第3章微波传输线
微波技术微波传输线

max
I
max
m in
m in
m in
所以
P(z)
1
V
2 max
•
1
1
I
2
• Z0
2 Z0 2 max
根据这个表达式:
P(z)
ห้องสมุดไป่ตู้
1
V
2 max
•
1
1
I
2
• Z0
2 Z0 2 max
我们可以分析,当传输线的耐压一定或者能载的
电流一定的时候,驻波比越小,所能传输的功率 就越大,因此我们的滤波器在考虑功率因素的时 候,在我们的谐振杆和盖板距离一定,即它们之 间的耐压一定的情况下,驻波比越小的滤波器能 承受的功率就越大。
c. 输入阻抗分布特点: 前面分析过,终端短路传输线上的输入阻抗为:
Zin jZ 0 tan l
可见,终端短路线的输入阻抗为纯电抗,并随距离 z而交替表现为感抗或容抗,每隔1/4波长,阻抗 的性质改变一次,每隔1/2波长,阻抗就重复一 次,由前面的波形图可以清楚的理解。利用短路 线的这种特性,可以做成微波纯电抗元件或者谐 振回路。同轴滤波器的单腔谐振的原理就是从这 里分析得来的。
V (z) V0 (e jz e jz ) V0 (e jz e jz ) 2 jV0 sin z
I (z) V0 (e jz e jz ) V0 (e jz e jz ) 2 V0 cosz
Z0
Z0
Z0
可见,负载上电压为0,电流最大,这与普遍
规律正好吻合。
此时传输线上距离负载l处的输 入阻抗为
Zin
V (l) I (l)
2V0 c 2 jV0
o(s l) sin( l)
第三章传输线理论

第三章传输线理论本章的目的是概述由集总电路向分布电路表示法过度的物理前提。
在此过程中,推导出一个最有用的公式:一般的射频传输线结构的空间相关阻抗表示公式。
正如我们知道的,频率的提高意味着波长的减小,该结论用于射频电路,就是当波长可与分立的电路元件的几何尺寸相比拟时,电压和电流不再保持空间不变,必须把它们看做是传输的波。
因为基尔霍夫电压和电流定律都没有考虑到这些空间的变化,我们必须对普通的集总电路分析进行重大的修改。
本章重点介绍传输线理论,首先介绍传输线理论的实质,再介绍常用的几种传输线,其中重点介绍微带传输线,以及一般的传输线方程及阻抗的一般定义公式。
3.1传输线的基本知识传输微波能量和信号的线路称为微波传输线。
本节主要介绍传输线理论的实质以及理论基础3.1.1传输线理论的实质传输线理论是分布参数电路理论,它在场分析和基本电路理论之间架起了桥梁。
随着工作频率的升高,波长不断减小,当波长可以与电路的几何尺寸相比拟时,传输线上的电压和电流将随着空间位置而变化,使电压和电流呈现波动性,这一点与低频电路完全不同。
传输线理论用来分析传输线上电压和电流的分布,以及传输线上阻抗的变化规律。
在射频阶段,基尔霍夫定律不再成立,因而必须使用传输线理论取代低频电路理论。
现在举例说明:分析一个简单的电路,该电路由内阻为R1的正弦电压源V1通过1.6cm的铜导线与负载电阻R2组成。
电路图如下:图3.1 简单电路并且我们假设导线的方向与z轴方向一致,且它们的电阻可以忽略。
我们假设振荡器的频率是1MHz,由公式(3.1)10m/s, rε=10, rμ=1 因此可以得到波长其中是相速度,=9.49×7λ=94.86m.连接源和负载的1.6cm长的导线,在如此小的尺度内感受的电压空间变化是不明显的。
但是当频率提高到10GHz时情况就明显的不同了,此时波长降低到λ=p v/1010=0.949cm,近似为导线长度的2/3,如果沿着1.6cm的导线测量电压,确定信号的相位参考点所在的位置是十分重要的。
微波技术习题解答(部分)

率的波,而是一个含有多种频率的波。这些多种频率成分构成一个“波群”
又称为波的包络,其传播速度称为群速,用 vg 表示,即 vg v 1 c 2
第三章 微波传输线
TEM波:相速
vp
1 v
相波长
p
2
v f
群速 vg vp v
即导波系统中TEM波的相速等于电磁波在介质中的传播速度,而相波长 等于电磁波在介质中的波长(工作波长)
插入衰减 A
A
1 S21 2
A%11 A%12 A%21 A%22 2 4
对于可逆二端口网络,则有
A
1 S21 2
1 S12 2
第四章 微波网络基础
插入相移 argT arg S21
对于可逆网络,有 S21 S12 T ,故
T T e j S12 e j12 S21 e j21
何不同?
