第3章 不等式§3.3 二元一次不等式(组)与简单的线性规划问题 3.3.1 二元一次不等式(组)与平面区域
不等式优质课大赛.ppt

第3章不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式组表示的平面区域3.3.2简单的线性规划问题知识点回顾1.二元一次不等式表示的平面区域(1)一般地,直线y=kx+b把平面分成两个区域:y>kx+b表示直线的平面区域;y<kx+b表示直线的平面区域.(2)任选一个的点,检验它的是否满足所给的不等式.若适合,则为不等式所表示的平面区域;否则,为不等式所表示的平面区域.(3)若直线不过原点,一般选检验.2.二元一次不等式组表示的平面区域思考4:如何理解二元一次不等式组表示的平面区域?[提示]含义:不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.3.3.2简单的线性规划问题第2课时简单线性规划的应用[学习目标] 1.从实际情境中抽象出简单的线性规划问题,建立数学模型. 2.掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题. 3.线性规划的理论和方法主要用于解决以下两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;类型3线性规划的实际应用问题[典例1]某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?解:设每天分别生产甲产品x桶,乙产品y桶,相应的利润为z元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值,最大值是z =300×4+400×4=2 800,即该公司可获得的最大利润是2 800元.[知识提炼·梳理]1.线性约束条件:_______________________________________.2.线性目标函数:______________________________________.3.线性规划问题:___________________________________________.4.可行解:___________________________________.5.可行域:________________________________.6.最优解:____________________________________.跟踪练习 求目标函数的最值问题[典例2] 设x ,y 满足⎩⎨⎧2x +y ≥4,x -y ≥-1,x -2y ≤2,则z =x +y ()A .有最小值2,最大值3B .有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值解析:如图所示,作出不等式组表示的可行域,当z=x+y过点(2,0)时,截距z最小,即z有最小值,但z没有最大值.答案:B反思:1.解决这类问题最常用、最重要的一种方法就是图解法,其步骤为:(1)画:画出可行域;(2)变:把目标函数变形为斜截式方程;从纵截距的角度寻找最优解;(3)求:解方程组求出最优解;(4)答:写出目标函数的最值.2.一般地,设目标函数为z=ax+by+c,当b>0时,将直线l:ax+by=0向上平移,所对应的z随之增大;将l向下平移时,所对应的z随之减小.当b<0时,结论相反.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数等),而直接根据约束条件得到的不一定是整数解,可以运用枚举法验证求最优整数解,或者运用平移直线求最优整数解,最优整数解有时并非只有一个,应具体情况具体分析.。
人教A版高中数学必修5《三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题》示范课教案_1

利用Excel 求解数学规划问题1、 线性规划 例1⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≥≥≤+++≤+++≤++++++=4,3,2,10105000452110001001401101401100101461680..6001180310460max 214321432143214321j x x x x x x x x x x x x x x x t s x x x x z j利用Excel 求解其步骤如下:1、选择“工具”菜单中的“加载宏”选项,装入“规划求解”宏,此时,“工具”菜单中便出现“规划求解”选项。
如果“工具”菜单中已有“规划求解”选项,则直接进行第2步。
2、 按下表格式输入线性规划模型表中3、 在目标函数所在行的G3单元格内输入公式: =$B$2*B3+$C$2*C3+$D$2*D3+$E$2*E3此公式即为目标函数表达式,将该公式复制到G4,G5,G6,G7,G8单元格,即得约束条件左端表达式。
4、选择“工具”菜单的“规划求解”选项,弹出“规划求解参数”对话框,依次选定符合模型要求的项目。
(1)单击“设置目标单元格”框,将光标定位于框内,然后单击目标函数值单元格G3。
(2)在“规划求解参数”对话框的“等于”栏内,选择“最大值”选项。
(3)在“可变单元格”栏输入处,从表中选择$B$2:$E$2区域,使之出现$B$2:$E$2。
(4)在“约束”栏,单击“添加”按钮,弹出“添加约束”对话框,依次输入约束条件。
在“单元格引用位置”处,点击G4单元格,从“约束值”位置处选择约束类型“>=,<=,=,int,bin ”中的“<=”,在后面的框内点击F4单元格,按“添加”按钮,产生第一个约束条件。
类似地,添加第二、第三、第四、第五个约束条件后,按“确定”按钮,返回“规划求解参数”对话框。
(5)点击“选项”按钮,根据需要选择“假定非负”等项目后,按“确定”按钮,返回“规划求解参数”对话框(6)按“求解”按钮,弹出“规划求解结果”对话框,可根据需要选择“运算结果报告、敏感性报告、极限值报告”。
人教版高中数学必修5第三章不等式《3.3.2 简单的线性规划问题》教学PPT

思考5:作可行域,使目标函数取最小
值的最优解是什么?目标函数的最小值
为多少? 28x+21y=0
7x+14y=6
y
A最最优小解值1(671.,
4 7
),
7x 7 x
7y 5 14 y 6
14x 7 y 6
x 0, y 0
x=4
思考3:图中阴影区域内任意一点的坐
标都代表一种生产安排吗?
