高中物理圆周运动与动量综合问题题型总结精讲精练

合集下载

高一物理 必修2 5.4圆周运动的运动学问题 知识点总结 题型总结 同步巩固 新高考 练习

高一物理  必修2  5.4圆周运动的运动学问题   知识点总结   题型总结   同步巩固  新高考  练习

高中物理 必修2 圆周运动的运动学问题1、描述圆周运动的物理量描述圆周运动的基本参量有:半径、线速度、角速度、周期、频率、转速、向心加速度等。

(1)v =∆l∆t =2πr T =2πrf(2)ω=∆θ∆t =2πT(3)T =1f =2πr v3、圆周运动中的运动学分析 (1)对公式v =ωr 的理解当r 一定时,v 与ω成正比;当ω一定时,v 与r 成正比;当v 一定时,ω与r 成反比。

(2)对a =v 2r=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比。

在分析传动装置中的各物理量时,要抓住不等量和想等量的关系,具体有: (1)同一转轴的轮上各点角速度ω相同,而线速度v=ωr 与半径r 成正比。

(2)当皮带(或链条、齿轮)不打滑时,传动皮带上各点以及用皮带连接的两轮边沿上的各点线速度大小相等,而角速度ω=vr 与半径r 成反比。

(3)齿轮传动时,两轮的齿数与半径成正比,角速度与齿数成反比。

1、如图所示装置中,A、B、C三个轮的半径分别为r、2r、4r,b点到圆心的距离为r,求图中a、b、c、d各点的线速度之比、角速度之比、加速度之比,周期之比,转速之比,频率之比。

答案:①2:1:2:4;②2:1:1:1;③4:1:2:4;④1:2:2:2;⑤2:1:1:1;⑥2:1:1:12、一个环绕中心线AB以一定的角速度转动,P、Q为环上两点,位置如图所示,下列说法正确的是(A)A.P、Q两点的角速度相等B.P、Q两点的线速度相等C.P、Q两点的角速度之比为3∶1D.P、Q两点的线速度之比为3∶13、自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径R B=4R A、R C=8R A,如图所示.正常骑行时三轮边缘的向心加速度之比a A∶a B∶a C等于(C)A.1∶1∶8 B.4∶1∶4C.4∶1∶32 D.1∶2∶44、如图所示,传动轮A、B、C的半径之比为2︰1︰2,A、B两轮用皮带传动,皮带不打滑,B、C两轮同轴,a、b、c三点分别处于A、B、C三轮的边缘,d点在A轮半径的中点。

高中物理第六章圆周运动重点知识归纳(带答案)

高中物理第六章圆周运动重点知识归纳(带答案)

高中物理第六章圆周运动重点知识归纳单选题1、关于匀速圆周运动,下列说法正确的是()A.匀速圆周运动是匀速运动B.匀速圆周运动是变速运动C.匀速圆周运动的线速度不变D.做匀速圆周运动的物体必处于平衡状态答案:BABC.匀速圆周运动过程,线速度大小保持不变,方向时刻改变,故匀速圆周运动是变速运动,AC错误,B 正确;D.做匀速圆周运动的物体,所受合外力作为向心力,没有处于平衡状态,D错误。

故选B。

2、无级变速是在变速范围内任意连续地变换速度,性能优于传统的挡位变速器,很多种高档汽车都应用了无级变速。

如图所示是截锥式无级变速模型示意图,两个锥轮之间有一个滚轮,主动轮、滚轮、从动轮之间靠着彼此之间的摩擦力带动。

当位于主动轮和从动轮之间的滚轮从左向右移动时,从动轮转速降低;滚轮从右向左移动时,从动轮转速增加。

当滚轮位于主动轮直径为D1、从动轮直径为D2的位置时,主动轮转速n1、从动轮转速n2的关系是()A.n1n2=D1D2B.n1n2=D2D1C.n2n1=D12D22D.n2n1=√D1D2答案:B因主动轮、从动轮边缘的线速度大小相等,所以2πn1D12=2πn2D22即n1 n2=D2D1故选B。

3、如图所示为一皮带传动轮,大轮直径是小轮直径的3倍,A是大轮边缘上一点,B是小轮边缘上一点,C 是大轮上一点,C到圆心O1的距离等于小轮半径,转动时皮带不打滑。

关于A、B、C三点的角速度大小之比ωA∶ωB∶ωC、线速度大小之比vA∶vB∶vC,向心加速度大小之比a A∶a B∶a C,下列判断正确的是()A.ωA∶ωB∶ωC=1∶3∶3B.vA∶vB∶vC=3∶3∶1C.aA∶aB∶aC=3∶6∶1D.aA∶aB∶aC=3∶3∶1答案:BA.A、B两点是靠皮带传动的轮子边缘上的点,线速度大小相等,因为大轮的半径是小轮半径的3倍,根据v=rω知ωA∶ωB=1∶3因为A、C共轴转动,则角速度相等,所以ωA∶ωB∶ωC=1∶3∶1故A错误。