答案:截止波长:对于TEM波,传播常数 为虚数;对于TE波和TM波,对 于一定的 kc 和 、 ,随着频率的变化,传播长数 可能为虚数,也可能为实
数,还可以等于零。当 0 时,系统处于传输与截止状态之间的临界状态,此 时对应的波长为截止波长。
当 c 时,导波系统中传输该种波型。 当 c 时,导波系统中不能传输该种波型。
第三章 微波传输线
3-3 什么是相速、相波长和群速?对于TE波、TM波和TEM波,它们的相速 相波长和群速有何不同?
答案: 相速 vp 是指导波系统中传输的电磁波的等相位面沿轴向移动的速
度,公式表示为
vp
相波长 p
是等相位面在一个周期T内移动的距离,有
p
2
欲使电磁波传输信号,必须对波进行调制,调制后的波不再是单一频
T S21 0.98e j 0.98
(四川理工学院)微波技术与天线-第3章 TEM波传输线

第3章 TEM波传输线理论
电压反射系数与电流反射系数间差一个负号Γ u=-Γ i 。 通常将电压反射系数简称为反射系数, 并记作Γ(z)。
对于无耗传输线 j
Ae jz Zl Z 0 j 2 z ( z ) e jz Be Zl Z0
反射系数与终端位置有关,而且是位置的函数,在终端
d 2 I ( z) 2 I ( z) 0 dz2
第3章 TEM波传输线理论
电压、电流的通解为
U Aez Bez 1 I ( Aez Bez ) Z0
式中,Z0 (R1 jL1 ) /(G1 jC1 )称为传输线的特性阻抗 。
解中的待定常数由边界条件决定 传输线的边界条件通常有以下三种: ① 已知终端电压Ul和终端电流Il ② 已知始端电压Ui和始端电流Ii ③ 已知信源电动势Eg和内阻Zg以及负载阻抗Zl。 在实际工程中,通常选择1类边界条件,因此
vp与频率ω有关,这就称为色散特性。
在微波工程中,特性阻抗Z0对分析TEM传输线的传输特性 具有重要意义,它是表征传输线与前级匹配和后级匹配的重 要参量。
第3章 TEM波传输线理论
3.2 传输线阻抗与反射
传输线与前级源的匹配主要取决于传输线在入端的输入阻 抗,传输线与后级的匹配不仅取决于传输线终端接收机的输入 阻抗,还与传输线本身的特性阻抗有关。它们的这些关系用特
对于时谐电压和电流, 可用复振幅表示为
u(z, t)=Re[U(z)e jωt] i(z, t)=Re[I(z)e jωt] 可得传输线方程在频域的表示为:
dU R1 jL1 I Z1 I dz dI G1 jC1 U Y1U dz
这里Z1 R1 jL1和Y1 G1 jC1分别是传输线单位长度 的串联阻抗和并联导纳 。
微带线理论

在低频,基于准TEM模所计算的Zc、A是相当精确的,但是 在高频端场的纵向分量变得明显,必须予以考虑。高频效应 导致了色散现象,即微带线的阻抗和有效介电常数将随工作 频率的变化而变化。 图3.29是微带线特性阻抗随 W h 变化的曲线(宽带近 似 W h 1 ),图3.30是微带线特性阻抗随 W h 变化的曲线(窄 W 带近似, h 1 ),这些曲线以 r 为参变量,它们是根据惠勒 的精确解计算的。
(0 ) min (0 ) min h min , 2 r 4 r 1 w (0 ) min 0.4h 2 r
(3-2-18)
第3章 微波集成传输线
实际应用中, 常用的基片厚度一般在0.008~0.08 mm 之间,且都用金属屏蔽盒,从而不受外界干扰。金属屏蔽 盒的高度取为H≥(5~6)h,接地板的宽度取为a≥(5~6)w。 目前,混合微波集成电路(HMIC)和单片微波集成电 路(MMIC)中最常用的平面传输线就是微带线。它易于与 其他无源微波电路和有源微波器件连接,也易于实现微波 系统的集成化。 微带线的加工一般有两种方法,一种是采用双面聚四 氟乙烯(εr=2.1,tanδ=0.0004)或聚四氟乙烯玻璃纤维 (εr=2.55,tanδ=0.008)敷铜板,光刻腐蚀做成电路。再一 种就是在纯度为99.8%的氧化铝陶瓷(εr=9.5~10, tanδ=0.0003)基片上用真空镀膜技术做成电路。
