波动方程数值模拟的三种方法及对比
地震波波动方程数值模拟方法(严选优质)

地震波波动方程数值模拟方法地震波波动方程数值模拟方法主要包括克希霍夫积分法、傅里叶变换法、有限元法和有限差分法等。
克希霍夫积分法引入射线追踪过程,本质上是波动方程积分解的一个数值计算,在某种程度上相当于绕射叠加。
该方法计算速度较快,但由于射线追踪中存在着诸如焦散、多重路径等问题,故其一般只能适合于较简单的模型,难以模拟复杂地层的波场信息。
傅里叶变换法是利用空间的全部信息对波场函数进行三角函数插值,能更加精确地模拟地震波的传播规律,同时,利用快速傅里叶变换(FFT)进行计算,还可以提高运算效率,其主要优点是精度高,占用内存小,但缺点是计算速度较慢,对模型的适用性差,尤其是不适应于速度横向变化剧烈的模型.波动方程有限元法的做法是:将变分法用于单元分析,得到单元矩阵,然后将单元矩阵总体求和得到总体矩阵,最后求解总体矩阵得到波动方程的数值解;其主要优点是理论上可适宜于任意地质体形态的模型,保证复杂地层形态模拟的逼真性,达到很高的计算精度,但有限元法的主要问题是占用内存和运算量均较大,不适用于大规模模拟,因此该方法在地震波勘探中尚未得到广泛地应用。
相对于上述几种方法,有限差分法是一种更为快速有效的方法。
虽然其精度比不上有限元法,但因其具有计算速度快,占用内存较小的优点,在地震学界受到广泛的重视与应用。
声波方程的有限差分法数值模拟对于二维速度-深度模型,地下介质中地震波的传播规律可以近似地用声波方程描述:)()(2222222t S zu x u v t u +∂∂+∂∂=∂∂ (4-1) (,)v x z 是介质在点(x , z )处的纵波速度,u 为描述速度位或者压力的波场,)(t s 为震源函数。
为求式(4-1)的数值解,必须将此式离散化,即用有限差分来逼近导数,用差商代替微商。
为此,先把空间模型网格化(如图4-1所示)。
设x 、z 方向的网格间隔长度为h ∆,t ∆为时间采样步长,则有:z∆,i j1,i j +2,i j+1,i j-h i x ∆= (i 为正整数)h j z ∆= (j 为正整数)t n t =∆ (n 为正整数)k j i u , 表示在(i,j)点,k 时刻的波场值。
CSC频率—空间域波动方程数值模拟

CSC频率—空间域波动方程数值模拟吕晓春;顾汉明;成景旺;周丽【摘要】针对频率空间域波动方程数值模拟需要巨大内存空间的现状,提出了利用列索引压缩存储(CSC)技术存储大型稀疏非对称复数型的矩阵系数.CSC技术将系数矩阵转化为三个一维数组来存储,分别存储系数非零元素、非零元素对应所在的行以及每列起始非零元素所在位置.经CSC技术压缩存储后显著减少了内存空间及计算量,在计算时只有少许的非零元素参加计算,且根据三个一维数组可以简便地找到对应的非零元素,进而采用LU分解快速而精确地求解.本文基于Jo等提出的最优化9点差分方法,首次应用CSC技术在频率空间域进行二维声波方程数值模拟.通过对Corner-edge模型和二维Marmousi模型进行试算,可以显著节省内存需求,明显提高计算速度,进而得到精度较高的正演结果.【期刊名称】《石油地球物理勘探》【年(卷),期】2014(049)002【总页数】7页(P288-294)【关键词】频率—空间域;CSC;系数矩阵;一维数组;LU分解;数值模拟【作者】吕晓春;顾汉明;成景旺;周丽【作者单位】中国地质大学(武汉)地球物理与空间信息学院,湖北武汉430074;中国地质大学(武汉)构造与油气资源教育部重点实验室,湖北武汉430074;中国地质大学(武汉)地球物理与空间信息学院,湖北武汉430074;中国地质大学(武汉)构造与油气资源教育部重点实验室,湖北武汉430074;中国地质大学(武汉)地球物理与空间信息学院,湖北武汉430074;中国地质大学(武汉)构造与油气资源教育部重点实验室,湖北武汉430074;中国地质大学(武汉)地球物理与空间信息学院,湖北武汉430074【正文语种】中文【中图分类】P6311 引言为了反演地下介质参数或研究地震波在各种复杂介质中的传播机制,需要进行波场数值模拟。
波动方程的数值模拟方法包括有限差分法、有限元法、伪谱法等。
在时间—空间域的数值模拟技术已较成熟,并广泛应用于复杂介质的正演模拟中。
基于GID有限元前处理的波动方程数值模拟