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)及解析

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)及解析

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD 水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0gR B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度gR x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >3)()44R π+ 【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+3.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D =5m/s ; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s4.游乐场正在设计一个全新的过山车项目,设计模型如图所示,AB 是一段光滑的半径为R 的四分之一圆弧轨道,后接一个竖直光滑圆轨道,从圆轨道滑下后进入一段长度为L 的粗糙水平直轨道BD ,最后滑上半径为R 圆心角060θ=的光滑圆弧轨道DE .现将质量为m 的滑块从A 点静止释放,通过安装在竖直圆轨道最高点C 点处的传感器测出滑块对轨道压力为mg ,求:(1)竖直圆轨道的半径r .(2)滑块在竖直光滑圆弧轨道最低点B 时对轨道的压力.(3)若要求滑块能滑上DE 圆弧轨道并最终停在平直轨道上(不再进入竖直圆轨道),平直轨道BD 的动摩擦因数μ需满足的条件. 【答案】(1)3R (2)7mg (3)2R RL L μ<≤ 【解析】(1) 对滑块,从A 到C 的过程,由机械能守恒可得:21(2)2C mg R r mv -=22Cv mg m r=解得:3R r =; (2) 对滑块,从A 到B 的过程,由机械能守恒可得:212B mgR mv =在B 点,有:2Bv N mg m r-=可得:滑块在B 点受到的支持力 N=7mg ;由牛顿第三定律可得,滑块在B 点对轨道的压力7N N mg '==,方向竖直向下;(3) 若滑块恰好停在D 点,从B 到D 的过程,由动能定理可得:2112B mgL mv μ-=-可得:1R Lμ=若滑块恰好不会从E 点飞出轨道,从B 到E 的过程,由动能定理可得:221(1cos )2B mgL mgR mv μθ---=-可得:22R Lμ=若滑块恰好滑回并停在B 点,对于这个过程,由动能定理可得:231·22B mg L mv μ-=-综上所述,μ需满足的条件:2R R L Lμ<<.5.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R6.如图,1111C D E F 和2222C D E F 是距离为L 的相同光滑导轨,11C D 和11E F 为两段四分之一圆弧,半径分别为18r r =和2.r r =在水平矩形1122D E E D 内有竖直向上的匀强磁场,磁感应强度为.B 导体棒P 、Q 的长度均为L ,质量均为m ,电阻均为R ,其余电阻不计,Q 停在图中位置,现将P 从轨道最高点无初速释放,则()1求导体棒P 进入磁场瞬间,回路中的电流的大小和方向(顺时针或逆时针);()2若P 、Q 不会在轨道上发生碰撞,棒Q 到达12E E 瞬间,恰能脱离轨道飞出,求导体棒P 离开轨道瞬间的速度;()3若P 、Q 不会在轨道上发生碰撞,且两者到达12E E 瞬间,均能脱离轨道飞出,求回路中产生热量的范围. 【答案】(12BL gr方向逆时针(2)3gr (3)3mgr ≤Q ≤4mgr . 【解析】(1)导体棒P 由12C C 下滑到12D D ,根据机械能守恒定律:211 42D D mgr mv v gr ==,求导体棒P 到达12D D 瞬间:D E BLv = 回路中的电流:22BL grE I R ==(2)棒Q 到达12E E 瞬间,恰能脱离轨道飞出,此时对Q :22QQ mv mg v gr r ==设导体棒P 离开轨道瞬间的速度为P v ,根据动量守恒定律:D P Q mv mv mv =+ 代入数据得:3P v gr =(3)由()2若导体棒Q 恰能在到达12E E 瞬间飞离轨道,P 也必能在该处飞离轨道 根据能量守恒,回路中产生的热量22211113222D P Q Q mv mv mv mgr =--= 若导体棒Q 与P 能达到共速v ,则根据动量守恒:()2D mv m m v v gr =+⇒=回路中产生的热量()22211422D Q mv m m v mgr =-+=; 【点睛】根据机械能守恒定律求出求导体棒P 到达12D D 的速度大小,然后根据法拉第电磁感应定律即可求解;恰好脱了轨道的条件是重力提供向心力,两棒作用过程中动量守恒,由此可正确解答;根据题意求出临界条件结合动量守恒和功能关系即可正确求解;本题是电磁感应与电路、磁场、力学、功能关系,临界条件等知识的综合应用,重点考查了功能关系以及动量守恒定律的应用,是考查分析和处理综合题的能力的好题.7.如图所示,竖直平面内固定有一半径R =1m 的14光滑圆轨道AB 和一倾角为45°且高为H =5m 的斜面CD ,二者间通过一水平光滑平台BC 相连,B 点为圆轨道最低点与平台的切点.现将质量为m 的一小球从圆轨道A 点正上方h 处(h 大小可调)由静止释放,巳知重力加速度g =10m/s 2,且小球在点A 时对圆轨道的压力总比在最低点B 时对圆轨道的压力小3mg .(1)若h =0,求小球在B 点的速度大小;(2)若h =0.8m ,求小球落点到C 点的距离;(结果可用根式表示)(3)若在斜面中点竖直立一挡板,使得无论h 为多大,小球不是越不过挡板,就是落在水平地面上,则挡板的最小长度l 为多少? 