y
x 2y 8
0 x 4 0 y 3 x N , y N O
y=3 x
x+2y=8 x=4
阴影区域内的整点(坐标为整数的点) 代表所有可能的日生产安排.
思考4:若生产一件甲产品获利2万元, 生产一件乙产品获利3万元,设生产甲、 乙两种产品的总利润为z元,那么z与x、 y的关系是什么?
3.3.2 简单的线性规划问题
第一课时
问题提出
1.“直线定界,特殊点定域”是画二元 一次不等式表示的平面区域的操作要点, 怎样画二元一次不等式组表示的平面区 域?
2.在现实生产、生活中,经常会遇到资 源利用、人力调配、生产安排等问题, 如何利用数学知识、方法解决这些问题, 是我们需要研究的课题.
探究(一):线性规划的实例分析 t
5730
【背景材料】某工厂用A、B两种配件 生产甲、乙两种产品,每生产一件甲 产品使用4个A配件耗时1h;每生产一 件乙产品使用4个B配件耗时2h.该厂每 天最多可从配件厂获得16个A配件和12 个B配件,每天工作时间按8h计算.
思考1:设每天分别生产甲、乙两种产 品x、y件,则该厂所有可能的日生产 安排应满足的基本条件是什么?
2x y 15
广西南宁市高中数学 第三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题 第2课时 简单

3.3.2简单的线性规划问题(二)►知识点一求解线性规划最优整数解的方法1.平移找解法:先打网格、描整点、平移直线l,最先经过或最后经过的整点便是最优解,这种方法需充分利用非整数最优解的信息,结合精确的作图进行.当可行域是有限区域且整点个数又较少时,可逐个将整点坐标代入目标函数求值,经比较求最优解.2.调整优值法:先求非整点最优解及最优值,再借助不定方程知识调整最优解,最后筛选出整点最优解.3.由于作图有误差,有时由图形不一定能准确而迅速地找到最优解,此时将可能的解逐一检验即可.►知识点二线性规划问题的实际应用1.线性规划的理论和方法主要用于解决以下两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、财力、物力、资金等资源来完成该项任务.2.求解线性规划应用题的步骤解答线性规划应用题的一般步骤(1)审题——仔细阅读,对关键部分进行“精读”,准确理解题意,明确有哪些限制条件,起关键作用的变量有哪些,由于线性规划应用题中的量较多,为了理顺题目中量与量之间的关系,有时可借助表格来理顺.(2)转化——设元.写出约束条件和目标函数,从而将实际问题转化为数学上的线性规划问题.(3)求解——解这个纯数学的线性规划问题.(4)作答——就应用题提出的问题作出回答.考点一求目标函数的最优整数解例1画出2x-3<y≤3表示的平面区域,并求出所有正整数解.【变式】 设变量x ,y 满足条件⎩⎪⎨⎪⎧3x +2y ≤10,x +4y ≤11,x ∈Z ,y ∈Z ,x >0,y >0,求S =5x +4y 的最大值.考点二 线性规划的实际应用例2 某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,已知种植黄瓜和韭菜的产量、成本和售价如下表:为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)应分别为多少亩?[小结]线性规划的实际应用问题,关键是建立线性规划的数学模型,需要通过审题理解题意,找出各量之间的关系,找出线性约束条件,写出所研究的目标函数,通过数形结合解答问题;解线性规划应用题时,先转化为简单的线性规划问题,再按作图、平移、求值的步骤完成即可.练习:1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( ) A .0个 B .1个C .2个 D .无数个2.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为( )A .2000元B .2200元C .2400元D .2800元3.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为________元.。
高中数学二元一次不等式(组)与简单的线性规划问题课件

第三章 不等式
二元一次不等式(组) 与简单的线性规划问题
学习目标
LEARNING OBJECTIVES
1 .二元一次不等式的概念
我们把含有两个未知数,并且未知数的次数是1的不等式称为二元一次不等式.
2 .二元一次不等式组的概念
我们把由几个二元一次不等式组成的不等式组称为二元一次不等式组.