基于GID有限元前处理的波动方程数值模拟刘静;文山师;黄晶晶【摘要】在地震波数值模拟计算过程中,缺乏简单易行的有限元前处理方法,使得复杂构造模型较难建立和分析.本文以二维声波方程为例结合GID软件,网格剖分部分采用三角形单元模拟速度界面,把单元内的场和波速均看作单元上的线性函数;GID 软件可以方便地进行网格剖分和设置网格控制节点,通过编写用户自定义”问题类型”,建立并输出已有的有限元计算程序的初始模型.将GID软件前处理与有限元计算程序整合,提高了方法的效率,简单易行.【期刊名称】《工程地球物理学报》【年(卷),期】2014(011)002【总页数】7页(P243-249)【关键词】数值模拟;有限元;GID;声波方程;三角形单元【作者】刘静;文山师;黄晶晶【作者单位】山西省煤炭地质115勘查院,山西大同037003;中石化西北油田分公司勘探开发研究院,新疆乌鲁木齐830011;中石化石油工程地球物理有限公司河南分公司,河南南阳473000【正文语种】中文【中图分类】P631.41 引言地震波场的数值模拟技术是在已知地下介质结构和参数的情况下,利用理论计算的方法研究地震波在地下介质中的传播规律,合成地震记录的一种技术。
地震勘探中的数值模拟方法主要以射线理论和波动方程理论为基础,有射线追踪法,柯西霍夫积分法,有限元法,有限差分法和伪谱法[1~6]。
有限差分法直接用差分代替微分,因其方法简单、精度高,在地震模拟中而得到了广泛的研究和应用。
但其固有缺陷是不能准确模拟具有复杂几何形态的物性界面,有限元法则是求解原问题等价泛函的变分或原问题的等效积分方程的弱解(当等价泛函不存在时),因而能够适应较有限差分更为剧烈的物性变化,加之种类繁多的插值形函数,使其能够模拟很复杂的几何界面。
有限元法的主要缺点是计算和存储量都很大,效率相对较低。
建立有限元分析模型比较复杂且存在困难,因此可以用一些成形的软件作为有限元网格剖分的工具,建立并输出可用于已有有限元计算程序的初始模型,将大大提高方法的效率[7]。
波动方程正演模拟边界条件的比较分析

波动方程正演模拟边界条件的比较分析付小波;韩超;原健龙;余嘉顺【摘要】通过数值模拟研究了透明边界、Clayton-Engquist边界和完全匹配层边界的吸收效果,得出如下结论:在反射角和频率相同的情况下,完全匹配层边界条件效果最好,Clayton-Engquist边界效果次之,而透明边界条件的效果最差.以边界条件对100 Hz模型边界垂直反射的吸收效果来衡量,完全匹配层边界条件与Clayton-Engquist边界条件的效果分别是透明边界条件的16.5倍和3.5倍.在<40 Hz的低频范围内,或者在反射角>65°的情况下,Clayton-Engquist边界相对透明边界的吸收效果相对优势显著变弱.而完全匹配层边界的吸收效果则在150 Hz频率范围内和75°反射角范围内始终保持稳定的相对优势.【期刊名称】《成都理工大学学报(自然科学版)》【年(卷),期】2015(042)004【总页数】8页(P492-499)【关键词】波动方程;正演模拟;有限差分;边界条件【作者】付小波;韩超;原健龙;余嘉顺【作者单位】成都理工大学地球物理学院,成都610059;成都理工大学地球物理学院,成都610059;成都理工大学地球物理学院,成都610059;成都理工大学地球物理学院,成都610059;新西兰皇家地质与核科学研究所,惠灵顿【正文语种】中文【中图分类】P631.4边界条件是地震波数值模拟方法技术中的一项重要内容。
许多专家学者从不同角度提出多种构造边界条件的方法。
1977年,Clayton与Engquist[1]根据旁轴近似理论(Claerbout[2];Claerbout与Johnson[3]),提出利用一系列不同近似精度的单程波动方程来吸收模型边界的反射能量,称作Clayton-Engquist (下文采用简略记号CE来表达)边界条件。
1978年,Reynolds通过对波动方程的分解得到了透明边界条件[4](下文采用简略记号TBC来表达)。
波动方程及其解法

