2017-2018学年福州励志中学初三上学期期中考试数学试卷
九年级上数学期中考试试卷及答案(2)

九年级上数学期中考试试卷及答案(2)九年级上数学期中考试试卷及答案9.正方形具有而矩形不一定具有的性质是( )A.四个角都是直角B.对角线相等C.四条边相等D.对角线互相平行【考点】多边形.【分析】根据正方形、矩形的性质,即可解答.【解答】解:根据正方形和矩形的性质知,它们具有相同的特征有:四个角都是直角、对角线都相等、对角线互相平分,但矩形的长和宽不相等.故选C.【点评】本题考查了正方形和矩形的性质,解决本题的关键是熟记正方形和矩形的性质.10.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是( )A.k>B.k≥C.k> 且k≠1D.k≥ 且k≠1【考点】根的判别式;一元二次方程的定义.【分析】根据判别式的意义得到△=22﹣4(k﹣1)×(﹣2)>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,∴△=22﹣4(k﹣1)×(﹣2)>0,解得k> ;且k﹣1≠0,即k≠1.故选:C.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.二、填空题(每小题3分,共30分)11.方程x(x﹣1)=0的解是:x=0或x=1.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】本题可根据“两式相乘值为0,这两式中至少有一式值为0.”来解题.【解答】解:依题意得:x=0或x﹣1=0∴x=0或x=1故本题的答案是x=0或x=1.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.12.方程7x2+2x+3=0的根的情况是无实根.【考点】根的判别式.【分析】把a=7,b=2,c=3代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=7,b=2,c=3,∴△=b2﹣4ac=22﹣4×3×7<0,所以方程没有实数根.故答案为:无实根.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c 为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.13.在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是 .【考点】列表法与树状图法;平行四边形的判定.【专题】计算题.【分析】列表得出所有等可能的情况数,找出能判定四边形ABCD是平行四边形的情况数,即可求出所求的概率.【解答】解:列表如下:1 2 3 41 ﹣﹣﹣ (2,1) (3,1) (4,1)2 (1,2) ﹣﹣﹣ (3,2) (4,2)3 (1,3) (2,3) ﹣﹣﹣ (4,3)4 (1,4) (2,4) (3,4) ﹣﹣﹣所有等可能的情况有12种,其中能判定出四边形ABCD为平行四边形的情况有8种,分别为(2,1);(3,1);(1,2);(4,2);(1,3);(4,3);(2,4);(3,4),则P= = .故答案为:【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.小华做小孔成像实验(如图),已知蜡烛与成像板之间的距离为15cm,则蜡烛与成像板之间的小孔纸板应放在离蜡烛5cm的地方时,蜡烛焰AB是像A′B′的一半.【考点】相似三角形的应用.【分析】利用蜡烛焰AB是像A′B′的一半,得出AB距离O与A′B′到O的距离比值为1:2,进而求出答案.【解答】解:设蜡烛与成像板之间的小孔纸板应放在离蜡烛xcm,根据题意可得:= ,解得:x=5,则蜡烛与成像板之间的小孔纸板应放在离蜡烛5cm的地方时,蜡烛焰AB是像A′B′的一半.故答案为:5.【点评】此题主要考查了相似三角形的应用,根据题意得出正确比例关系是解题关键.15.三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则此三角形周长是13.【考点】解一元二次方程-因式分解法;三角形三边关系.【专题】计算题;分类讨论.【分析】求出方程的解,有两种情况:x=2时,看看是否符合三角形三边关系定理;x=4时,看看是否符合三角形三边关系定理;求出即可.【解答】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点评】本题考查了三角形的三边关系定理和解一元二次方程等知识点,关键是确定第三边的大小,三角形的两边之和大于第三边,分类讨论思想的运用,题型较好,难度适中.16.如图,在矩形ABCD中,对角线AC与BD相交于O点,且AB=OA=2cm,则BD的长为4cm.【考点】直角三角形斜边上的中线.【专题】计算题.【分析】本题用矩形的性质即可求解.【解答】解:因为矩形ABCD的对角线AC与BD互相平分且相等,故BD=AC=2AB=4cm,故答案为4cm.【点评】本题考查了直角三角形斜边上的中线,属于基础题,用到矩形的性质对角线相等且互相平分.17.