思考:点(2,1)是否是不等式 3x-2y+1>0 的解?
思路探究:(1 )怎样画出不等式组表示的平面区域?(2 )该平面区域是什么图形?如何求其面积?(3 )整 点是什么样的点?怎样求其坐标?
合作探究
学
而
思
[解] (1)不等式 4x+3y≤12 表示直线 4x+3y=12 上及其左下方的点的集合;x>0 表示直线 x=0 右方的所有点的集合;y>0 表示直线 y=0 上方的所有点的集合,故不等式
如何求其面积?
1
△A B C ,该三角形的面积为
S
△A
B
C
= 2
×6
×3
=9
.
若该图形不是规则的图形.我们可以采取“割补”
的方法,将平面区域分为几个规则图形求解.
合作探究
学
Hale Waihona Puke 而思x +y > 2 , 3 .点(0 ,0 ),(1 ,0 ),(2 ,1 ),(3 ,4 )在不等式组x -y > 0 ,
[提示] 是.把(2,1)代入,不等式成立.
学习目标
LEARNING OBJECTIVES
3 .二元一次不等式(组)的解集概念
满足二元一次不等式(组)的 x 和 y 的取值构成一个有序数对(x,y),称
为二元一次不等式(组)的一个解 ,所有这样的有序数对(x ,y )构成的集合称 为二元一次不等式(组)的 解集 .
2017-2018年高中数学 第三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题 3.3.2 第1课时 简单的

解简单线性规划问题的基本步骤: 1.画图.画出线性约束条件所表示的平面区域,即 可行域. 2.定线.令 z=0,得一过原点的直线. 3.平移.在线性目标函数所表示的一组平行线中, 利用平移的方法找出与可行域有公共点且纵截距最大或 最小的直线.
4.求最优解.通过解方程组求出最优解. 5.求最值.求出线性目标函数的最小值或最大值.
归纳升华 解线性规划问题的基本步骤: (1)画:画出线性约束条件所表示的可行域. (2)移:在线性目标函数所表示的一组平行线中,用 平移的方法找出与可行域有公共点且纵截距最大或最小 的直线.
(3)求:通过解方程组求出最优解. (4)答:根据所求得的最优解得出答案.
[变式训练] 已知实数 x,y 满足约束条件
[知识提炼·梳理]
1.约性约束条件: __由__关__于__x_,__y_的__一__次__不__等__式__形__成__的__约__束__条__件____. 2.线性目标函数: _由__关__于__两__个__变__量__x_,__y_一__次__式__形__成__的__函__数_____. 3.线性规划问题: _在__线__性__约__束__条__件__下__求__线__性__目__标__函__数__的__最__大__值__或__最__小 _值__问__题___.
y=mx, 点 A 处取得最大值,由
x+y=1,
得 A1+1 m,1+mm,代入目标函数,即1+1 m+15+mm= 4,解得 m=3.
答案:3
归纳升华 根据目标函数的最值求参数的解题思路:采用数形结 合,先画出可行域,根据目标函数表示的意义,画出目标 函数等于最值的直线,它与相应直线的交点就是最优解, 再将所求出的最优解代入含有参数的约束条件,即可求出 参数的值或范围.
二元一次不等式(组)与简单的线性规划问题课件-2023届高三数学(文)一轮总复习
解析:在平面直角坐标系内画出题中的不等式组表示的平面区域,其是以(2,
0),(0,2),(4,2)为顶点的三角形区(包含边界)(图略),易得当目标函数z1=2x
-y经过平面区域内的点(4,2)时,取得最大值2×4-2=6.z2=x2+y2表示平面区
域内的点到原点的距离的平方,易得原点到直线x+y=2的距离的平方为所求最
z=x2+y2+6x-4y+13=(x+3)2+(y-2)2的几何意义是可行域上的点到点(-3
,2)的距离的平方.结合图形可知,可行域上的点到(-3,2)的距离中,dmin=1
-(-3)=4,dmax= −3 − 5 2
所以z的取值范围为[16,64].
+ 2 − 2 2 =8.
y
2.(变问题)若例2中条件不变,将“z= ”改为“z=|x+y|”,如何
,B,设想培优小组A中,每1名学生需要配备2名理科教师和2名文科
教师做导师;设想培优小组B中,每1名学生需要配备3名理科教师和1
名文科教师做导师.若学校现有14名理科教师和9名文科教师积极支
5
持,则两培优小组能够成立的学生人数和最多是_____.