波动方程及其解法波动方程是常见的偏微分方程之一,它描述的是波的传播和变化。
而在实际问题中,如声波、光波、电磁波等的研究中,波动方程的解法是被广泛使用的。
本文将介绍波动方程的基本概念及其解法。
一、波动方程的基本概念波动方程最基本的形式是一维波动方程,其数学表达式如下:$\frac{\partial^2 u}{\partial t^2}=c^2\frac{\partial^2 u}{\partial x^2}$其中,$u(x,t)$表示波的位移,$c$是波的速度。
可以看出,波动方程是一个描述时间和空间之间关系的方程。
在这个方程中,偏微分算子表达了波动的传播和变化的规律。
二、波动方程的解法1. 分离变量法分离变量法是解波动方程的最常见方法之一。
其主要思想是,将变量$x$和$t$分离出来,分别让它们满足不同的微分方程。
如一维波动方程可以假设其解为$u(x,t)=X(x)T(t)$,将其代入波动方程可得:$XT''=c^2X''T$进一步变形,可得:$\frac{T''}{c^2T}=\frac{X''}{X}$由此得到两个方程:$\frac{T''}{c^2T}=-\omega^2$$X''=-\omega^2X$其中,$\omega$为角频率,$-\omega^2$为分离出来的常数倍。
对于这两个微分方程,可以分别求解。
2. 叠加原理在叠加原理中,可以将波看做是多个波的叠加。
这种方法可以用于特定场合下的波动方程求解。
例如,在弹性绳的研究中,可以将弹性绳的振动看作是多个波的叠加。
在这种情况下,可以对不同的波求解,并把它们的解加起来成为最终的解。
3. 直接积分法直接积分法是一种基本的解微分方程的方法,同样也适用于波动方程的求解。
在直接积分法中,可以通过对波动方程进行积分,逐步求解出波的变化规律。
这种方法的实现需要考虑初值条件的限制,而条件的不同可能导致问题的复杂性。
2007射线追踪与波动方程正演模拟方法对比研究

由于地震波在整条路径上满足同一个射 线参数,因此射线路径上任意连续三点也将满 足同一个参数, 而三点间的射线表现形式为 Snell 定律。按照 Snell 定律,可导出一个求
2 设计依据:
1 ) 根据《混凝土结构加固技术规范》
CECS146:2003,设计图纸和该根据工程检测 报告编号 BObLOJG033,本工程采用加大截面 加固法、外粘钢加固法等, 其工作程序如下:
可靠性稳定→加固方案→加固设计→施 工→验收
2)材料:外包钢采用 Q235 材料 L80 × 80 × 5 的 B 型角钢, A s = 7 9 1 m m 2、f y = 2 1 5 N / mm2 加固箍筋用扁铁 40 × 4,外包混凝土用 C 2 5 ( f C = 1 1 . 9 N / m m 2) , 外包钢加固后的尺寸 b × h=500 × 700,角钢与扁钢的连接采用焊 接, h f = 5 m m 焊缝饱满, 焊条 E 4 3 、E α = 2 . 1 × 105N/mm2,粘钢采用改性环氧树脂胶粘 剂。
1 基于射线追踪的合成地震响应
射线追踪法的主要理论基础是,在高频近
似条件下, 地震波的主能量沿射线轨迹传播。 基于这种认识,运用惠更斯原理和费马原理来 重建射线路径,并利用程函方程来计算射线的 旅行时。在旅行时计算中应用有限差分等方 法, 以获得快速的解。射线法的主要优点是 概念明确,显示直观,运算方便,适应性强;其 缺陷是应用有一定限制条件,计算结果在一定 程度上是近似的,对于复杂构造进行两点三维 射线追踪往往比较麻烦。为了计算波沿射线 的旅行时和波的传播路径, 叙述如下。
用于波动方程模拟的Chebshev谱元法