某公司前年缴税40万元,今年缴税48.4万元.若该公司这两年缴税的年均增长率相同,设这个增长率为x,求这个增长率则可列方程为40(1+x)2=48.4.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设该公司的年增长率为x,则去年总收入是40(1+x)万元,今年总收入是40(1+x)2万元,而今年的总收入为48.4万元,依此即可列出方程求解.【解答】解:设该公司的年增长率为x,根据题意得40(1+x)2=48.4.故答案为:40(1+x)2=48.4.【点评】此题考查从实际问题抽象出一元二次方程,解决变化类问题,可利用公式a(1+x)2=b,其中a是变化前的原始量,b是两次变化后的量,x表示平均每次的增长率是解题的关键.18.已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是AB=AD或AC⊥BD 等.【考点】正方形的判定;矩形的判定与性质.【专题】开放型.【分析】由已知可得四边形ABCD是矩形,则可根据有一组邻边相等或对角线互相垂直的矩形是正方形添加条件.【解答】解:由∠A=∠B=∠C=90°可知四边形ABCD是矩形,根据根据有一组邻边相等或对角线互相垂直的矩形是正方形,得到应该添加的条件为:AB=AD或AC⊥BD等.故答案为:AB=AD或A C⊥BD等.【点评】本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.19.已知菱形的两条对角线长分别是6和8,则这个菱形的面积为24.【考点】菱形的性质.【专题】计算题.【分析】因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为24.【解答】解:∵菱形的两条对角线长分别是6和8,∴这个菱形的面积为6×8÷2=24故答案为24【点评】此题考查了菱形面积的求解方法:①底乘以高,②对角线积的一半.20.如图,五边形A′B′C′D′E′与五边形ABCDE是位似图形,且位似比为 .若五边形ABCDE的,面积为20cm2,那么五边形A′B′C′D′E′的面积为5.【考点】位似变换.【分析】直接利用位似图形面积比等于相似比的平方,进而得出答案.【解答】解:∵五边形A′B′C′D′E′与五边形ABCDE是位似图形,且位似比为,∴五边形A′B′C′D′E′的面积与五边形ABCDE的面积比为:1:4,∵五边形ABCDE的面积为20cm2,∴五边形A′B′C′D′E′的面积为:5.故答案为:5.【点评】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.三、解答题(一):本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.21.解下列方程(1)x(2x﹣7)=3x(2)x2﹣2x﹣3=0.【考点】解一元二次方程-因式分解法.【分析】(1)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)整理得:2x2﹣10x=02x(x﹣5)=0,2x=,0x﹣5=0,x1=0,x2=5;(2)x2﹣2x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0,x+1=0,x1=3,x2=﹣1.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.22.甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.【考点】游戏公平性;概率公式;列表法与树状图法.【专题】探究型.【分析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【解答】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为: ;下载文档润稿写作咨询。
省级重点 福建省福州第一中学2024-2025学年上学期九年级数学期中试卷(无答案)

福州一中2024-2025学年度第一学期期中考试初三数学试卷(完卷120分钟,满分150分)一、选择题(每小题4分,共40分,请把答案写在答题卷上)1.若两个相似图形的相似比是,则它们的面积比是( )A .B .C .D .2.把二次函数的图象向下平移1个单位长度后所得的图象的函数解析式为( )A .B .C .D .3.若关于x 的方程有一个根为,则a 的值为( )A .6B .C .4D .4.如图,将绕点A 顺时针旋转得到,若,,,则的长为( )A .5B .4C .3D .25.如图,C ,D 是上直径两侧的两点.设,则( )A .B .C .D .6.近年来,我国数字技术不断更新,影响着全民阅读形态,为预计某市2024年数字阅读市场规模,经查询得数据:该市2021年数字阅读市场规模为432万元,2023年数字阅读市场规模为507万元.设该市年平均增长率为x ,则下列方程正确的是( ).A .B .C .D .7.