反思感悟
第三节 二元一次不等式(组)
与简单的线性规划问题
·考向预测·
考情分析:主要考查利用线性规划知识求目标函数的最值、取值范
围、参数的取值(范围)以及实际应用,目标函数大多是线性的,偶尔
也会出现斜率型和距离型的目标函数,此部分内容仍是高考的热点,
主要以选择题和填空题的形式出现.
学科素养:通过线性规划在求最值中的应用问题考查直观想象、数
最大值
最小值
最大值
在线性约束条件下求线性目标函数的________或
3.3 二元一次不等式(组)与简单的线性规划问题4
无“=”画虚线
2.同侧同号,异侧异号
y 如:画出不等式 2x+y-6<0 表示的平面区域。
6
解:先画直线2x+y-6=0
取原点(0,0),代入
2x+y-6<0
2x+y-6=0,
因为
o
3
x
2×0+0-6=-6 <0,
2x+y-6=0
所以,原点在2x+y-6<0表示的 平面区域内,不等式 2x+y-6<0 表示的区域如图所示。
例3.一个化肥厂生产甲、乙两种混合肥 料,生产1车皮甲种肥料需用的主要原料 是磷酸盐4吨,硝酸盐18吨,生产1车皮乙 种肥料需用的主要原料是磷酸盐1吨,硝 酸盐15吨,现有库存磷酸盐10吨,硝酸盐 66吨.如果在此基础上进行生产,设x,y 分别是计划生产甲、乙两种混合肥料的车 皮数,请列出满足生产条件的数学关系式, 并画出相应的平面区域.
在平面直角坐标系中表示直线: Ax + By + C =0
某一侧所有点组成的平面区域.
判断方法:“直线定界、特殊点定域”
(2)画不等式 Ax + By + C > 0表示的平面区域时,把直 线Ax + By + C = 0画成虚线以表示区域不包括边界直线. 画不等式 Ax + By + C ≥ 0表示的平面区域时,此区域包 括边界直线,则把边界直线Ax + By + C = 0画成实线.
y 6
有
3 O
注意:把直线画
如图所示 .
3
x
成虚线以表示区域 不包括边界
例2 画出不等式组
y
x y 0
人教a版必修5学案:3.3二元一次不等式(组)与简单的线性规划问题(含答案)
3.3 二元一次不等式(组)与简单的线性规划问题材拓展1.二元一次不等式(组)表示平面区域(1)直角坐标平面内的一条直线Ax +By +C =0把整个坐标平面分成三部分,即直线两侧的点集和直线上的点集.(2)若点P 1(x 1,y 1)与P 2(x 2,y 2)在直线l :Ax +By +C =0的同侧(或异侧),则Ax 1+By 1+C 与Ax 2+By 2+C 同号(或异号).(3)二元一次不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.2.画二元一次不等式表示的平面区域常 采用“直线定界,特殊点定域”的方法(1)直线定界,即若不等式不含等号,应把直线画成虚线;含有等号,把直线画成实线. (2)特殊点定域,即在直线Ax +By +C =0的某一侧取一个特殊点(x 0,y 0)作为测试点代入不等式检验,若满足不等式,则表示的区域就是包括这个点的这一侧,否则就表示直线的另一侧.特别地,当C ≠0时,常把原点作为测试点.当C =0时,常把点(1,0)或点(0,1)作为测试点.3.补充判定二元一次不等式表示的区域 的一种方法先证一个结论已知点P (x 1,y 1)不在直线l :Ax +By +C =0 (B ≠0)上,证明: (1)P 在l 上方的充要条件是B (Ax 1+By 1+C )>0; (2)P 在l 下方的充要条件是B (Ax 1+By 1+C )<0. 证明 (1)∵B ≠0,∴直线方程化为y =-A B x -CB,∵P (x 1,y 1)在直线上方,∴对同一个横坐标x 1,直线上点的纵坐标小于y 1,即y 1>-A B x 1-CB.(*)∵B 2>0,∴两端乘以B 2,(*)等价于B 2y 1>(-Ax 1-C )B , 即B (Ax 1+By 1+C )>0.(2)同理,由点P 在l 下方,可得y 1<-A B x 1-CB,从而得B 2y 1<(-Ax 1-C )B ,移项整理为B (Ax 1+By 1+C )<0. ∵上述解答过程可逆,∴P 在l 上方⇔B (Ax 1+By 1+C )>0, P 在l 下方⇔B (Ax 1+By 1+C )<0. 从而得出下列结论:(1)B >0时,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0上方的平面区域(不包括直线),而Ax +By +C <0表示直线Ax +By +C =0下方的平面区域(不包括直线).(2)B <0时,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0下方的区域(不包括直线),而二元一次不等式Ax +By +C <0表示直线Ax +By +C =0上方的平面区域(不包括直线).