【答案】(1)25/m s (261m (3)1.25m 【解析】 【分析】 【详解】(1)从释放小球至A 点根据速度与位移关系有22A v gh =在A 点,根据牛顿第二定律21AN v F m R=在B 点,根据牛顿第二定律22BN v F mg m R-=根据题意有213N N F F mg -=故2()B v g R h =+若0h =,则小球在B 点的速度1225m/s v gR ==;(2)小球从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点则水平方向0x t v =竖直方向212y H gt ==又因为斜面倾角为45°,则x y =解得05m/s v =对应的高度00.25m h =若0.80.25h m m =>,小球将落在水平地面上,而小球在B 点的速度26m/s v =小球做平抛运动竖直方向212H gt =得1t s =则水平方向126m x v t ==故小球落地点距C 点的距离s ==;(3)若要求无论h 为多大,小球不是打到挡板上,就是落在水平地面上,临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:35m/s v = 则从C 点至挡板最高点过程中水平方向3''x v t =竖直方向'2122H y l gt =-=' 又2Hx '=解得1.25m l =.点睛:本题研究平抛运动与圆周运动想结合的问题,注意分析题意,找出相应的运动过程,注意方程式与数学知识向结合即可求解.8.过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径1 2.0m R =、2 1.4m R =.一个质量为 1.0m =kg 的小球(视为质点),从轨道的左侧A 点以012.0m/s v =的初速度沿轨道向右运动,A 、B 间距1 6.0L =m .小球与水平轨道间的动摩擦因数0.2μ=,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠,如果小球恰能通过第二圆形轨道.如果要使小球不能脱离轨道,试求在第三个圆形轨道的设计中,半径3R 应满足的条件.(重力加速度取210m/s g =,计算结果保留小数点后一位数字.)【答案】300.4R m <≤或 31.027.9m R m ≤≤ 【解析】 【分析】 【详解】设小球在第二个圆轨道的最高点的速度为v 2,由题意222v mg m R = ①()22122011222mg L L mgR mv mv μ-+-=- ② 由①②得 12.5L m = ③要保证小球不脱离轨道,可分两种情况进行讨论:I .轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v 3,应满足233v mg m R = ④()221330112222mg L L mgR mv mv μ-+-=- ⑤ 由④⑤得30.4R m = ⑥II .轨道半径较大时,小球上升的最大高度为R 3,根据动能定理()213012202mg L L mgR mv μ-+-=- ⑦解得 3 1.0R m = ⑧为了保证圆轨道不重叠,R 3最大值应满足()()2222332R R L R R +=+- ⑨ 解得:R 3=27.9m ⑩综合I 、II ,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件 300.4R m <≤或 31.027.9m R m ≤≤ ⑾【点睛】本题为力学综合题,要注意正确选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小球恰能通过圆形轨道的含义以及要使小球不能脱离轨道的含义.9.如图,半径R =0.4m 的部分光滑圆轨道与水平面相切于B 点,且固定于竖直平面内.在水平面上距B 点s =5m 处的A 点放一质量m =3kg 的小物块,小物块与水平面间动摩擦因数为1=3μ.小物块在与水平面夹角θ=37o 斜向上的拉力F 的作用下由静止向B 点运动,运动到B 点撤去F ,小物块沿圆轨道上滑,且能到圆轨道最高点C .(g 取10m/s 2,sin37o =0.6,cos37o =0.8)求:(1)小物块在B 点的最小速度v B 大小;(2)在(1)情况下小物块在水平面上运动的加速度大小;(3)为使小物块能沿水平面运动并通过圆轨道C 点,则拉力F 的大小范围.【答案】(1)25/B v m s = (2)22/a m s = (3)1650N F N ≤≤(或1650N F N ≤<) 【解析】【详解】(1) 小物块恰能到圆环最高点时,物块与轨道间无弹力.设最高点物块速度为v C ,则2C v mg m R= 解得:2C v gR = 物块从B 到C 运动,只有重力做功,所以其机械能守恒:()2211222B C mv mv mg R =+ 解得:525m/s B v gR ==(2) 根据运动学规律22B v as =,解得222m/s 2B v a s== (3)小物块能沿水平面运动并通过圆轨道C 点,有两种临界情况: ①在F 的作用下,小物块刚好过C 点:物块在水平面上做匀加速运动,对物块在水平面上受力分析如图:则 Fcos N ma θμ-=Fsin N mg θ+=联立解得:16N mg ma F cos sin μθμθ+==+ ②在F 的作用下,小物块受水平地面的支持力恰好为零Fsin mg θ=, 解得:50N =F综上可知,拉力F 的范围为:16N 50N F ≤≤(或16N 50N F ≤<)10.如图所示,在水平轨道右侧固定半径为R 的竖直圆槽形光滑轨道,水平轨道的PQ 段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。