1引言
在瞬态分析,工程地震学,计算声学等领域 ( 如无损检测,油气勘探等) ,如何利用数值计算的方法更
精确地得到弹性波动方程的解一直是国内 外研究者的工作重点。 着计算机技术的发展, 随 一些原来影响数值
计算方法应用的瓶颈一一被克服, 但对于大型的复杂二维问题或三维问题的研究, 仍然对原有的数值模拟方 法提出了挑战。 当前普遍使用的数值方法,如有限体积法 (itVl e t d,有限元 (itEe et hd, F i o m Me o) ne u h F i l nMe o) ne m t
Ce h 正 多 式 e nr多 展开。3 伽 金 法 解正 题的 分 式, 全 近 h s v 交 项 或Lg d 项式 be e e ( 用 辽 方 求 交问 变 格 得到 局的 似 )
解。 有关谱元法的详细数学表述请参看文献 7 0 我们这里采用 Cese 正交多项式,它是如下奇异性 S r-i vl方程的特征函数 hbhv tmLo i u ul e
似函数能最佳地逼近偏微分方程的精确解,测试函数 (e Fntn Ts uco)被引进用于验证近似解带来的余量是 t i 否达到最小。对基函数和测试函数的不同选择导致了上述这几种数值方法。
2 ese 谱元法 C bhv h
谱元法( E ) 最早 M , 在由Pta ‘ 并 应用于流体动力学。 把有限 ( S P ar提出2 主要 e ] , 它 元法和谱方法相结 合,
Ce s v a so t 配置点 权重 h y eGu- b o b h - sL a 及其 定义如 下,
() 2
xo, is 二务 C
w二 :—
r 一 , , 7 : 、 ‘ . , 一二 。
j0N w 二 =, ; ; -
波动方程与热传导方程的解法

波动方程与热传导方程的解法波动方程与热传导方程是物理学中常见的偏微分方程,它们描述了波动和热传导的过程。
在实际问题中,解这两个方程可以帮助我们了解和预测物理现象,例如声波传播、电磁波传播和热量传导等。
本文将介绍波动方程和热传导方程的解法及其应用。
一、波动方程的解法波动方程描述了波的传播和干涉。
通常表示为:∂²u/∂t² = v²∇²u其中,u代表波的振幅,t代表时间,v代表波速,∇²u是u的拉普拉斯算子。
1. 分离变量法分离变量法是求解偏微分方程的常用方法。
对于波动方程,我们可以假设u(x, t)的解为u(x, t) = X(x)T(t),其中X(x)和T(t)是仅与x和t相关的函数。
将u(x, t)的表达式带入波动方程,我们可以得到两个关于X(x)和T(t)的普通微分方程。
通过求解这两个方程,我们可以得到波动方程的解。
2. 傅里叶变换法傅里叶变换法也是求解偏微分方程的重要方法。
通过将波动方程进行傅里叶变换,我们可以将其变换为关于频率和空间变量的代数方程,进而求解得到波动方程的解。
二、热传导方程的解法热传导方程描述了热量在物质中的传导过程。
通常表示为:∂u/∂t = α∇²u其中,u代表温度分布,t代表时间,α代表热扩散系数,∇²u是u 的拉普拉斯算子。
1. 分离变量法与波动方程类似,热传导方程也可以通过分离变量法求解。
我们可以假设u(x, t)的解为u(x, t) = X(x)T(t),其中X(x)和T(t)是只与x和t有关的函数。
将u(x, t)的表达式带入热传导方程,我们可以得到两个关于X(x)和T(t)的普通微分方程。
通过求解这两个方程,我们可以得到热传导方程的解。
2. 球坐标系或柱坐标系下的解法对于具有球对称性或柱对称性的问题,我们可以将热传导方程转换为径向方程和角向方程,并通过求解这些方程得到热传导方程的解。
三、波动方程和热传导方程的应用波动方程和热传导方程广泛应用于物理学、工程学和其他领域中。