(3)B =0且A >0时,Ax +C >0表示直线Ax +C =0右方的平面区域(不包括直线),Ax +C <0表示直线Ax +C =0左方的平面区域(不包括直线).(4)B =0且A <0时,Ax +C >0表示直线Ax +C =0左方的平面区域(不包括直线),Ax +C <0表示直线Ax +C =0右方的平面区域(不包括直线).法突破一、二元一次不等式组表示的平面区域方法链接:只要准确找出每个不等式所表示的平面区域,然后取出它们的重叠部分,就可以得到二元一次不等式组所表示的平面区域.例1 在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1 C.12 D.14 解析答案 B二、平面区域所表示的二元一次不等式(组)方法链接:由平面区域确定不等式时,我们可以选用特殊点进行判断,把特殊点代入直线方程Ax +By +C =0,根据代数式Ax +By +C 的符号写出对应的不等式,根据是否包含边界来调整符号.例2 如图所示,四条直线x +y -2=0,x -y -1=0,x +2y +2=0,3x -y +3=0围成一个四边形,则这个四边形的内部区域(不包括边界)可用不等式组____________表示.解析 (0,0)点在平面区域内,(0,0)点和平面区域在直线x +y -2=0的同侧,把(0,0)代入到x +y -2,得0+0-2<0,所以直线x +y -2=0对应的不等式为x +y -2<0,同理可得到其他三个相应的不等式为x +2y +2>0,3x -y +3>0,x -y -1<0, 则可得所求不等式组为三、和平面区域有关的非线性问题方法链接:若目标函数为线性时,目标函数的几何意义与直线的截距有关.若目标函数为形如z =y -bx -a,可考虑(a ,b )与(x ,y )两点连线的斜率.若目标函数为形如z =(x -a )2+(y -b )2,可考虑(x ,y )与(a ,b )两点距离的平方. 例3 (2009·山东济宁模拟)已知点P (x ,y )满足点Q (x ,y )在圆(x +2)2+(y +2)2=1上,则|PQ |的最大值与最小值为( )A .6,3B .6,2C .5,3D .5,2解析可行域如图阴影部分,设|PQ |=d ,则由图中圆心C (-2,-2)到直线4x +3y -1=0的距离最小,则到点A 距离最大.由得(-2,3). ∴d max =|CA |+1=5+1=6,d min =|-8-6-1|5-1=2.答案 B四、简单的线性规划问题方法链接:线性规划问题最后都能转化为求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb的最值间接求出z的最值.例4 某家具公司制作木质的书桌和椅子两种家具,需要木工和漆工两道工序,已知木工平均四个小时做一把椅子,八个小时做一张书桌,该公司每星期木工最多有8 000个工作时;漆工平均两小时漆一把椅子,一个小时漆一张书桌,该公司每星期漆工最多有1 300个工作时,又已知制作一把椅子和一张书桌的利润分别是15元和20元,根据以上条件,怎样安排生产能获得最大利润?解 依题意设每星期生产x 把椅子,y 张书桌, 那么利润p =15x +20y .其中x ,y 满足限制条件{ 4x +8y ≤x +y ≤x ≥0,x ∈N *y ≥0,y ∈N *. 即点(x ,y )的允许区域为图中阴影部分,它们的边界分别为4x +8y =8 000(即AB ),2x +y =1 300(即BC ),x =0(即OA )和y =0(即OC ).对于某一个确定的p =p 0满足p 0=15x +20y ,且点(x ,y )属于阴影部分的解x ,y 就是一个能获得p 0元利润的生产方案.对于不同的p ,p =15x +20y 表示一组斜率为-34的平行线,且p 越大,相应的直线位置越高;p 越小,相应的直线位置越低.按题意,要求p 的最大值,需把直线p =15x +20y 尽量地往上平移,又考虑到x ,y 的允许范围,当直线通过B 点时,处在这组平行线的最高位置,此时p 取最大值.由{ 4x +8y =8 00x +y =1 300,得B (200,900), 当x =200,y =900时,p 取最大值, 即p max =15×200+20×900=21 000,即生产200把椅子、900张书桌可获得最大利润21 000元.区突破1.忽略截距与目标函数值的关系而致错 例1 设E 为平面上以A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界),求z =4x -3y 的最大值与最小值.[错解]把目标函数z =4x -3y 化为y =43x -13z .