车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。

【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。

(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角θ=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t =0时,导体棒位于顶角O 处;导体棒的质量为m =4kg ;OM 、ON 接触处O 点的接触电阻为R =0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求:(1)t =2s 时流过导体棒的电流强度的大小; (2)在1~2s 时间内导体棒所受安培力的冲量大小;(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)8A (2)8N s ⋅(3)32639F x =+【解析】 【分析】 【详解】(1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为4V E =由欧姆定律得24A 8A 0.5E I R === (2)由图2可知,1(T m)x B =⋅ 由图3可知,E 与时间成正比,有E =2t (V )4EI t R== 因θ=53°,可知任意t 时刻回路中导体棒有效切割长度43x L = 又由F BIL =安所以163F t 安=即安培力跟时间成正比所以在1~2s 时间内导体棒所受安培力的平均值163233N 8N2F +==故8N s I F t =∆=⋅安(3)因为43vE BLv Bx ==⋅所以1.5(m/s)v t =可知导体棒的运动时匀加速直线运动,加速度21.5m/s a =又212x at =,联立解得 32639F x =+【名师点睛】本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系,要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式.3.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。

高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ;(2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】【分析】 (1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v - 解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2d B B v m g m R= 由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m (3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,ABCD 是一个地面和轨道均光滑的过山车轨道模型,现对静止在A 处的滑块施加一个水平向右的推力F ,使它从A 点开始做匀加速直线运动,当它水平滑行2.5 m 时到达B 点,此时撤去推力F 、滑块滑入半径为0.5 m 且内壁光滑的竖直固定圆轨道,并恰好通过最高点C ,当滑块滑过水平BD 部分后,又滑上静止在D 处,且与ABD 等高的长木板上,已知滑块与长木板的质量分别为0.2 kg 、0.1 kg ,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g =10 m/s 2,求:(1)水平推力F 的大小;(2)滑块到达D 点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N (2)(3)t =1 s ; 【解析】【分析】【详解】(1)由于滑块恰好过C 点,则有:m 1g =m 1从A 到C 由动能定理得:Fx -m 1g ·2R =m 1v C 2-0代入数据联立解得:F =1 N(2)从A 到D 由动能定理得:Fx =m 1v D 2代入数据解得:v D =5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t=1 s此时滑块的位移为:x1=v D t-a1t2,木板的位移为:x2=a2t2,L=x1-x2,代入数据解得:L=2.5 mv共=2 m/sx2=1 m达到共同速度后木板又滑行x′,则有:v共2=2μ2gx′,代入数据解得:x′=1.5 m木板在水平地面上最终滑行的总位移为:x木=x2+x′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.3.如图所示,P为弹射器,PA、BC为光滑水平面分别与传送带AB水平相连,CD为光滑半圆轨道,其半径R=2m,传送带AB长为L=6m,并沿逆时针方向匀速转动.现有一质量m=1kg的物体(可视为质点)由弹射器P弹出后滑向传送带经BC紧贴圆弧面到达D点,已知弹射器的弹性势能全部转化为物体的动能,物体与传送带的动摩擦因数为 =0.2.取g=10m/s2,现要使物体刚好能经过D点,求:(1)物体到达D点速度大小;(2)则弹射器初始时具有的弹性势能至少为多少.【答案】(1)25m/s ;(2)62J【解析】【分析】【详解】(1)由题知,物体刚好能经过D 点,则有:2D v mg m R= 解得:25D v gR ==m/s(2)物体从弹射到D 点,由动能定理得:21202D W mgL mgR mv μ--=- p WE =解得:p E =62J4.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ;(2)P 点到A 点的距离h .【答案】(1)2.5R (2)23R 【解析】【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h .【详解】(1)在B 点时,由牛顿第二定律:2B B v N mg m R -=,其中N B =3mg ; 解得2B v gR =;从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+;由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =, 从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R5.如图所示,A 、B 两球质量均为m ,用一长为l 的轻绳相连,A 球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态.现给B 球水平向右的初速度v 0,经一段时间后B 球第一次到达最高点,此时小球位于水平横杆下方l /2处.(忽略轻绳形变)求:(1)B 球刚开始运动时,绳子对小球B 的拉力大小T ;(2)B 球第一次到达最高点时,A 球的速度大小v 1;(3)从开始到B 球第一次到达最高点的过程中,轻绳对B 球做的功W .