如表中列出了二次函数的一些对应值,则一元二次方程3:73:79:407:39:4922y x =22(1)y x =-22(1)y x =+221y x =-221y x =+250x x a ++=1-6-4-ABC △60︒AED △5AB =4AC =2BC =BE O e AB 25ABC ∠=︒BDC ∠=85︒75︒70︒65︒432(12)507x +=2432(12)507x +=2432(1)507x +=2432432(1)432(1)507x x ++++=2(0)y ax bx c a =++≠的一个近似解x 的范围是( )x…01…y…11…A .B .C .D .8.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为( )A .B .C .D .9.把边长分别为1和2的两个正方形按图的方式放置.则图中阴影部分的面积为( )A.B .C .D .10.点,在抛物线上,且满足,,,则m 的取值范围是( )A .B .或C .D .或二、填空题(每题4分,共24分,请把答案写在答题卷上)11.在做抛掷均匀硬币实验时,抛一次硬币,正面朝上的概率为____________.12.点A 坐标为,点A 与点B 关于原点中心对称,点B 坐标为____________.13.已知抛物线与x 轴只有一个交点,则____________.14.如图,在中,是的弦,的半径为,C 为上一点,,则20(0)ax bx c a ++=≠3-2-1-11-5-1-10x -<<01x <<23x <<34x <<5m 4m 26m 27m 28m 29m 1613151411(,)A x y 22(,)B x y 221y mx mx =--12x x >122x x m +=-12y y <302m <<32m >0m <01m <<1m >0m <(1,2)22y x x c =-+c =O e AB O e O e 3cm O e 60ACB ∠=︒AB的长为____________.15.当与时,代数式的值相等,则时,代数式的值为____________.16.中,,,D 在线段上运动,以为斜边作,使,点E 和点A 位于的两侧,连接,则的最小值为____________.三、解答题(共86分,请把答案写在答题卷上)17.(本题8分)解方程:(1);(2).18.(本题8分)如图,在中,,,于E .求证:.19.(本题8分)如图,每个小正方形的边长均为1,方格纸中画有,、、均在小正方形的顶点上.(1)将绕点逆时针旋转得到,画出;(2)在(1)的旋转过程中,求点运动的路径的长度.cm x a =()x b a b =≠223x x --x a b =+223x x --ABC △90ACB ∠=︒AC BC ==AB CD Rt CDE △30DCE ∠=︒CD BE BE 2280x -=213502x x --=ABC △AB AC =BD CD =CE AB ⊥ABD CBE △∽△111A B C △1A 1B 1C 111A B C △1C 90︒221A B C △221A B C △1A20.(本题8分)如图,以线段为直径作,交射线于点C ,平分交于点D ,过点D 作直线于点E ,交的延长线于点F .连接并延长交于点M .(1)求证:直线是的切线;(2)求证:.21.(本题8分)已知抛物线经过点,,且有最大值4.(1)求抛物线的表达式;(2)若,求函数值y 的取值范围.22.(本题10分)一个不透明的袋中装有1个红球、2个黑球,它们除颜色不同外其余都相同.(1)若从袋中随机摸出一球,则该球是红球的概率为____________;(2)先往袋中加入1个红球或黑球(它们与袋中的球大小、质地完全一样),再从袋中依次抽取两球(不放回),若要使得抽取的这两球颜色相同的概率较大,则应往袋中加入红球还是黑球?请利用树状图或列表法说明理由.23.(本题10分)正五边形是一个具有和谐美的几何图形,其尺规作图法引起了学者们的关注,里士满提出了一个构造圆内接正五边形的尺规作图方法,并且通过计算得到,当圆的半径为1时,其内接正五边形.如图,圆O 的半径1,和是相互垂直的直径,直线l 是过点C 的圆的切线.(1)尺规作图:①作的中点E ,②以C 为圆心,的长为半径交切线于点F ,③以F 为圆心,的长半径交切线于点G ,且F 、G 在直线的两侧,连接、.(2)结合材料,在线段、、中,判断哪条线段的长度等于圆O 的内接正五边形的边长,并说明理由.24.(本题12分)根据以下的素材,制定方案,设计出面积最大的花圃:素材1:有一堵长m 米()的围墙,利用这堵墙和长为的篱笆围成矩形花圃,设花圃面积为y ,甲、乙、丙三人讨论如何设计一个面积最大的花圃.AB O e AC AD CAB ∠O e DE AC ⊥AB BD AC DE O e AB AM =(1,0)(3,0)13x -<<AC BD OC OE OF AC OF OG OF OG EF 020m <<60m素材2:甲的设计方案,利用墙面作为矩形花圃的一边(如图1),求解决过程如下:设平行于墙面的篱笆长为n米,则垂直于墙面的篱笆长为依题意得:∵函数开口向下,对称轴为直线∴当时,y 随n 的增大而增大∴时,y 的最大值为素材3:受甲的方案的启发,乙、丙各自有了新的设计方案.