.设6有n 位有效数字,由6≈2.4494……,知6的第一位有效数字1a =2。 令3)1()1(1* 102 1 102211021)(-----?≤??=?= n n r a x ε 可求得满足上述不等式的最小正整数n =4,即至少取四位有效数字,故满足精度要求可取6≈2.449。 5. 答:(1)*x (0>x )的相对误差约是* x 的相对误差的1/2倍; (2)n x )(* 的相对误差约是* x 的相对误差的n 倍。 6. 根据******************** sin 21)(cos 21sin 21)(sin 21sin 21)(sin 21)(c b a c e c b a c b a b e c a c b a a e c b S e r ++≤ =* *****) ()()(tgc c e b b e a a e ++ 注意当20* π < >c tgc ,即1 *1 * )() (--

7.设20= y ,41.1*0 =y ,δ=?≤--2* 00102 1y y 由 δ1* 001*111010--≤-=-y y y y , δ2*111*221010--≤-=-y y y y M δ10*991*10101010--≤-=-y y y y 即当0y 有初始误差δ时,10y 的绝对误差的绝对值将减小10 10-倍。而110 10 <<-δ,故计算过程稳定。 8. 变形后的表达式为: (1))1ln(2--x x =)1ln(2-+-x x (2)arctgx x arctg -+)1(=) 1(11 ++x x arctg (3) 1ln )1ln()1(ln 1 --++=? +N N N N dx x N N =ΛΛ+-+- +3 2413121)1ln(N N N N 1ln )11ln()1(-++ +=N N N N =1)1ln()1 1ln(-+++N N N (4)x x sin cos 1-=x x cos 1sin +=2x tg

2020年奥鹏吉大网络教育《计算方法》大作业解答

2020年奥鹏吉大网络教育《计算方法》大作业解答 (说明:前面是题目,后面几页是答案完整解答部分,注意的顺序。) 一、解线性方程 用矩阵的LU分解算法求解线性方程组 用矩阵的Doolittle分解算法求解线性方程组 用矩阵的Doolittle分解算法求解线性方程组 用高斯消去法求解线性方程组 用高斯消去法求解线性方程组 用主元素消元法求解线性方程组 用高斯消去法求解线性方程组 利用Doolittle分解法解方程组Ax=b,即解方程组 1、用矩阵的LU分解算法求解线性方程组 X1+2X2+3X3 = 0 2X1+2X2+8X3 = -4 -3X1-10X2-2X3 = -11 2、用矩阵的Doolittle分解算法求解线性方程组 X1+2X2+3X3 = 1 2X1– X2+9X3 = 0 -3X1+ 4X2+9X3 = 1 3、用矩阵的Doolittle分解算法求解线性方程组 2X1+X2+X3 = 4 6X1+4X2+5X3 =15 4X1+3X2+6X3 = 13 4、用高斯消去法求解线性方程组

2X 1- X 2+3X 3 = 2 4X 1+2X 2+5X 3 = 4 -3X 1+4X 2-3X 3 = -3 5、用无回代过程消元法求解线性方程组 2X 1- X 2+3X 3 = 2 4X 1+2X 2+5X 3 = 4 -3X 1+4X 2-3X 3 = -3 6、用主元素消元法求解线性方程组 2X 1- X 2+3X 3 = 2 4X 1+2X 2+5X 3 = 4 -3X 1+4X 2-3X 3 = -3 7、用高斯消去法求解线性方程组 123123123234 4272266 x x x x x x x x x -+=++=-++= 8、利用Doolittle 分解法解方程组Ax=b ,即解方程组 12341231521917334319174262113x x x x -? ????? ???? ??-??????=? ? ????--?????? --???? ??