【答案】(1)mg+m 20v l (2)2012v gl v -=3)204mgl mv - 【解析】【详解】(1)B 球刚开始运动时,A 球静止,所以B 球做圆周运动对B 球:T-mg =m 20v l得:T =mg +m 20v l (2)B 球第一次到达最高点时,A 、B 速度大小、方向均相同,均为v 1以A 、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到B 球第一次到达最高点,根据机械能守恒定律,2220111112222l mv mgl mv mv mg -=+- 得:2012v gl v -= (3)从开始到B 球第一次到达最高点的过程,对B 球应用动能定理W -mg 221011222l mv mv =- 得:W =204mgl mv -6.如图所示,竖直平面内固定有一半径R =1m 的14光滑圆轨道AB 和一倾角为45°且高为H =5m 的斜面CD ,二者间通过一水平光滑平台BC 相连,B 点为圆轨道最低点与平台的切点.现将质量为m 的一小球从圆轨道A 点正上方h 处(h 大小可调)由静止释放,巳知重力加速度g =10m/s 2,且小球在点A 时对圆轨道的压力总比在最低点B 时对圆轨道的压力小3mg .(1)若h =0,求小球在B 点的速度大小;(2)若h =0.8m ,求小球落点到C 点的距离;(结果可用根式表示)(3)若在斜面中点竖直立一挡板,使得无论h 为多大,小球不是越不过挡板,就是落在水平地面上,则挡板的最小长度l 为多少?【答案】(1)25/m s (261m (3)1.25m【解析】【分析】【详解】(1)从释放小球至A 点根据速度与位移关系有22A v gh =在A 点,根据牛顿第二定律21A N v F m R= 在B 点,根据牛顿第二定律22B N v F mg m R-= 根据题意有213N N F F mg -=故B v =若0h =,则小球在B 点的速度1v ==;(2)小球从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点则 水平方向0x t v =竖直方向212y H gt ==又因为斜面倾角为45°,则 x y =解得05m/s v =对应的高度00.25m h =若0.80.25h m m =>,小球将落在水平地面上,而小球在B 点的速度26m/s v =小球做平抛运动竖直方向212H gt =得 1t s =则水平方向126m x v t ==故小球落地点距C 点的距离22161m s x H =+=;(3)若要求无论h 为多大,小球不是打到挡板上,就是落在水平地面上,临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:35m/s v =则从C 点至挡板最高点过程中水平方向3''x v t =竖直方向'2122H y l gt =-=' 又 2H x '=解得 1.25m l =. 点睛:本题研究平抛运动与圆周运动想结合的问题,注意分析题意,找出相应的运动过程,注意方程式与数学知识向结合即可求解.7.如图所示的水平地面上有a 、b 、O 三点.将一条轨道固定在竖直平面内,粗糙的ab 段水平,bcde 段光滑,cde 是以O 为圆心,R 为半径的一段圆弧,可视为质点的物块A 和B 紧靠在一起,中间夹有少量炸药,静止于b 处,A 的质量是B 的2倍.某时刻炸药爆炸,两物块突然分离,分别向左、右沿轨道运动.B 到最高点d 时速度沿水平方向,此时轨道对B 的支持力大小等于B 所受重力的3/4,A 与ab 段的动摩擦因数为μ,重力加速度g ,求:(1)物块B 在d 点的速度大小;(2)物块A 滑行的距离s ;(3)试确定物块B 脱离轨道时离地面的高度;(4)从脱离轨道后到落到水平地面所用的时间.【答案】(12Rg 2)516R μ(3)56R (415(8311)66R g 【解析】(1)设物块A 和B 的质量分别为m A 和m B 234d B B B v m g m g m R-= 解得2d Rg v = (2)设A 、B 分开时的速度分别为v 1、v 2,系统动量守恒 120A B m v m v -=B 由位置b 运动到d 的过程中, 机械能守恒2221122B B B d m v m gR m v =+ 2252v gR = A 在滑行过程中,由动能定理21102A A m v m gs μ-=- 联立得516R s μ= (3)设物块脱离轨道时速度为v ,F N =0向心力公式 2cos v mg m Rθ= 而 ()22111cos 22d mv mgR mv θ+-= 解得 5cos 6θ= , 56v gR = 脱离轨道时离地面的高度5cos 6h R R θ==(4)离轨道时后做向下斜抛运动竖直方向:21cos sin 2h R v t gt θθ==⋅+解得:15831166Rt g = 点睛:本题考查牛顿第二定律、动能定理以及动量守恒定律的应用,解题时关键是认真分析物理过程,挖掘问题的隐含条件,例如物体脱离轨道时F N =0;能选择合适的物理规律列出方程即可解答.8.如图所示,半径为r 的圆筒绕竖直中心轴转动,小橡皮块紧贴在圆筒内壁上,它与圆筒的摩擦因数为μ,现要使小橡皮不落下,则圆筒的角速度至少多大?(设最大静摩擦力等于滑动摩擦力)【答案】g r μ 【解析】 要使A 不下落,则小物块在竖直方向上受力平衡,有f =mg当摩擦力正好等于最大静摩擦力时,圆筒转动的角速度ω取最小值,筒壁对物体的支持力提供向心力,根据向心力公式,得2N m r ω=而f =μN解得圆筒转动的角速度最小值为g rωμ= 综上所述本题答案是:g rμ 点睛:解本题要明确物块刚好不下滑的条件是什么,然后结合受力求解角速度的大小.9.如图所示,A 、B 是水平传送带的两个端点,起初以的速度顺时针运转.今将一质量为1kg 的小物块(可视为质点)无初速度地轻放在A 处,同时传送带以的加速度加速运转,物体和传送带间的动摩擦因素为0.2,水平桌面右侧有一竖直放置的光滑轨道CPN ,其形状为半径R=0.8m 的圆环剪去了左上角1350的圆弧,PN 为其竖直直径,C 点与B 点的竖直距离为R ,物体在B 点水平离开传送带后由C 点恰好无碰撞落入轨道.取g=10m/s 2,求:(1)物块由A 端运动到B 端所经历的时间.(2)AC 间的水平距离(3)小物块在P 点对轨道的压力.【答案】(1)3s (2)8.6m (3)70-10N 【解析】试题分析:(1)物体离开传送带后由C 点无碰撞落入轨道,则得在C 点物体的速度方向与C 点相切,与竖直方向成45º,有,物体从B点到C作平抛运动,竖直方向:水平方向:得出物体刚放上传送带时,由牛顿第二定律得a=2m/s2物体历时t1后与传送带共速,则a t1=v0+ a0t1,t1=1s得v1="2" m/s<4 m/s故物体此时速度还没有达到v B,且此后的过程中由于<,物体将和传送带以共同的加速度运动,设又历时t2到达B点 v B= v1+ a0t2得t2=2s所以从A运动倒B的时间t= t1+t2=3sAB间的距离s==7m(2)从B到C的水平距离s BC=v B t3=2R=1.6m所以A到C的水平距离s AC=s+s BC=8.6m(3) 对CP段由动能定理对P点应牛顿第二定律:解得:N=70-10N考点:牛顿第二定律的综合应用;平抛运动【名师点睛】此题主要是牛顿第二定律的综合应用问题;解决此题的关键是抓住过程分析及各过程之间的联系,分过程依次解决,对于在传送到上的运动又要讨论各种情况,比较复杂;对于圆周运动问题逐一分析向心力来源.有一定难度.10.如图所示,内壁粗糙、半径R=0.4 m的四分之一圆弧轨道AB在最低点B与光滑水平轨道BC相切。