图3.27微带线结构(a) 微带线结构; (b) 微带线的场结构
第3章 微波集成传输线
微带线是在介质基片的一面制作导体带,另一面制作接地金属 平板而构成。微带线是半开放系统,虽然接地金属板可以帮助 阻挡场的泄露。但导体带会带来辐射。所以微带线的缺点之一 是它有较高损耗并与邻近的导体带之间容易形成干扰。 微带线的损耗和相互干扰的程度与介质基片的相对介电常数 εr有关,如果εr增大,可以减小损耗和相互干扰的程度,所以 常用的介质基片是介电常数高、高频损耗小的材料,例如氧化 铝陶瓷(εr=9.5~10,tanδ=0.0002)。 微带线板的种类: 常用的有99%的氧化铝陶瓷、石英、 蓝宝石、聚四氟乙烯玻璃纤维等。
第三章微波传输线教材

线单位长度分布电容为C1, 则
空气微带线传播相速: vp0 c
1 LC0
介质微带线传播相速:vp1
c
r
1 LC1
14:00
电子科技大学电子工程学院
微波技术与天线
第三章 微波传输线
引入微带线等效介电常数 c
2
c
vp0 vp1
C1 C0
设空气微带线特性阻抗为
Z
,则实际微带线特性阻抗为
00
Z0
Z00
cr
只要求得空气微带线的特性阻抗
Z
00
及有效介电常数
,
c
就
可求得介质微带线的特性阻抗。
14:00
电子科技大学电子工程学院
微波技术与天线
第三章 微波传输线
工程上常用的一组实用经验公式:
(1) 导带厚度为零时
59.952ln(8h w ) w 4h
( w 1) 4h
微波技术与天线
第三章 微波传输线
第三章 微波传输线
导波系统中的电磁波按纵向场分量的有无,可分为 以下三种波型(或模):
(1) 横磁波(TM波),又称电波(E波):Hz 0, Ez 0
(2) 横电波(TE波),又称磁波(H波):Ez 0, Hz 0
(3) 横电磁波(TEM波):
Ez 0, Hz 0
Z00
119.904
w 2.42 0.44 h (1 12h)2
h
w
w
( w 1) w:导带宽度 h h:基片厚度
e
r 1
2
r 1 (1
2
12
精选微波技术基础知识
1、第三章、微波集成传输线常用集成传输线的种类和主要特点2、第四章介质波导和光波导
1、传播条件和波型2、特性阻抗3、波长,相速4、功率容量5、衰减
了解
微波集成传输线
微波集成传输线的最大特点是 平面化
五种重要的传输线:带状线(Stripline)微带线(Microstrip line)槽线(Slotline)鳍线(Finline)共面线(Coplanar line)
式中
微波集成传输线-带状线
带状线—优缺点和应用
1、改变线宽一个参数就改变电路参数(特性阻抗)。2、在馈线、功分器,耦合器,滤波器,混频器,开关的设计中,体积小,重量轻,大批量生产的重复性好。3、立体电路的设计,适用于多层微波电路,LTCC等,辐射小。4、封闭的电路,调试难。5、电路需要同轴或波导馈入,引入不连续性,需要在设计时补偿。6、在多层电路设计中,存在不同节点常数的介质之间的连接,介质与金属导体的连接,分析方法非常复杂,尤其对3D电路,尚缺少各种不连续性的模型和相关设计公式,采用全波分析法或者准静态场分析。
毫米波鳍线混频器
介质波导和光波导
当毫米波波段→亚毫米波段→太赫兹波段时普通的微带线将出现一系列新问题1)高次模的出现使微带的设计和使用复杂2)金属波导的单模工作条件限制了其横向尺寸不能超过大约一个波长的范围。这在厘米波段和毫米波低频段不成问题。但到毫米波高频段,单模波导的尺寸就显得太小,不仅制造工艺困难,而且随着工作频率的提高,功率容量越来越小,壁上损耗越来越大,衰减大到不能容忍的地步。因此,对毫米波段的高端及来说,封闭的金属波导已不再适用。于是,适合于毫米波高频段、亚毫米波的传输线 —— 介质波导等非封闭式的传输线(或称开波导)便应运而生