数值计算方法习题答案(绪论,习题1,习题2)

引论试题(11页) 4 试证:对任给初值x 0, 0)a >的牛顿迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 2112(1)(,0,1,2,.... (2)1,2,...... k k k x k x x k x k +-=≥= 证明: (1 )(2 2 11222k k k k k k k k x a x a x x x x x +-??-+=+= =? ?? (2) 取初值00>x ,显然有0>k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而() k k k k k x x x x x 28882182 1-=-???? ??+=-+ n n k k x x 21221102 1 5.22104185 .28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。 8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021*?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1a 为*x 中第一个非零数) 则7.21=x ,有两位有效数字,相对误差限为

025.0102 21 111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x ∴其相对误差限为 00678.07 .20183 .011≈<-x e x 同理对于71.22=x ,有 003063 .071 .20083 .022≈<-x e x 对于718.23=x ,有 00012.0718 .20003 .033≈<-x e x 备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。 (2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。 11. 解: ......142857.3722≈,.......1415929.3113 255≈ 21021 722-?≤-∴ π,具有3位有效数字 6102 1 113255-?≤-π,具有7位有效数字

(完整word版)计算方法习题集及答案.doc

习题一 1. 什么叫数值方法?数值方法的基本思想及其优劣的评价标准如何? 数值方法是利用计算机求解数学问题近似解的方法 x max x i , x ( x 1 , x 2 , x n ) T R n 及 A n R n n . 2. 试证明 max a ij , A ( a ij ) 1 i n 1 i n 1 j 证明: ( 1)令 x r max x i 1 i n n p 1/ p n x i p 1/ p n x r p 1/ p 1/ p x lim( x i lim x r [ ( ] lim x r [ lim x r ) ) ( ) ] x r n p i 1 p i 1 x r p i 1 x r p 即 x x r n p 1/ p n p 1/ p 又 lim( lim( x r x i ) x r ) p i 1 p i 1 即 x x r x x r ⑵ 设 x (x 1,... x n ) 0 ,不妨设 A 0 , n n n n 令 max a ij Ax max a ij x j max a ij x j max x i max a ij x 1 i n j 1 1 i n j 1 1 i n j 1 1 i n 1 i n j 1 即对任意非零 x R n ,有 Ax x 下面证明存在向量 x 0 0 ,使得 Ax 0 , x 0 n ( x 1,... x n )T 。其中 x j 设 j a i 0 j ,取向量 x 0 sign(a i 0 j )( j 1,2,..., n) 。 1 n n 显然 x 0 1 且 Ax 0 任意分量为 a i 0 j x j a i 0 j , i 1 i 1 n n 故有 Ax 0 max a ij x j a i 0 j 即证。 i i 1 j 1 3. 古代数学家祖冲之曾以 355 作为圆周率的近似值,问此近似值具有多少位有效数字? 113 解: x 325 &0.314159292 101 133 x x 355 0.266 10 6 0.5 101 7 该近似值具有 7 为有效数字。

西安交通大学计算方法B大作业

计算方法上机报告 姓名: 学号: 班级:

目录 题目一------------------------------------------------------------------------------------------ - 4 - 1.1题目内容 ---------------------------------------------------------------------------- - 4 - 1.2算法思想 ---------------------------------------------------------------------------- - 4 - 1.3Matlab源程序----------------------------------------------------------------------- - 5 - 1.4计算结果及总结 ------------------------------------------------------------------- - 5 - 题目二------------------------------------------------------------------------------------------ - 7 - 2.1题目内容 ---------------------------------------------------------------------------- - 7 - 2.2算法思想 ---------------------------------------------------------------------------- - 7 - 2.3 Matlab源程序---------------------------------------------------------------------- - 8 - 2.4计算结果及总结 ------------------------------------------------------------------- - 9 - 题目三----------------------------------------------------------------------------------------- - 11 - 3.1题目内容 --------------------------------------------------------------------------- - 11 - 3.2算法思想 --------------------------------------------------------------------------- - 11 - 3.3Matlab源程序---------------------------------------------------------------------- - 13 - 3.4计算结果及总结 ------------------------------------------------------------------ - 14 - 题目四----------------------------------------------------------------------------------------- - 15 - 4.1题目内容 --------------------------------------------------------------------------- - 15 - 4.2算法思想 --------------------------------------------------------------------------- - 15 - 4.3Matlab源程序---------------------------------------------------------------------- - 15 - 4.4计算结果及总结 ------------------------------------------------------------------ - 16 - 题目五----------------------------------------------------------------------------------------- - 18 -

计算方法上机实习题大作业(实验报告).