高中物理高考物理生活中圆周运动解题技巧及经典题型及练习题(含)

高中物理高考物理生活中圆周运动解题技巧及经典题型及练习题(含)

高中物理高考物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 )一、高中物理精讲专题测试生活中的圆周运动1.如下图,半径R=2.5m 的竖直半圆圆滑轨道在 B 点与水平面光滑连结,一个质量m=0.50kg 的小滑块 (可视为质点 )静止在 A 点 .一刹时冲量使滑块以必定的初速度从 A 点开始运动 ,经 B 点进入圆轨道,沿圆轨道运动到最高点C,并从 C 点水平飞出 ,落在水平面上的 D 点 .经丈量 ,D、B 间的距离s1=10m,A、B 间的距离s2=15m,滑块与水平面的动摩擦因数重力加快度.求 :,(1)滑块经过 C 点时的速度大小 ;(2)滑块刚进入圆轨道时 ,在 B 点轨道对滑块的弹力 ;(3)滑块在 A 点遇到的刹时冲量的大小 .【答案】( 1)(2) 45N(3)【分析】【详解】(1)设滑块从 C 点飞出时的速度为v c,从 C 点运动到 D 点时间为t滑块从 C 点飞出后,做平抛运动,竖直方向:2R= gt2水平方向: s1=v c t解得: v c=10m/s(2)设滑块经过 B 点时的速度为v B,依据机械能守恒定律mv B2= mv c2+2mgR解得: v B=10m/s设在 B 点滑块受轨道的压力为解得: N=45NN,依据牛顿第二定律: N-mg=m(3)设滑块从 A 点开始运动时的速度为A2B2- mvA2v,依据动能定理; -μ mgs= mv解得: v A设滑块在 A 点遇到的冲量大小为I,依据动量定理I=mv A解得: I=8.1kg?m/s ;【点睛】此题综合考察动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意剖析物体运动的过程,选择正确的物理规律求解.2. 如下图,一轨道由半径 R 2m 的四分之一竖直圆弧轨道AB 和水平直轨道 BC 在 B 点光滑连结而成.现有一质量为m 1Kg 的小球从 A 点正上方 R处的 O 点由静止开释,小2球经过圆弧上的 B 点时,轨道对小球的支持力大小F N18N ,最后从 C 点水平飞离轨 道,落到水平川面上的 P . B 点与地面间的高度 h3.2m ,小球与 BC段轨道间的动 点 已知 摩擦因数 0.2 ,小球运动过程中可视为质点 . (不计空气阻力,g 取 10 m/s 2). 求:(1)小球运动至 B 点时的速度大小 v B(2)小球在圆弧轨道 AB 上运动过程中战胜摩擦力所做的功 W f(3)水平轨道 BC 的长度 L 多大时,小球落点P 与 B 点的水平距最大.【答案】( 1) v B =4?m / s ( 2) W f =22?J (3) L【分析】试题剖析: ( 1)小球在 B 点遇到的重力与支持力的协力供给向心力,由此即可求出 B 点的速度;( 2)依据动能定理即可求出小球在圆弧轨道上战胜摩擦力所做的功;( 3)联合平抛运动的公式,即可求出为使小球落点P 与 B 点的水平距离最大时BC 段的长度 .(1)小球在 B 点遇到的重力与支持力的协力供给向心力,则有: F Nmg m v B 2R解得: v B 4m / s(2)从 O 到 B 的过程中重力和阻力做功,由动能定理可得:mg RRW f 1 mv B 2 022解得: W f22J(3)由 B 到 C 的过程中,由动能定理得:mgL BC1mv C21mv B 222解得: L BCv B 2v C 22g从 C 点到落地的时间:t 02hgB 到 P 的水平距离:Lv B2v C22v C t0g代入数据,联立并整理可得:L 41v C24v C45由数学知识可知,当 v C 1.6m / s时, P 到 B 的水平距离最大,为:【点睛】该题联合机械能守恒考察平抛运动以及竖直平面内的圆周运动,解题的重点就是对每一个过程进行受力剖析,依据运动性质确立运动的方程,再依据几何关系求出最大值.3.如下图,物体 A 置于静止在圆滑水平面上的平板小车 B 的左端,物体在 A 的上方 O 点用细线悬挂一小球C(可视为质点 ),线长 L= 0.8m .现将小球 C 拉至水平无初速度开释,并在最低点与物体 A 发生水公正碰,碰撞后小球 C 反弹的速度为2m/s.已知 A、 B、 C的质量分别为 m A= 4kg、 m B= 8kg 和 m C=1kg, A、 B 间的动摩擦因数μ=, A、 C碰撞时间极短,且只碰一次,取重力加快度g= 10m/s 2.(1)求小球 C 与物体 A 碰撞前瞬时遇到细线的拉力大小;(2)求 A、 C 碰撞后瞬时 A 的速度大小;(3)若物体 A 未从小车 B 上掉落,小车 B 的最小长度为多少?【答案】 (1)30 N(2)1.5 m/s(3)0.375 m【分析】【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m0gl 1002 2m v代入数据解得: v0= 4m/s ,对小球,由牛顿第二定律得:v02 F﹣m0g=m0l代入数据解得: F=30N(2)小球 C 与 A 碰撞后向左摇动的过程中机械能守恒,得:1mv C2mgh 2因此: v C2gh 2 100.2 2m/s小球与 A 碰撞过程系统动量守恒,以小球的初速度方向为正方向,由动量守恒定律得:m0v0=﹣ m0v c+mv A代入数据解得: v A=(3)物块 A 与木板 B 互相作用过程,系统动量守恒,以A 的速度方向为正方向,由动量守恒定律得: mv A =( m+M )v代入数据解得: v =1 2 1 2由能量守恒定律得: μmgxmv A2(m+M ) v2代入数据解得: x =;4. 如下图,一质量 M =4kg 的小车静置于圆滑水平川面上,左边用固定在地面上的销钉挡住。