微波集成传输线-微带线
自考 微波技术与天线02367 整理(科创学院)
第 1 章 电 磁 场 与 电 磁 波 的 基 本 原 理电 磁 场 的 基 本 方 程一、电磁场中的基本场矢量电磁场中的基本场矢量有四个:电场强度E,电位移矢量D,磁感应强度B 和磁场强度H 。
(一) 电场强度E 场中某点的电场强度E 定义为单位正电荷在该点所受的力,即 : 电场强度E 的单位为伏/米(V/m)。
(二) 电位移矢量D如果电解质中存在电场,则电介质中分子将被极化,极化的程度用极化强度P 来表示。
此时电介质中的电场必须用电位移矢量D 来描写。
它定义为 : 在SI 单位制中,D 的单位为库仑/米2(C/m2)。
对于线性媒质中某点的电极化强度P 正比于该点的电场强度E 。
在各向同性媒质中某点的P 和E 方向相同,即 : 故 ,式中ε=ε0(1+χe)称为介质的介电常数,而εr=1+χe 称为介质的相对介电常数。
(三) 磁感应强度B磁感应强度B 是描写磁场性质的基本物理量。
它表示运动电荷在磁场中某点受洛仑兹力的大小。
磁感应强度B 定义为: (四) 磁场强度H如果磁介质中有磁场,则磁介质被磁化。
描写磁介质磁化的程度用磁化强度M 来表 示。
此时磁介质中的磁场必须引入磁场强度H 来描写,它定义为: M 和H 的单位为安培/米 (A/m)。
在各向同性媒质中M 和H 方向相同。
即有: 故 B=μ0(H+M)=μ0(1+χm)H=μ0μrH=μH 。
式中χm 称为媒质的磁极化率,它是一个没有量纲的纯数。
μ=μ0(1+χm)称为媒质的磁导率。
μr=1+χm 称为相对磁导率。
二、全电流定律式中Jc 和Jd 分别为传导电流密度和位移电流密度,ic 和id 分别为传导电流和位移电流。
三、电磁感应定律感应电场沿着任意的封闭曲线的积分应等于感应电势,用数学式子表示即为 :由此得出一个结论:随时间变化的磁场会产生电场,而且磁通量的时间变化率愈大,则感应电动势愈大、电场愈强;反之则愈弱。
同时,穿过一个曲面S 的磁通量为:F E q =0D E P ε=+0e P x Eε=0000(1)e e r D E x E x E E E εεεεεε=+=+==F qv B=⨯0B H M μ=-m M Hχ=()()D e c l e d l Sc Sd H dl i i i dt H dl J J dS dD J dS dtφ===+=+=+⎰⎰⎰⎰ ml d e E dL dtφ==-⎰ m S l SB dS d E dL B dS dt φ==-⎰⎰⎰四、高斯定律 在普通物理中讨论了静电场的高斯定律,即: 式中V 是封闭曲面S 所包围的体积,∑q 为封闭曲面S 所包围的自由电荷电量的代数和,ρ为S 曲面所包围的自由电荷的体密度。
第三章微波传输线平行双线与同轴线
各种微波集成传输线
① 准TEM波传输线, 主要包括微带传输线和共 面波导等(a)-(c);
② 非TEM波传输线, 主要包括槽线、 鳍线等 (d);
③开放式介质波导传输线, 主要包括介质波导、 镜像波导(e-f);
2 从同轴线到金属波导管
• 金属波导:和同轴线比较,波导管除去内 导体,不仅降低了内导体的损耗而且提高 了传输线的功率容量;
• 其缺点是比较笨重、高频下批量成本高、 频带较窄等。
3 微波集成传输线
• 随着航空、航天事业发展的需要, 对微波 设备提出了体积要小、重量要轻、 可靠性 要高、性能要优越、一致性要好、 成本要 低等要求, 这就促成了微波技术与半导体 器件及集成电路的结合, 产生了微波集成 电路。