计算方法实验报告 班级: 学号: 姓名: 成绩: 1 舍入误差及稳定性 一、实验目的 (1)通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; (2)通过上机计算,了解舍入误差所引起的数值不稳定性 二、实验内容 1、用两种不同的顺序计算10000 21n n -=∑,分析其误差的变化 2、已知连分数() 1 01223//(.../)n n a f b b a b a a b =+ +++,利用下面的算法计算f : 1 1 ,i n n i i i a d b d b d ++==+ (1,2,...,0 i n n =-- 0f d = 写一程序,读入011,,,...,,,...,,n n n b b b a a 计算并打印f 3、给出一个有效的算法和一个无效的算法计算积分 1 041 n n x y dx x =+? (0,1,...,1 n = 4、设2 2 11N N j S j == -∑ ,已知其精确值为1311221N N ?? -- ?+?? (1)编制按从大到小的顺序计算N S 的程序 (2)编制按从小到大的顺序计算N S 的程序 (3)按两种顺序分别计算10001000030000,,,S S S 并指出有效位数 三、实验步骤、程序设计、实验结果及分析 1、用两种不同的顺序计算10000 2 1n n -=∑,分析其误差的变化 (1)实验步骤: 分别从1~10000和从10000~1两种顺序进行计算,应包含的头文件有stdio.h 和math.h (2)程序设计: a.顺序计算

#include #include void main() { double sum=0; int n=1; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0)printf("sun[%d]=%-30f",n,sum); if(n>=10000)break; n++; } printf("sum[%d]=%f\n",n,sum); } b.逆序计算 #include #include void main() { double sum=0; int n=10000; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0) printf("sum[%d]=%-30f",n,sum); if(n<=1)break; n--; } printf("sum[%d]=%f\n",n,sum); } (3)实验结果及分析: 程序运行结果: a.顺序计算

计算方法习题答案

计算方法第3版习题答案 习题1解答 1.1 解:直接根据定义得 *411()102x δ-≤?*411()102r x δ-≤?*3*12211 ()10,()1026 r x x δδ--≤?≤?*2*5331()10,()102r x x δδ--≤?≤ 1.2 解:取4位有效数字 1.3解:433 5124124124 ()()() 101010() 1.810257.563 r a a a a a a a a a δδδδ----++++++≤≤=?++? 123()r a a a δ≤ 123132231123 ()()() a a a a a a a a a a a a δδδ++0.016= 1.4 解:由于'1(),()n n f x x f x nx -==,故***1*(())()()()n n n f x x x n x x x δ-=-≈- 故** * ***(()) (())()0.02()r r n f x x x f x n n x n x x δδδ-= ≈== 1.5 解: 设长、宽和高分别为 ***50,20,10l l h h εεωωεεεε=±=±=±=±=±=± 2()l lh h ωωA =++,*************()2[()()()()()()]l l l h h l h h εδωωδδδωδδωA =+++++ ***4[]320l h εωε=++= 令3201ε<,解得0.0031ε≤, 1.6 解:设边长为x 时,其面积为S ,则有2()S f x x ==,故 '()()()2()S f x x x x δδδ≈= 现100,()1x S δ=≤,从而得() 1 ()0.00522100 S x x δδ≈ ≤ =? 1.7 解:因S ld =,故 S d l ?=?,S l d ?=?,*****()()()()()S S S l d l d δδδ??≈+?? * 2 ()(3.12 4.32)0.010.0744S m δ=+?=, *** ** * () () 0.0744 ()0.55%13.4784 r S S S l d S δδδ= = = ≈ 1.8 解:(1)4.472 (2)4.47 1.9 解:(1) (B )避免相近数相减 (2)(C )避免小除数和相近数相减 (3)(A )避免相近数相减 (3)(C )避免小除数和相近数相减,且节省对数运算 1.10 解 (1)357sin ...3!5!7!x x x x x =-+-+ 故有357 sin ..3!5!7! x x x x x -=-+-, (2) 1 (1)(1)1lnxdx ln ln ln N+N =N N +-N N +N +-? 1 (1)1ln ln N +=N +N +-N 1.11 解:0.00548。 1.12解:21 16 27 3102 ()()() -? 1.13解:0.000021