高考物理动量定理解题技巧及题型及练习题含答案含解析.doc

高考物理动量定理解题技巧及题型及练习题含答案含解析.doc

高考物理动量定理解题技巧及经典题型及练习题( 含答案 ) 含解析一、高考物理精讲专题动量定理1.质量为 m 的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里.求:⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I.【答案】(1) mg(t1t2t 2 )(2) mgt1【解析】试题分析:设刚开始下落的位置为A,刚好接触沙的位置为B,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t1 +t2,而阻力作用时间仅为t2,以竖直向下为正方向,有:mg(t +t )-Ft =0, 解得:方向竖直向上1 2 2⑵仍然在下落的全过程对小球用动量定理:在t1时间内只有重力的冲量,在t2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt 1-I=0,∴I=mgt1方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,长为L 的轻质细绳一端固定在地高度为 H。

现将细绳拉至与水平方向成30 O 点,另一端系一质量为m ,由静止释放小球,经过时间的小球, O 点离t 小球到达最低点,细绳刚好被拉断,小球水平抛出。

若忽略空气阻力,重力加速度为g。

(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。

请通过计算,说明你的观点。

2 m2 gL ;(3)当L H【答案】( 1) F=2mg ;( 2)I F mgt 时小球抛的最远2【解析】【分析】【详解】(1)小球从释放到最低点的过程中,由动能定理得mgLsin 30 1 m v022小球在最低点时,由牛顿第二定律和向心力公式得2mv0F mgL解得:F=2mg(2)小球从释放到最低点的过程中,重力的冲量I G=mgt动量变化量p mv0由三角形定则得,绳对小球的冲量I F mgt 2m2gL(3)平抛的水平位移x v0t ,竖直位移H L 1 gt22解得x 2L( H L)当 L H时小球抛的最远23.如图所示,质量M=1.0kg 的木板静止在光滑水平面上,质量m=0.495kg 的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

30.(合肥)质量为m=1kg 的小物块轻轻放在水平匀速运动的传送带上的P 点,随传送带运动到A 点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆孤轨道下滑。

B 、C 为圆弧的两端点,其连线水平。

已知圆弧半径R=1.0m 圆弧对应圆心角︒=106θ,轨道最低点为O ,A 点距水平面的高度h=0.8m 。

小物块离开C 点后恰能无碰撞的沿固定斜面向上运动,0.8s 后经过D 点,物块与斜面间的滑动摩擦因数为1μ=0.33(g=10m/s 2,sin37°=0.6,cos37°=0.8)试求:(1)小物块离开A 点的水平初速度v 1 (2)小物块经过O 点时对轨道的压力 (3)斜面上CD 间的距离(4)假设小物块与传送带间的动摩擦因数为=2μ0.3,传送带的速度为5m/s ,则PA 间的距离是多少?39.(巢湖)质量为M 的圆环用细线(质量不计)悬挂着,将两个质量均为m 的有孔小珠套在此环上且可以在环上做无摩擦的滑动,如图所示,今同时将两个小珠从环的顶部释放,并沿相反方向自由滑下,试求: (1)在圆环不动的条件下,悬线中的张力T 随cos θ(θ为小珠和大环圆心连线与竖直方向的夹角)变化的函数关系,并求出张力T 的极小值及相应的cos θ值;(2)小球与圆环的质量比Mm 至少为多大时圆环才有可能上升?23.福建摸底如下图所示是固定在水平地面上的横截面为“”形的光滑长直导轨槽,槽口向上(图为俯视图)。

槽内放置一个木质滑块,滑块的左半部是半径为R 的半圆柱形光滑凹槽,木质滑块的宽度为2R ,比“”形槽的宽度略小。

现有半径r(r<<R)的金属小球以水平初速度V 0冲向滑块,从滑块的一侧半圆形槽口边缘进入。

已知金属小球的质量为m ,木质滑块的质量为3m ,整个运动过程中无机械能损失。

求:(1)当金属小球滑离木质滑块时,金属小球和木质滑块的速度各是多大;(2)当金属小球经过木质滑块上的半圆柱形槽的最右端A 点时,金属小球的对地速度。

25.河南如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H 的光滑水平桌面上。

现有一滑块A 从光滑曲面上离桌面h 高处由静止开始下滑下,与滑块B 发生碰撞(时间极短)并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段时间后从桌面边缘飞出。

已知,3,,m m m m m m C B A ===求: (1)滑块A 与滑块B 碰撞结束瞬间的速度;(2)被压缩弹簧的最大弹性势能; (3)滑块C 落地点与桌面边缘的水平距离。

26.河北调研如图,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点。

水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R=0.8m 的圆环剪去了左上角135°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离也是R 。

用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点。

用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为226t t x -=,物块飞离桌面后由P 点沿切线落入圆轨道。

g=10m/s 2,求:(1)BP间的水平距离。

(2)判断m2能否沿圆轨道到达M点。

(3)释放后m2运动过程中克服摩擦力做的功27.(开城)如图所示,质量为m=0.5kg的小球从距离地面高H=5m处自由下落,到达地面时恰能沿凹陷于地面的半圆形槽壁运动,半圆形槽的半径R为0.4m,小球到达槽最低点时速率恰好为10m/s,并继续沿槽壁运动直到从槽左端边缘飞出且沿竖直方向上升、下落,如此反复几次,设摩擦力大小恒定不变,求:(1)小球第一次飞出半圆槽上升距水平地面的高度h为多少?(2)小球最多能飞出槽外几次?(g=10m/s2)。