根据条件画出图形如图所示,当动直线y =43x -13z 通过点C 时,z 取最大值;当动直线y =43x -13z 通过点B 时,z 取最小值.∴z min =4×(-1)-3×(-6)=14; z max =4×(-3)-3×2=-18.[点拨] 直线y =43x -13z 的截距是-13z ,当截距-13z 最大即过点C 时,目标函数值z 最小;而当截距-13z 最小即过点B 时,目标函数值z 最大.此处容易出错.[正解] 把目标函数z =4x -3y 化为y =43x -13z .当动直线y =43x -13z 通过点B 时,z 取最大值;当动直线y =43x -13z 通过点C 时,z 取最小值.∴z max =4×(-1)-3×(-6)=14; z min =4×(-3)-3×2=-18.2.最优整数解判断不准而致错 例2 设变量x ,y 满足条件求S =5x +4y 的最大值.[错解] 依约束条件画出可行域如图所示,如先不考虑x 、y 为整数的条件,则当直线5x +4y =S 过点A ⎝⎛⎭⎫95,2310时,S =5x +4y 取最大值,S max =18 15.因为x 、y 为整数,所以当直线5x +4y =t 平行移动时,从点A 起通过的可行域中的整点是C (1,2),此时S max =13.[点拨] 上述错误是把C (1,2)作为可行域内唯一整点,其实还有一个整点B (2,1),此时S =14才是最大值.[正解] 依据已知条件作出图形如图所示,因为B (2,1)也是可行域内的整点,由此得S B =2×5+1×4=14,由于14>13,故S max =14.温馨点评 求最优整数解时,要结合可行域,对所有可能的整数解逐一检验,不要漏掉解.题多解例 某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有() A.5种B.6种C.7种D.8种解析方法一由题意知,按买磁盘盒数多少可分三类:买4盒磁盘时,只有1种选购方式;买3盒磁盘时,有买3片或4片软件两种选购方式;买2盒磁盘时,可买3片、4片、5片或6片软件,有4种选购方式,故共有1+2+4=7(种)不同的选购方式.方法二先买软件3片,磁盘2盒,共需320元,还有180元可用,按不再买磁盘,再买1盒磁盘、再买两盒磁盘三类,仿方法一可知选C.方法三设购买软件x片,磁盘y盒.则,画出线性约束条件表示的平面区域,如图所示.落在阴影部分(含边界)区域的整点有(3,2),(3,3),(3,4),(4,2),(4,3),(5,2),(6,2)共7个整点.答案 C题赏析1.(2011·浙江)设实数x,y满足不等式组{x+2y-5>0,x+y-7>0,x≥0,y≥0,且x,y为整数,则3x+4y的最小值是()A.14 B.16C.17 D.19解析作出可行域,如图中阴影部分所示,点(3,1)不在可行域内,利用网格易得点(4,1)符合条件,故3x+4y的最小值是3×4+4×1=16.答案 B2.(2009·烟台调研)若x,y满足约束条件{x+y≥x-y≥-x-y≤2,目标函数z =ax+2y仅在点(1,0)处取得最小值,则a的取值范围是()A.(-1,2) B.(-4,2) C.(-4,0] D.(-2,4)解析作出可行域如图所示,直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,即-4<a <2. 答案 B赏析 本题考查线性规划的基本知识,要利用好数形结合.。
不等式:二元一次不等式(组)与简单的线性规划课件
[变式训练]
2x y 5 0
1.
已知实数
x,y
满足不等式组
x
2
y
7
0
,若
(x
1)2
(y
1)2
的最大值为
m,
x y 1 0
最小值为 n,则 m n ( B )
A.4
B. 21
5
C. 5 1
D. 3 5 5
[解析]
作出不等式组表示的平面区域如图中阴影部分所示,可得 A(1,3), B(3, 2),C(2,1) .
[变式训练]
x y 3 0,
1.
已知实数
x,y
满足约束条件
x
y
5
0,
则 y 3 的取值范围是(
D)
x 2 y 2 0, x 2
A.
0,
1 3
[2,
)
C.
1 3
,
2
B.
1 3
,
D.
,
1 3
[2,
)
[解析]
画出约束条件表示的可行域如图中阴影部分(含边界)所示.
y 3 可表示可行域内点 N(x, y) 到定点 M (2,3连线的斜率, x2
2.对线性目标函数 z Ax By 中的 B 的符号一定要注意: 当 B 0 时,直线 z Ax By 过可行域且在 y 轴上截距最大时, z 值最大,在 y 轴上截距最小时,z 值最小; 当 B 0 时,直线 z Ax By 过可行域且在 y 轴上截距最大时, z 值最小,在 y 轴上截距最小时,z 值最大.