乙的方案:利用全部围墙作为矩形一边的一部分(如图2);丙的方案,利用部分围墙作为矩形一边的一部分(如图3)设墙左端篱笆长为x 米,解决下列问题:任务1:当时,对于乙的方案,则可知____________(用含x 的代数式表示),花圃面积____________(用含x 的代数式表示),求该方案对应的花圃面积的最大值.任务2:对于丙的方案,设所用墙的长度为a 米(),求该方案对应的花圃面积的最大值.任务3:比较甲、乙、丙三种方案,判断哪种方案设计出的花圃面积更大?并说明理由.25.(本题14分)如图是一张矩形纸片,点M 是对角线的中点,点E 在边上.(1)如图1,将沿直线折叠,使点C 落在对角线上的点F 处,连接,.①若,,求对角线的长;②若,求的度数及此时的值.(2)如图2,若,,连接、,将沿折叠,点C 的对应点为点G ,当线段与线段交于点H 且为直角三角形时,求此时的长.602n -2(60)130(020)22n n y n n n m -==-+<≤<30n =0n m <≤n m =21302m m-+AM 12m =BC AD ==y =MD a m <ABCD AC BC DCE △DE AC DF EF 30EDC ∠=︒1DE =AC MF CD =DAF ∠CD AC3CB =2CD =BM ME MEC △ME GE BM BHE △BE。
福建省福州市2024-2025学年九年级上学期人教版数学期中复习试卷(3)

福建省福州市2024-2025学年九年级上学期人教版数学期中复习试卷(3)一、单选题1.下列汽车商标设计中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.一元二次方程()2200,40ax bx c a b ac ++=≠-≥的求根公式是()A .x =B .x =C .42b x a-=D .42b x a=3.如图,点C 在以AB 为直径的O 上,且70BOC ∠=︒,则C ∠=()A .70︒B .35︒C .45︒D .30︒4.抛物线()2221y x =-+-的顶点坐标是()A .()2,1--B .2,−1C .()2,2-D .()2,2-5.如图,若正六边形ABCDEF 绕着中心点O 旋转α度后得到的图形与原来图形重合,则α的最小值为()A .1 20B . 90C . 45D . 606.用配方法解一元二次方程2450x x +-=,此方程可变形为()A .2(2)9x +=B .2(2)9x -=C .2(2)1x +=D .2(2)1x -=7.若123135(,)(1,)(,)43A yB yC y --、、为二次函数y=-x 2-4x+5的图象上的三点,则y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 38.某商品经过两次降价,销售单价由原来100元降到64元,则平均每次降价的百分率为()A .10%B .20%C .36%D .8%9.如图,点P 是等边ABC V 内一点,且1PA PB =,2PC =,则APB ∠的大小为()A .120︒B .130︒C .135︒D .150︒10.飞机着陆后滑行的距离()m s 关于滑行的时间的函数解析式为260 1.5s t t =-,下列能反映这一变化过程的图象是()A .B .C .D .二、填空题11.方程()20x x +=的根是.12.若=1x -是方程220x mx -+=的一个根,则m =.13.如图,A ,B ,C 是O 上的三个点,若四边形ABCO 为菱形,则B ∠=.14.抛物线22y ax ax c =-+经过点()3,0,则关于x 的一元二次方程220ax ax c -+=的另一个根是.15.若235a a =+,235b b =+,则22a b +的值等于.16.如图,点E 是矩形ABCD 的中点,点F 为BC 上一点,将BEF △沿EF 折叠得到PEF !,连接PD ,若46AB BC ==,,则PD 的最小值为.三、解答题17.解方程∶2410x x --=18.如图,AB CD ,是O 的两条弦,且AB CD OM AB =⊥,于M ,ON CD ⊥于N .求证:OM ON =.19.求证:关于x 的一元二次方程22330x x m m --+=一定有实数根.20.已知二次函数224y x x =-.(1)求它的开口方向、对称轴和顶点坐标.(2)判断点()1,6A -是否在此二次函数的图象上.21.如图,ABC 绕点A 逆时针旋转120︒得到ADE ,点C 的对应点为E .(1)尺规作图,画出旋转后的ADE .(保留痕迹,不写作法)(2)设直线BC 与D 相交于P ,求CPD ∠的大小.22.如图,AB 为O 的直径,点C ,D 为圆上两点, CDBC =,且有AC 平分BAD ∠,过C 作CE AD ⊥于E .(1)求证:CE 为O 的切线(2)若4CD CE ==,,求O 半径.23.已知实数a ,b ,c .(1)若>0,1c =-,0a b c -+=,求a b c ++的取值范围.(2)若a ,b ,c 都是整数,且a b c ++是偶数.