20.海南如图所示,光滑半圆轨道竖直放置,半径为R,一水平轨道与圆轨道相切,在水平光滑轨道上停着一个质量为M = 0.99kg的木块,一颗质量为m = 0.01kg的子弹,以v o= 400m/s的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,当圆轨道半径R多大时,平抛的水平距离最大? 最大值是多少?(g取10m/s2)6.(08天津)光滑水平面上放着质量mA =1 kg的物块A与质量mB=2 kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹性势能EP=49 J.在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示.放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m,B恰能到达最高点C.取g=10 m/s2,求(1)绳拉断后瞬间B的速度vB的大小; (2)绳拉断过程绳对B的冲量I的大小; (3)绳拉断过程绳对A所做的功W.8.(08广东)如图所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45 m的1/4圆弧面,A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑,小滑块P1和P2的质量均为m,滑板的质量M=4m.P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.40,最大静摩擦力近似等于滑动摩擦力,开始时滑板紧靠槽的左端,P2静止在粗糙面的B点.P1以v=4.0 m/s的初速度从A点沿弧面自由滑下,与P2发生弹性碰撞后,P1处在粗糙面B点上,当P2滑到C点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P2继续滑动,到达D点时速度为零,P1与P2可视为质点,取g=10 m/s2.问:(1)P2在BC段向右滑动时,滑板的加速度为多大? (2)BC长度为多少?N、P1和P2最终静止后,P1与P2间的距离为多少?10.如图所示,圆管构成的半圆形竖直轨道固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管内径的小球A以某一初速度冲进轨道,到达半圆轨道最高点M时与静止于该处的质量与A相同的小球B发生碰撞,碰后两球粘在一起飞出轨道,落地点距N为2R。

重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求:(1)粘合后的两球从飞出轨道到落地的时间t;(2)小球A冲进轨道时速度v的大小。

HR地面地面36.(12广东)图18(a )所示的装置中,小物块A 、B 质量均为m ,水平面上PQ 段长为l ,与物块间的动摩擦因数为μ,其余段光滑。

初始时,挡板上的轻质弹簧处于原长;长为r 的连杆位于图中虚线位置;A 紧靠滑杆(A 、B 间距大于2r )。

随后,连杆以角速度ω匀速转动,带动滑杆作水平运动,滑杆的速度-时间图像如图18(b )所示。

A 在滑杆推动下运动,并在脱离滑杆后与静止的B 发生完全非弹性碰撞。

(1)求A 脱离滑杆时的速度u o ,及A 与B 碰撞过程的机械能损失ΔE 。

(2)如果AB 不能与弹簧相碰,设AB 从P 点到运动停止所用的时间为t 1,求ω得取值范围,及t 1与ω的关系式。

(3)如果AB 能与弹簧相碰,但不能返回道P 点左侧,设每次压缩弹簧过程中弹簧的最大弹性势能为E p ,求ω的取值范围,及E p 与ω的关系式(弹簧始终在弹性限度内)。

36、(11广东)如图20所示,以A 、B 和C 、D 为端点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑水平地面上,左端紧靠B 点,上表面所在平面与两半圆分别相切于B 、C 。

一物块被轻放在水平匀速运动的传送带上E 点,运动到A 时刚好与传送带速度相同,然后经A 沿半圆轨道滑下,再经B 滑上滑板。

滑板运动到C 时被牢固粘连。

物块可视为质点,质量为m ,滑板质量M=2m ,两半圆半径均为R ,板长l =6.5R ,板右端到C 的距离L 在R <L <5R 范围内取值。

E 距A 为S=5R ,物块与传送带、物块与滑板间的动摩擦因素均为μ=0.5,重力加速度取g. (1) 求物块滑到B 点的速度大小;(2) 试讨论物块从滑上滑板到离开滑板右端的过程中,克服摩擦力做的功W f 与L 的关系,并判断物块能否滑到CD 轨道的中点。

15.(09·安徽)过山车是游乐场中常见的设施。

下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径1 2.0m R =、2 1.4m R =。

一个质量为 1.0m =kg 的小球(视为质点),从轨道的左侧A 点以012.0m /s v =的初速度沿轨道向右运动,A 、B 间距1 6.0L =m 。

小球与水平轨道间的动摩擦因数0.2μ=,圆形轨道是光滑的。

假设水平轨道足够长,圆形轨道间不相互重叠。

重力加速度取210m /s g =,计算结果保留小数点后一位数字。

试求(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小; (2)如果小球恰能通过第二圆形轨道,B 、C 间距L 应是多少;(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径3R 应满足的条件;小球最终停留点与起点A 的距离。

17.(09·浙江)某校物理兴趣小组决定举行遥控赛车比赛。

比赛路径如图所示,赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C 点,并能越过壕沟。

已知赛车质量m=0.1kg ,通电后以额定功率P=1.5w 工作,进入竖直轨道前受到阻力恒为0.3N ,随后在运动中受到的阻力均可不记。

图中L=10.00m ,R=0.32m ,h=1.25m ,S=1.50m 。

问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10 )22.(09·四川) 如图所示,轻弹簧一端连于固定点O ,可在竖直平面内自由转动,另一端连接一带电小球P,其质量m=2×10-2 kg,电荷量q=0.2 C.将弹簧拉至水平后,以初速度V 0=20 m/s 竖直向下射出小球P,小球P 到达O 点的正下方O 1点时速度恰好水平,其大小V=15 m/s.若O 、O 1相距R=1.5 m,小球P 在O 1点与另一由细绳悬挂的、不带电的、质量M=1.6×10-1 kg 的静止绝缘小球N 相碰。

碰后瞬间,小球P 脱离弹簧,小球N 脱离细绳,同时在空间加上竖直向上的匀强电场E 和垂直于纸面的磁感应强度B=1T 的弱强磁场。

此后,小球P 在竖直平面内做半径r=0.5 m 的圆周运动。

相关文档
最新文档