1
1
c
vp
L0C0
r r
p
2
vp f
0 r r
当同轴线的截面尺寸与工作波长可比 拟时,同轴线内将出现高次模式。 要使同 轴线工作于TEM模式,则同轴线的内外半径 应满足以下条件:
min
1
2
D
d
3 损耗特性
通常同轴线介质损耗很小,其传输 损耗基本上决定于导体的欧姆损失。 同轴线的衰减常数仍可按下式估算
通频带:0~nGHz,语音信号
在实际中,广泛使用不同型号的电缆连 接接头(Cable Connector)以实现电缆的 连接, 尽管其功能相似, 但结构不同。 它们的共同点都是将电缆的内导体和外导 体分别连接起来, 使用时要注意连接头电 气和机械很好的匹配。
《微波传输线》课件
低噪音
微波传输线具备低噪音特性,在信号传输过程中不 会引入过多的干扰。
高灵敏度
微波传输线对微小信号非常敏感,可以实现高精度 的信研究领域
3 工业领域
包括无线通信、光纤通信等, 微波传输线在通信领域中扮 演着重要的角色。
包括辐射研究、涡流损耗测 量等,微波传输线在科学研 究中具备广阔的应用前景。
《微波传输线》PPT课件
微波传输线是一种用于在高频率电路中传输电能和信号的特殊电缆。它通过 高频率、高速度、高精度和高灵敏度的特点,实现了高效的电能传输。
什么是微波传输线?
微波传输线是一种用于在高频率电路中传输电能和信号的特殊电缆。它在微波技术中扮演着重要的角色,使得高频 率电路能够稳定地工作。
微波传输线的特点
包括同轴电缆、双对称电缆、单称电缆等不同类型,用于高频率电路的信号传输。
2 无线传输线
包括空气传输线、杆塔传输线、建筑传输线等适用于高频率电路信号传输的无线传输方 式。
微波传输线的优点
高频率响应
微波传输线可以有效地传输高频率信号,确保了电 路的正常工作。
高速传输
微波传输线能够实现快速的数据传输,适用于高速 通信和数据传输领域。
包括雷达、微波炉等,微波 传输线在工业应用中发挥着 重要的作用。
总结
微波传输线是一种高效、高精度的传输方式,被广泛应用于通信、研究和工 业等领域。我们应该进一步研究和探索微波传输线的应用潜力。
高频率
微波传输线可以工作在高频率范围内,实现高速数 据传输。
高速度
微波传输线的传输速度非常快,确保了高频率信号 的准确传输。
高精度
微波传输线具备高精度的信号传输和电能传输效果, 确保了电路工作的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 微波传输线
3―1 引言 3―2 带状线 3―3 微带传输线 3―4 耦合带状线和耦合微带线 3―5 金属波导传输线的一般理论 3―6 矩形波导 3―7 圆波导
第3章 微波传输线
3―1 引言
微波传输线是用来传输微波信号和微波能量的传 输线。微波传输线种类很多,按其传输电磁波的性质可 分 为 三 类 :TEM 模 传 输 线 ( 包 括 准 TEM 模 传 输 线 ), 如 图 3―1―1(1)所示的平行双线、同轴线、带状线及微带线 等双导线传输线;TE模和TM模传输线,
第3章 微波传输线 图 3―4―1
第3章 微波传输线
对于耦合传输线的分析,由于边界条件比较复杂,采 用场解法比较麻烦,通常采用奇偶模参量法进行分析,即 采用如图3―4―2所示的叠加原理进行分析。
图 3―4―2
第3章 微波传输线
令A和B分别与地构成两对传输线,其激励电压分别
为U1和U2,如图(a)所示,将它分解成一对等幅反相的奇模 电压和一对等幅同相的偶模电压,分别如图(b)和(c)所示。
对于图3―3―2(a)所示的空气微带线,微带线中传
输TEM模的相速度vp=v0(光速),并假设它的单位长度上 电容为C01,则其特性阻抗为
Z01
1 v0C01
(3―3―2)
第3章 微波传输线 图 3―3―2