求证:a b c +-,b c a +-,a c b +-都是偶数.24.如图,Rt ABC △中,90306C A AB ∠=︒∠=︒=,,,点D 在AB 上,DE BC ⊥于E ,DF AC ⊥于F ,连接EF .(1)求EF 的最小值.(2)要使四边形DECF 的面积最大,点D 应选在何处?25.已知抛物线2y ax bx c =++()0a >,顶点为()00,.(1)求b ,c 的值.(2)若1a =时,如图1,P 为y 轴右侧抛物线上一动点,过P 作直线PN x ⊥轴于点N ,交直线l :122y x =+于M 点,设P 点的横坐标为m ,当2PM PN =时,求m 的值.(3)若1a =时,如图2,直线2y nx =+与抛物线相交于A ,B ,当AB =时,求ABO S ∆的面积.。
福建省福州市长乐区2024-2025学年九年级上学期期中考试数学试卷(含答案)

2024—2025学年第一学期期中适应性练习九年级数学(全卷满分:150分,考试时间:120分钟)友情提示:请将答案写在答题卡规定位置上,不得错位、越界答题.一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代典籍《周易》用“卦”描述万物的变化.如图为部分“卦”的符号,其中不是中心对称图形的是()A .B .C .D .2.将抛物线向右平移2个单位,然后向上平移3个单位,则平移后得到的抛物线解析式是( )A .B .C .D .3.如图,是的直径,点在上.若,.则的半径长为( )第3题A .1B .2CD4.下列一元二次方程中,根是的方程是()A .B.C .D .5.已知一个圆心角为120°,半径为3的扇形,则这个扇形的弧长是( )A .B .C .D .6.对于二次函数,下列判断正确的是( )A .当时,取得最大值B .当时,取得最小值2y x =()223y x =--()223y x =+-()223y x =-+()223y x =++AB O e C O e 2AC =BC =O e x =23210x x +-=23210x x --=23410x x +-=2230x x --+=π2π3π4π()226y x =--+2x =y 2x =yC .当时,取得最大值D .当时,取得最小值7.一根排水管的截面如图所示,截面水深是4dm ,水面宽是16dm ,则排水管的截面圆的半径是()第7题A .6dmB .10dmC .D .20dm8.将点绕原点逆时针旋转90°得到点,则点的坐标为( )A .B .C .D .9.如图,,分别切于,两点,点在优弧上,,则的度数为()第9题A .40°B .50°C .80°D .100°10.已知二次函数的图象上有两点和(其中),则下列判断正确的是()A .若时,B .若时,C .若,时,D .若,时,二、填空题:本题共6小题,每小题4分,共24分.11.若一元二次方程的一个根为,则的值为______.12.一元二次方程根的判别式的值是______.13.已知的半径是5cm ,若圆心到直线的距离是4cm ,则直线与的位置关系是______.(填“相交”、“相切”或“相离”)14.如图,在等边三角形中,为的中点,,与关于点中心对称,连接,则的长为______.2x =-y 2x =-y CD ABOB ()2,3A O B B ()2,3-()2,3-()3,2-()3,2-PA PB O e A B C ACB 80P ∠=︒C ∠()220y ax ax c a =-+≠()11,A x y ()22,B x y 12x x <122x x +<120y y ->122x x +>120y y ->0a >122x x +>120y y ->0a <122x x +<120y y -<210x ax +-=1x =a 2310x x --=O e O AB AB O e ABC O BC 2AB =BPQ △BAO △B CP CP第14题15.某品牌汽车刹车后行驶的距离(单位:m )与滑行时间(单位:s )的函数关系式是.汽车刹车后到停下来前进了______m .16.我国魏晋时期数学家刘徽在《九章算术注》中提出了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.如图,的半径为1,如用的内接正十二边形面积来近似估计圆的面积,则可得的近似值为3.若用半径为1的圆的内接正八边形面积作近似估计,可得的近似值为______.(参考数据:,结果精确到0.1)第16题三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解方程.18.(8分)已知二次函数.(1)完成下表:…0123……__________________…(2)根据(1)的结果在如图所示的平面直角坐标系中,利用描点法画出这个二次函数的图象;(3)结合函数图象,当时,的取值范围是______19.(8分)已知二次函数.求证:不论取何值,该函数图象与轴总有两个交点.s t 2156s t t =-O e O e ππ1.414≈ 1.732≈2410x x --=223y x x =--x 1-223y x x =--0y <x ()2221y x m x m =-++-m x20.