由图可得
A(1, 4) ,
B(4, 1)
kMA
43 1 2
1, 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.3 二元一次不等式(组)与简单的线性规划问题 §3.3.1 二元一次不等式(组)与平面区域对点讲练一、二元一次不等式(组)表示的平面区域例1 画出下列不等式(组)表示的平面区域. (1)2x -y -6≥0; (2)⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3.解 (1)如图1,先画出直线2x -y -6=0,取原点O (0,0)代入2x -y -6中,因为2×0-1×0-6=-6<0,所以在直线2x -y -6=0左上方的所有点(x ,y )都满足2x -y -6<0,故直线2x -y -6=0右下方的区域就是2x -y -6>0,因此2x -y -6≥0表示直线右下方的区域(包含边界);图1 图2(2)先画出直线x -y +5=0(画成实线),如图2取原点O (0,0),代入x -y +5,因为0-0+5=5>0,所以原点在x -y +5>0表示的平面区域内,即x -y +5≥0表示直线x -y +5=0上及其右下方的点的集合,同理可得,x +y ≥0表示直线x +y =0上及其右上方的点的集合,x ≤3表示直线x =3上及其左方的点的集合.总结 不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分,但要注意是否包含边界.►变式训练1 画出不等式组⎩⎪⎨⎪⎧x <32y ≥x3x +2y ≥63y <x +9表示的区域.解不等式x<3表示直线x=3左侧点的集合;不等式2y ≥x 即x-2y ≤0表示直线x-2y=0上及左上方点的集合;不等式3x+2y ≥6,即3x+2y-6≥0表示直线3x+2y-6=0上及右上方点的集合;不等式3y<x+9,即x-3y+9>0表示直线x-3y+9=0右下方点的集合.综上可得,不等式组表示的平面区域是如图所示的阴影部分.二、平面区域的面积问题例2 在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1 C.12D.14解析 记 ,,x y m x y n -=-= 则,22m n m nx y +-== 1220,0,m n m nm n m n +-⎧+≤⎪⎪+≥⎨⎪-≥⎪⎩即1,0,0m m nm n ≤⎧⎪+≥⎨⎪-≥⎩作出可行域可知面积为1.答案 B►变式训练2 若A 为不等式组 表示的平面区域,则当a 从-2连续变化到1时,动直线x+y=a 扫过A 中的那部分区域的面积为 . 答案74解析如图所示,区域A 表示的平面区域为△OBC 内部及其边界组成的图形,当a 从-2连续变化到1时扫过的区域为四边形ODEC 所围成的区域. 又D(0,1),B(0,2),E 13,22⎛⎫-⎪⎝⎭,C(-2,0). S 四边形ODEC=S △OBC -S △BDE =.三、平面区域内的整点个数问题例3 利用平面区域求不等式组⎩⎪⎨⎪⎧x ≥3y ≥26x +7y ≤50的整数解.分析 先画出平面区域,再用代入法逐个验证.解 把x=3代入6x+7y ≤50,得y ≤447,又∵y ≥2,∴整点有:(3,2)(3,3)(3,4); 把x=4代入6x+7y ≤50,得y ≤537,∴整点有:(4,2)(4,3). 把x=5代入6x+7y ≤50,得y ≤627, ∴整点有:(5,2);把x=6代入6x+7y ≤50,得y ≤2,整点有(6,2); 把x=7代入6x+7y ≤50,得y ≤87,与y ≥2不符. ∴整数解共有7个为(3,2),(3,3),(3,4),(4,2),(4,3),(5,2),(6,2). 总结 求某个平面区域内的整点,一般采用代入验证法来求,要做到不漏掉任何一个整点.►变式训练3 画出2x-3<y ≤3表示的平面区域,并求出所有的正整数解.解 由于2x-3<y ≤3⇔23,3,x y y -<⎧⎨≤⎩平面区域如图所示:而其中的正整数解为(1,1)、(1,2)、(1,3)、(2,2)、(2,3),共5组.课堂小结:1.二元一次不等式(组)的解集对应着坐标平面的一个区域,该区域内每一个点的坐标均满足不等式(组).常用特殊点法确定二元一次不等式表示的是直线哪一侧的部分.2.画平面区域时,注意边界线的虚实问题.3.求平面区域内的整点个数时,要有一个明确的思路不可马虎大意,常先确定x 的范围,再逐一代入不等式组,求出y 的范围最后确定整数解的个数.课时作业一、选择题1.