第3章 微波传输线
为此,我们引入一个相对的等效介电常数为εre,其值 介于1和εr之间,用它来均匀填充微带线,构成等效微带线, 并保持它的尺寸和特性阻抗与原来的实际微带线相同,
一、特性阻抗
由长线理论可知,TEM模传输线特性阻抗的计算公
式为
Z0
L1 1 C1 vpC1
(3―2―1)
式中L1和C1分别为带状线单位长度上的分布电感
和分布电容;vp为带状线中TEM模的传播速度。
用保角变换方法求得零厚度中心导带带状线特性
阻抗的精确公式为
30K (k )
Z0 r K(k)
(3―2―2)
第3章 微波传输线 图 3―4―7
第3章 微波传输线 图 3―4―8
第3章 微波传输线
3―5 金属波导传输线的一般理论
这里首先介绍波导传输线的一般分析方法,然后分 别讨论矩形波导和圆波导。
直观起见,本节采用直角坐标系来分析,并假设波导 是无限长的,且波是沿着z方向无衰减地传输,则有
E H
第3章 微波传输线
如图3―1―1(2)所示的矩形波导,圆波导、椭圆波 导、脊波导等金属波导传输线;表面波传输线,其传输模 式一般为混合模,如图3―1―1(3)所示的介质波导,介质 镜像线等。
第3章 微波传输线 图 3―1―1
第3章 微波传输线
在微波的低频段,可以用平行双线来传输微波能量 和信号;而当频率提高到其波长和两根导线间的距离可 以相比时,电磁能量会通过导线向空间辐射出去,损耗随 之增加,频率愈高,损耗愈大,因此在微波的高频段,平行 双线不能用来作为传输线。
E0 H
(x, y)e jz 0(x, y)e j
z
(3―5―1)
第3章 微波传输线
式中β为波导轴向的波数,E0(x,y)和H0(x,y)分别为电 场和磁场的复振幅,它仅是坐标x和y的函数。
2E k2E 0 和 2H k2H 0 ,并在直角坐标内展开,即有
即
U1 Ue Uo, U2 Ue Uo
(3―4―1)
Ue
U1
U2 2
Uo
U1
U2 2
在一般情况下,
U2=0,故
Ue
Uo
U1 2
(3―4―2)
第3章 微波传输线
耦合带状线和耦合微带线在奇、偶模激励情况下 的电场分布如图3―4―3和图3―4―4所示。其中图(a) 为奇模激励下的奇模场型,其对称面为电壁;图(b)为偶模 激励下的偶模场型,其对称面为磁壁。
第3章 微波传输线
式中
K(k)
1 0
dx [(1 x2 )(1 k 2 x2 )]1/ 2 为第一类完全椭圆积分
K(k)
1 0
dx [(1 x2 )(1 k2 x2 )]1/ 2 为第一类余全椭圆积分
k sec h
2b
为模数
k 1 k 2 th 为余模数。
2b
第3章 微波传输线 图 3―2―2
2
(3―2―4)
第3章 微波传输线
3―3 微带传输线
微带线的结构如图3―3―1所示。它是由介质基片 的一边为中心导带,另一边为接地板所构成,其基片厚度 为h,中心导带的宽度为w。其制作工艺是先将基片(最 常用的是氧化铝)研磨、抛光和清洗,然后放在真空镀膜 机中形成一层铬-金层,再利用光刻技术制成所需要的电 路,最后采用电镀的办法加厚金属层的厚度,并装接上所 需要的有源器件和其它元件,形成微带电路。
第3章 微波传输线 图 3―4―3
第3章 微波传输线 图 3―4―4
第3章 微波传输线
由于奇、偶模的场分布不同,故单位长度上对地的
奇、偶模电容不同,分别用C0o和C0e来表示。根据传输 线理论很容易写出耦合带状线的奇、偶模特性阻抗分
别为
Z0o
1 v C po 0o
(3―4―3)
Z0e
1 v peC0e
如图(d)所示。这种等效微带线中波的相速度为
vp
v0
re
(3―3―3)
微带线中波的相波长为
p
0 re
微带线中单位长度的电容为
(3―3―4)
C1 C01
(3―3―5)
第3章 微波传输线
故微带线的特性阻抗为
Z0