(8分)如图,,是的直径,点在上,,求证:.21.(8分)如图,在中,,,,以点为圆心,2.4为半径作.求证:是的切线.22.(10分)如图,二次函数的图象与轴交于,两点,与轴交于点,其中,.(1)求二次函数的解析式;(2)若是二次函数图象上的一点,且点在第一象限,线段交轴于点,,求点的坐标.23.(10分)如图,在矩形中,,.将绕点顺时针旋转一个角度得到,点,的对应点分别为点,.图1图2(1)如图1,若点落在边上,求旋转角的度数;(2)如图2,若点落在线段上,与交于点,求的长.24.(12分)长乐栽培龙眼历史悠久,据文献记载宋光宗皇帝曾赐匾青山龙眼为“黄龙”.请你运用数学知识,根据素材,帮果农解决问题.信息及素材AB CD O e E »BC»»BD BE =CE AB ∥Rt OAB △90AOB ∠=︒3OA =4OB =O O e AB O e 2y x bx c =++x A B y C ()1,0A -()3,0B P P PC x D PAD CAD S S =△△PABCD AB =2BC =ABC △C αFEC △A B F E E AD αE AF CE AD G AG素材一在专业种植技术人员的正确指导下,果农对龙眼种植技术进行了研究与改进,使产量得到了增长,根据果农们的记录,2021年龙眼平均年产量是2.8万吨,2023年达到了3.2万吨,每年的增长率基本相同.素材二龙眼一般用长方体包装盒包装后进行售卖.素材三果农们通过调查发现,顾客们也很愿意购买用美观漂亮的其它造型的纸盒包装的龙眼.任务1:设龙眼产量的年平均增长率为,根据素材一列方程得______;任务2:现有长80cm ,宽75cm 的长方形纸板,将四角各裁掉一个正方形(如图1),折成无盖长方体纸盒(如图2).为了放下适当数量的龙眼,需要设计底面积为的纸盒,计算此时纸盒的高;图1 图2任务3:为了增加包装盒的种类,打算将任务2中的纸板通过图3的方式裁剪,得到底面为正六边形的无盖纸盒(如图4),求纸盒的底面边长.(图中实线表示剪切线,虚线表示折痕.板厚度及剪切接缝处损耗忽略,结果取整数)图3 图425.(14分)学习完一元二次方程的知识后,数学兴趣小组对关于的一元二次方程开展探究.(1)当时,该方程的正根称为“黄金分割数”,求“黄金分割数”;(2)若实数,满足,,且,求的值;(3)若两个不相等的实数,满足,,求的值.x 21400cm 1.732≈x 210x mx +-=1m =a b 21a ma -=224b mb +=2b a ≠-ab p q 21p mp q +-=21q mq p +-=pq m -2024—2025学年第一学期期中阶段反馈练习九年级数学参考答案一、选择题:本题共10小题,每小题4分,共40分.1-5 ACDAB6-10 ABDBD二、填空题:本题共6小题,每小题4分,共24分11.0 12.13 13.相交 14.15.9.375 16.2.8三、解答题:本题共9小题,共86分.17.(8分)解:∴另解:∵,,∴∴∴18.(8分)(1)完成下表:…0123………解:(2)描点、连线,如图所示;(3).19.(8分)证明:令,则241x x -=24414x x -+=+()225x -=2x -=12x =22x =1a =4b =-1c =-()()2244411b ac ∆=-=--⨯⨯-200=>x =2=±12x =22x =x 1-223y x x =--3-4-3-13x -<<0y =()22210x m x m -++-=()()224121m m ⎡⎤∆=-+-⨯⨯-⎣⎦()2240m =-+>∴方程总有两个不相等的实数根∴不论取何值,该函数图象与轴总有两个交点.20.(8分)证明:连接∵ ∴ ∴∵ ∴ ∴.21.(8分)证明:过点作,垂足为∵,, ∴∵ ∴∵的半径为2.4 ∴ ∴是的切线.22.(10分)解:(1)∵二次函数的图象过点,∴ 解得∴二次函数的解析式为;(2)设(,)在中,当时,∴m x OE»»BDBE =BOD BOE ∠=∠12BOD DOE ∠=∠12C DOE ∠=∠BOD C ∠=∠CE AB ∥O OC AB ⊥C90AOB ∠=︒3OA =4OB=5AB ===1122OAB S OA OB AB OC =⋅=⋅△342.45OA OB OC AB ⋅⨯===O e r OC r =AB O e 2y x bx c =++()1,0A -()3,0B 10930b c b c -+=⎧⎨++=⎩23b c =-⎧⎨=-⎩223y x x =--(),P m n 0m >0n >223y x x =--0x =3y =-3OC =∵∴∴∵点在二次函数图象上 ∴解得(舍去)∴点的坐标为. 23.