计算方法-刘师少版课后习题答案

1.1 设3.14, 3.1415, 3.1416分别作为π的近似值时所具有的有效数字位数 解 近似值x =3.14=0.314×101,即m =1,它的绝对误差是 -0.001 592 6…,有 31105.06592001.0-*?≤=- x x . 即n =3,故x =3.14有3位有效数字. x =3.14准确到小数点后第2位. 又近似值x =3.1416,它的绝对误差是0.0000074…,有 5-1*10?50≤00000740=-.. x x 即m =1,n =5,x =3.1416有5位有效数字. 而近似值x =3.1415,它的绝对误差是0.0000926…,有 4-1*10?50≤00009260=-.. x x 即m =1,n =4,x =3.1415有4位有效数字. 这就是说某数有s 位数,若末位数字是四舍五入得到的,那么该数有s 位有效数字 1.2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限: 2.0004 -0.00200 9000 9000.00 解 (1)∵ 2.0004=0.20004×101, m=1 绝对误差限:4105.0000049.020004.0-*?≤≤-=-x x x m -n =-4,m =1则n =5,故x =2.0004有5位有效数字 1x =2,相对误差限000025.010******** 1)1(1 =??=??=---n r x ε (2)∵ -0.00200= -0.2×10-2, m =-2 5105.00000049.0)00200.0(-*?≤≤--=-x x x m -n =-5, m =-2则n =3,故x =-0.00200有3位有效数字 1x =2,相对误差限3 110221 -??=r ε=0.0025 (3) ∵ 9000=0.9000×104, m =4, 0105.049.09000?<≤-=-*x x x m -n =0, m =4则n =4,故x =9000有4位有效数字 4 110921-??=r ε=0.000056 (4) ∵9000.00=0.900000×104, m =4, 2105.00049.000.9000-*?<≤-=-x x x m -n =-2, m =4则n =6,故x =9000.00有6位有效数字 相对误差限为6 110921-??=r ε=0.000 00056 由(3)与(4)可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 1.3 ln2=0.69314718…,精确到310-的近似值是多少? 解 精确到310-=0.001,即绝对误差限是ε=0.0005, 故至少要保留小数点后三位才可以.ln2≈0.693 2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过 31021-?至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10. 2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过 0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0 ∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间 [0,1]内有唯一实根. 给定误差限ε=0.5×10-4,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 7287.1312lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14. 2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式: (1)211x x +=,迭代公式2111k k x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。 解:(1)令211)(x x f +=,则32)(x x f -=',由于

数值计算方法习题答案(第二版)(绪论)

数值分析 (p11页) 4 试证:对任给初值x 0, 0)a >的牛顿迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 2112(1)(,0,1,2,.... (2)1,2,...... k k k x k x x k x k +-=≥= 证明: (1 )(2 1122k k k k k k x a x x x x +-??=+= =? ?? (2) 取初值00>x ,显然有0>k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而() k k k k k x x x x x 28882182 1-=-???? ? ?+=-+ n n k k x x 21221102 1 5.22104185 .28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。 8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021*?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1a 为*x 中第一个非零数)

则7.21=x ,有两位有效数字,相对误差限为 025.0102 21 111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x ∴其相对误差限为00678.07 .20183.011≈<-x e x 同理对于71.22=x ,有 003063 .071 .20083 .022≈<-x e x 对于718.23=x ,有 00012.0718 .20003 .033≈<-x e x 备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。 (2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。 11. 解: ......142857.3722≈,.......1415929.3113 255≈ 2102 1 722-?≤-∴ π,具有3位有效数字

计算方法作业参考答案(不断更新)