Z01
re
(3―3―6)
由此可见,如果能求出图3―3―2(d)的等效微带线
的特性阻抗,就等于求得了图3―3―2(c)标准微带线的
(3―4―4)
第3章 微波传输线
式中vpo和vpe分别表示奇、偶模的相速度。对于耦 合带状线,由于周围介质是均匀的,因此奇、偶模速度相
等,即
vpv vpe
v0
r
(3―4―5)
奇、偶模的相波长为
vpo vpe
0 r
(3―4―6)
第3章 微波传输线
对于耦合微带线,由于周围介质是非均匀的,和微带 线相同,我们引进奇、偶相对等效介电常数分别为εreo、 εree。利用准静态方法可求得相对介电常数分别为1(空 气)和εr(介质基片)的耦合微带线中每条导带单位长度上 对地的奇、偶模电容C0o(1)、C0e(1)和C0o(εr)、C0e(εr),则 耦合微带线的奇、偶模等效介电常数分别为
reo
C0o ( r )
C0o (1)
ree
C0e ( r )
C0e (1)
(3―4―7) (3―4―8)
第3章 微波传输线
耦合微带线的奇、偶模相速度和相波长分别为
vpv
v0 rreo
(3―4―9)
vpe
v0 rree
(3―4―10)
vpo
0
rreo
(3―4―11)
vpe
0
rree
(3―4―12)
第3章 微波传输线
mmiinn
2
2h
r r
min 4h r 1
就可保证微带线中只传输TEM模。
(3―3―10)
第3章 微波传输线
3―4 耦合带状线和耦合微带线
当两对传输线互相靠近时,彼此会产生电磁耦合,这 种传输线称为耦合传输线,如图3―4―1所示,其中图(a) 为耦合带状线,图(b)为耦合微带线。
第3章 微波传输线 图 3―4―6
第3章 微波传输线
图3―4―7给出了耦合微带线的奇、偶模特性阻 抗Z0o、Z0e与耦合微带线尺寸w/h和s/h的关系曲线(εr=9)。 当已知耦合微带线的尺寸w/h、s/h及基片的相对介电常 数εr时,由图可很方便地求得奇、偶模特性阻抗Z0o、Z0e; 反之若已知Z0o和Z0e,由图可求出w/h和s/h,但比较麻烦。 图3―4―8给出了耦合微带线的奇、偶特性阻抗Z0o和 Z0e与耦合微带线尺寸w/h和s/h的另一组曲线(εr=10)。 利用该图很方便地根据已知的Z0o和Z0e求得w/h和s/h。
第3章 微波传输线
二、带状线尺寸的设计考虑
带状线中除传输主模TEM模外,还可能传输其它模 式。据分析只要带状线的尺寸满足关系式
min , b min
2 r
2 r
(3―2―3)
则带状线中保证只传输主模TEM模。式中λmin为
最短工作波长。
为了减少横向辐射,接地板宽度D和接地板间距b必
须满足
D (3 ~ 6), b
εre=1,表示无介质填充;当q=1,则εre=εr,表示全部介质 填充。可以证明q值主要决定w/h值,而与εr关系不大,其 计算公式为
q
1
[1 (1 10h来自)1 2]
2
(3―3―8)
第3章 微波传输线
图3―3―3给出了空气微带线特性阻抗Z01及填充 因子q和微带线的形状比w/h的关系曲线。
实际微带线的特性阻抗可以应用逼近法直接查图 3―3―3 求 得 , 也 可 以 查 实 际 微 带 线 特 性 阻 抗 Z0 和 εr 、 w/h的关系曲线或表格,这些曲线和表格在微波工程手册 中均可查得。
第3章 微波传输线
为了避免辐射损耗,可以将传输线做成封闭形式,像 同轴线那样电磁能量被限制在内外导体之间,从而消除了 辐射损耗。因此,同轴线传输线所传输的电磁波频率范围 可以提高,是目前常用的微波传输线。但随频率的继续提 高,同轴线的横截面尺寸必须相应减小,才能保证它只传 输TEM模,这样会导致同轴线的导体损耗增加,尤其内导 体引起损耗更大,传输功率容量降低。因此同轴线又不能 传输更高频率的电磁波,一般只适用于厘米波段。