(10分)解:(1)∵四边形是矩形图1∴, ∴由旋转,得,在中,∴ ∴∴旋转角的度数为45°;(2)由旋转,得,图2∴ ∵∴ ∴∵四边形是矩形∴,,∴ ∴ ∴设,则,在中, ∴解得 ∴的长为.PAD CAD S S =△△1122AD n AD OC ⋅=⋅3n =(),P m n 2233m m --=11m =21m =P ()1ABCD CD AB ==90D ∠=︒AD BC ∥DEC BCE∠=∠2CE BC ==BCE α∠=Rt CDE △DE ===CD DE =45DEC ∠=︒α90FEC B ∠=∠=︒CE BC=90AEC B ∠=∠=︒AC AC=()Rt Rt HL AEC ABC ≌△△ACE ACB ∠=∠ABCD AD BC ∥2AD BC ==CD AB ==90D ∠=︒GAC ACB ∠=∠GAC ACE ∠=∠AG CG =AG m =CG m =2DG AD AG m =-=-Rt CDG △222CG CD DG =+()2222m m =+-32m =AG 3224.(12分)解:任务1:;任务2:设裁掉正方形的边长为,根据题意,得解得,(不合题意,舍去)答:此时纸盒的高为20cm ;任务3:设底面正六边形为,连接,,,和交于点,和交于点,所在直线交长方形纸板的边于点,设底面正六边形的边长为,纸盒的高为∵正六边形的每条边相等,每个内角都为120°∴为等腰三角形, ∴由正六边形的性质可得平分 ∴ ∴∴, 同理可得∵ ∴①∵左侧小三角形顶点的角度∴左侧小三角形是边长为的等边三角形根据图形的轴对称可得与长方形纸板的左右两边垂直∴为等边三角形的高 ∴ 同理可得∵四边形是矩形 ∴∵ ∴②联立①②式可得答:纸盒的底面边长约为30cm .25.(14分)解:(1)将代入,得解得.()22.813.2x +=cm m ()()7528021400m m --=120m =21152m =ABCDEF AC FD BE AC BE G FD BE H BE M Ncm acmb ABC △120ABC ∠=︒30BAC BCA∠=∠=︒BE ABC ∠60ABE ∠=︒90AGB ∠=︒1122BG AB a ==AG CG==12HE BG a ==75b AG CG b +++=275b +=B 360120909060︒︒︒︒︒=---=b MN BM BM =EN BM ==AGHF GH AF a==80BM BG GH HE EN ++++=280a +=16030a =-≈1m =210x mx +-=210x x +-=x ==;(2)∵ ∴ ∴∵ ∴∵ ∴,是一元二次方程的两个根∴ ∴;(3)①,②①-②,得∴∵ ∴ ∴∴③,④将④代入①,得 ∴将③代入②,得 ∴∴,是一元二次方程的两个根∴ ∴.224b mb +=2240b mb +-=21022b b m ⎛⎫+⋅-= ⎪⎝⎭21a ma -=()()210a m a -+⋅--=2b a ≠-a -2b210x mx +-=12ba -⋅=-2ab =21p mp q +-=21q mq p +-=()22p q m p q q p-+-=-()()()()p q p q m p q p q -++-=--p q ≠()1p q m ++=-1p q m +=--1p m q =---1q m p =---211p mp m p +-=---()210p m p m +++=211q mq m q +-=---()210q m q m +++=p q ()210x m x m +++=pq m =0pq m -=。
2017-2018学年第一学期期中质量调研模拟检测·九年级数学试题[PDF版含答案解析]
![2017-2018学年第一学期期中质量调研模拟检测·九年级数学试题[PDF版含答案解析]](https://img.taocdn.com/s3/m/7c5f3972a45177232f60a28a.png)
20. 解:(1)如图 1,点 M 就是要找的圆
心. 正确即可 (2)证明:由 A(0,4),可得小正方形 的边长为 1,从而 B(4,4)、C(6,2)
(2) ∵m>-t, ∴取 m=0, 方程为 x2-2x=0,
解得 x1=0,x2=2. 19. 解:(1)由图可知,花圃的面积为 (100-2a)(60-2a)=4a2-320a+6000; (2) 由已知可列式: 100×60(100-2a) (60-2a) = ×100×60, 解得:a1=5,a2=75(舍去), 所以通道的宽为 5 米;
A.
m
B.
期中模考·九年级数学(解析卷) 第 1 页 共 15 页
t
m
C.
t
m
D. 1m
8. 如图(见第 1 页),在直角梯形 ABCD 中,AB∥CD,AB⊥BC,以 BC 为直径的⊙O 与 AD 相切,点 E 为 AD 的中点,下列结论正确 的个数是( ) .. (1)AB+CD=AD; (3)AB•CD=
期中模考·九年级数学(解析卷) 第 5 页 共 15 页
23. (12 分)已知:△ABC 内接于⊙O,D 是 上一点,OD⊥BC,垂足为 H. (1)如图 1,当圆心 O 在 AB 边上时,求证:AC=2OH; (2)如图 2,当圆心 O 在△ABC 外部时,连接 AD、CD,AD 与 BC 交于点 P,请你证 明:∠ACD=∠APB; (3)在(2)的条件下,如图 3,连接 BD,E 为⊙O 上一点,连接 DE 交 BC 于点 Q、 交 AB 于点 N,连接 OE,BF 为⊙O 的弦,BF⊥OE 于点 R 交 DE 于点 G,若 ∠ACD-∠ABD=2∠BDN,AC=5 ,BN=3 ,tan∠ABC=t,求 BF 的长.