已知点(-1,2)和(3,-3)在直线3x +y -a =0的两侧,则a 的取值范围是( ) A .a ∈(-1,6) B .a ∈(-6,1)C .a ∈(-∞,-1)∪(6,+∞)D .a ∈(-∞,-6)∪(1,+∞) 答案 A2.如图所示,表示满足不等式(x -y )(x +2y -2)>0的点(x ,y )所在的区域为( )答案 B解析 不等式(x -y )(x +2y -2)>0等价于不等式组(Ⅰ)⎩⎪⎨⎪⎧ x -y >0,x +2y -2>0或不等式组(Ⅱ)⎩⎪⎨⎪⎧x -y <0,x +2y -2<0.分别画出不等式组(Ⅰ)和(Ⅱ)所表示的平面区域,再求并集,可得正确答案为B.3.不等式组⎩⎪⎨⎪⎧4x +3y ≤12,x -y >-1,y ≥0表示的平面区域内整点的个数是( )A .2个B .4个C .6个D .8个答案 C解析 画出可行域后,可按x =0,x =1,x =2,x =3分类代入检验,符合要求的点有(0,0),(1,0),(2,0),(3,0),(1,1),(2,1)共6个.4.若平面区域D 的点(x ,y )满足不等式组⎩⎪⎨⎪⎧(x +1)2+y 2≤1x -y ≤0x +y ≤0,则平面区域D 的面积是( )A.12+π2 B .1+π2 C.12+π4 D .1+π4答案 B解析 画出平面区域,如图,阴影部分面积S=1+2π. 5.(2009·天津滨海新区五所重点学校联考)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y +4≥0,x ≤a(a 为常数)表示的平面区域的面积是9,那么实数a 的值为( )A .32+2B .-32+2C .-5D .1答案 D解析 区域如图,易求得A(-2,2),B(a ,a+4),C(a ,-a). S △ABC=1/2|BC|·|a+2|=(a+2)2=9,得a=1. 二、填空题6.△ABC 的三个顶点坐标为A (3,-1),B (-1,1),C (1,3),则△ABC 的内部及边界所对应的二元一次不等式组是________________.答案 ⎩⎪⎨⎪⎧x +2y -1≥0x -y +2≥02x +y -5≤0解析如图直线AB 的方程为x+2y -1=0(可用两点式或点斜式写出) 直线AC 的方程为2x+y -5=0 直线BC 的方程为x -y+2=0 把(0,0)代入2x+y -5=-5<0∴AC 左下方的区域为2x +y -5<0.∴同理可得△ABC 区域(含边界)为⎩⎪⎨⎪⎧x +2y -1≥0x -y +2≥02x +y -5≤0.7.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于________.答案 43解析平面区域如图.解 34,34,x y x y +=⎧⎨+=⎩得 ()1,1A易得()40,4,0,3B C ⎛⎫⎪⎝⎭48433BC =-= 1841233ABC S ∆∴=⨯⨯=8.已知点A (53,5),过点A 的直线l :x =my +n (n >0),若可行域⎩⎪⎨⎪⎧x ≤my +n ,x -3y ≥0,y ≥0的外接圆的直径为20,则实数n =________.答案 10 3 解析可行域如图所示,设直线l :x=my+n 的倾斜角为α, 则10,220,sin()OA OA R πα===-11sin ,tan 3mα∴==±=m ∴=又点 )A 在直线 ,x my n =+上m ∴=时,5,m n =+0,n ∴=又n >0, m ∴=当m =5,m n =+n ∴=三、解答题9.画出不等式组⎩⎪⎨⎪⎧x +2y -1≥0,2x +y -5≤0,y ≤x +2所表示的平面区域并求其面积.解如图所示,其中的阴影部分便是欲表示的平面区域. 由 20,250,x y x y -+=⎧⎨+-=⎩得()1,3A ,同理得 ()()1,1,3,1B C --AC ∴==而点B 到直线250,x y +-=距离为d ==11622ABC S AC d ∆∴=⋅=⨯=10.画出不等式组⎩⎪⎨⎪⎧2x -y ≥0,x +2y +3>0,5x +3y -5≤0表示的平面区域,并求其中的整数解(x ,y ).解 作出平面区域,如图所示.可求得顶点坐标36,55⎛⎫--⎪⎝⎭5101920,,111177⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭故,x y 的范围是35-<197,207-<1011,其中整数是 0,1,2;0,1,2,x y ==--结合图形并经检验可得整数解有(0,0),(0,- 1),(1,0),(1,- 1),(2, -2).。