: 第一次作业 1.下列各数都是经过四舍五入得到的近似数,指出他们有几位有效数字,并写出绝对误差限。 9800107480.566.385031.01021.1*65*5*4*3*2*1=?=====x x x x x x 解: 1* 11011021.01021.1?==x ,有5位有效数字,绝对误差限为4-5-1105.0105.0?=?; 1-* 2 1031.0031.0?==x ,有2位有效数字,绝对误差限为3-2-1-105.0105.0?=?; 3* 3103856.06.385?==x ;有4位有效数字,绝对误差限为-14-3105.0105.0?=?; 2* 41056480.0480.56?==x ;有5位有效数字,绝对误差限为3-5-2105.0105.0?=?; ; 65* 5 107.0107?=?=x ;有1位有效数字,绝对误差限为51-6105.0105.0?=?; 4* 6 109800.09800?==x ;有4位有效数字,绝对误差限为5.0105.04-4=?。 2.要使20的近似值的相对误差限小于%1.0,要取几位有效数字 解:由于110447213595.047213595.420??=?=,设要取n 位有效数字,则根据 定理,有()()%1.01081 1021111

计算方法大作业非线性方程求根的新方法

计算方法大作业 题目:非线性方程求根的新方法 班级:xxx 学号:xxx 姓名:xxx

非线性方程求根的新方法 一、问题引入 在计算和实际问题中经常遇到如下非线性问题的求解: F(x)=0 (1) 我们经常采用的方法是经典迭代法: 经典迭代方法 不动点迭代方法是一种应用广泛的方法,其加速方法较多,如Stiffensen加速方法的局部收敛阶(以下简称为收敛阶)为2阶;牛顿迭代方法的收敛阶亦为2阶,且与其相联系的一些方法如简化牛顿法、牛顿下山法、弦截法的收敛阶阶数介于1和2之间;而密勒法的收敛阶与牛顿法接近,但计算量较大且涉及零点的选择问题,同时收敛阶也不够理想。 因此本文介绍一种新的迭代方法 从代数角度看,牛顿法和密勒法分别是将f(x)在xk附近近似为一线性函数和二次抛物插值函数,一种很自然的想法就是能否利用Taylor展开,将f(x)在xk附近近似为其他的二次函数?答案是肯定的.其中的一种方法是将f(x)在Xk处展开3项,此时收敛阶应高于牛顿法,这正是本文的出发点. 二、算法推导 设函数f(x)在xk附近具有二阶连续导数,则可将f(x)在xk处进行二阶Taylor展开,方程(1) 可近似为如下二次方程: f(xk)+f’(xk)(x-xk)+2^(-1)f’’(xk)(x-xk)^2=0,(2) 即 2^(-1)f’’(xk)x^2+(f’(xk)-xkf’’(xk))x+2^(-1)f’’(xk)xk^2-xkf’(xk)+f(xk)=0(3) 利用求根公式可得 X=xk-(f’’(xk))^(-1)(f’(xk))-sqrt((f’(xk)^2±2f’’(xk)f(xk)))(4) 其中±符号的选取视具体问题而定,从而可构造迭代公式 X k+1=xk-(f’’(xk))^(-1)(f’(xk))-sqrt((f’(xk)^2±2f’’(xk)f(xk)))(5) 确定了根号前正负号的迭代公式(5),可称为基于牛顿法和Taylor展开的方法,简记为BNT 方法. 为描述方便起见,以下将f(xk),f’(xk),f’’(xk)分别记为f,f’,f’’.首先,二次方程(3)对应于一条抛物曲线,其开口方向由f’’(xk),x∈U(xk)的符号确定,其中U(xk)为xk的某邻域,其顶点为 P(xk-(f’’)^(-1)f’,fk-(2f’’)^(-1)(f’)^2).为使(5)式唯一确定x k+1,须讨论根式前正负号的取舍问题.下面从该方法的几何意义分析(5)式中正负号的取舍. 1)当f(xk)=o时,z。即为所求的根. 2)当f(xk)>O时,根据y=f(x)的如下4种不同情形(见图1)确定(5)式中根号前的符号. (a)当f’’(xk)o时,“±”取为“一”;(b)当f’’(xk)o,f(xk)>o时,“±”取为“一”;(d)当f’’(xk)>o,f(xk)o时,“±”取为“+”;(b)当 f’’(xk)o,f(xk)>o时,“±”取为“+”;(d)当f’’(xk)>o,f(xk)

相关文档
最新文档