九年级数学上册期中测评卷

九年级上册数学学力综合测评姓名: 学校: 得分:亲爱的家长和同学:本测评共22题,规定完成时间为70分钟,将答案直接写在试卷上。
60分以下可读提高班;60分-85分可上培优班;85分以上可上精英班。
温馨提示:为了给孩子选择一个最合适的发展的教学环境,请让孩子独立完成!一、精心选一选(每题3分,共24分)1.方程022=-x x 的解是( ) A .2=xB .0=xC .01=x ,22-=xD .01=x ,22=x2.在函数25x y x+=中,自变量x 的取值范围是( ) A .0≠x B .2≤x 且0≠x C .2-≥x 且0≠x D .2-≥x3.小明拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是( )4.如果双曲线ky x=过点(3,-2),那么下列的点在该双曲线上的是( ) A .(3,0) B .(0,6) C .(-1.25,8) D .(-1.5,4)5.若关于x 的一元二次方程0122=--x kx 有两个不相等的实数根,则k 的取值范围是( ) A .1->k B .1->k 且0≠k C .1<k D .1<k 且0≠k6.函数21a y x--=(a 为常数)的图象上有三点(-4,1y ),(-1,2y ),(2,3y ),则函数值1y ,2y ,3y 的大小关系是( )A .3y <1y <2yB .3y <2y <1yC .1y <2y <3yD . 2y <3y <1y7.某厂今年3月份的产值为50万元,5月份上升到72万元,这两个月的平均每月增长的百分率是多少?若设平均每月增长的百分率为x ,则列出的方程是( )A .)1(50x +72=B .)1(50x ++2)1(50x +72=C .722)1(50=⨯+xD .2)1(50x +72= 8.用换元法解方程213()320x x xx--++=时,如果设1x y x -=,那么原方程可转化为( )A .2320y y ++= B .2320y y --= C .2320y y -+= D .2320y y +-=ABC D E FGH 二、耐心填一填(每题3分,共24分.)9.已知方程230x x k -+=有两个相等的实数根,则k =10.如图所示,反比例函数图象上一点A ,过A 作AB ⊥x 轴于B ,若S △AOB =3,则反比例函数的解析式为11.关于x 的一元二次方程02=++c bx x 的两个实数根分别为1和2,则b = ,c = .12.如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3, E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是13.已知关于x 的方程01232=-+-k x x 有实数根,反比例函数xky 21+=的图像在各自象限内y 随x 增大而减小,则满足上述条件的k 的整数值为 .14.如果a 、b 是方程012=-+x x 的两个实数根,则代数式3223b ab b a a +++的值为 .15.如图,在梯形ABCD 中,AD ∥BC ,AB=CD=AD=1,∠B=60°,直线MN 为梯形ABCD的对称轴,P 为MN 上一点,那么PC+PD 的最小值为 .16.如图,点A 1、A 2、A 3在x 轴上,且OA 1=A 1A 2=A 2A 3,分别过点A 1、A 2、A 3作y 轴的平行线,与反比例函数()40y x x=>的图象分别交于点B 1、B 2、B 3,分别过点B 1、B 2、B 3作x 轴的平行线,分别与y 轴交于点C 1、C 2、C 3,连结OB 1、OB 2、OB 3,那么图中阴影部分的面积之和为___________.三.用心算一算(共10分)17.(1)02222=+-x x (公式法) (2)2220x x --=(配方法)(x >0)4x y=xyOB 2B 3B 1C 1C 3C 2A 2A 3A 1NMDCBA四.全心解一解(共42分)18. (9分)在一次数学活动课上,李老师带领学生去测教学楼的高度。
2017年福州市初中毕业班质量检测数学试卷
2017年福州市初中毕业班质量检测数学试卷LT2017年福州市初中毕业班质量检测数 学 试 卷一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1. 下列运算结果为正数的是( )A .()21-+B .()21--C .()21-⨯D .()21-÷2. 若一个几何体的主视图、左视图、俯视图都是半径相等的圆,则这个几何体是( )A .圆柱B .圆锥C .球D .正方体3. 数轴上点A 、点B 表示的数分别是a ,b ,这两点间的距离是( )A .b a +B .b a -C .b a +D .b a -4. 两个全等的正六边形如图摆放,与△ABC 面积不同的一个三角形是( )A .△ABDB .△ABEC .△ABFD .△ABG5. 如图,O 为直线AB 上一点,∠AOC =α,∠BOC =β,则β的余角可表示为( )A .()βα+21B .α21C .()βα-21D .β216.在一个不透明的袋子中装有4个红球,2个白球,每个球只有颜色不同,从中任意摸出3个球,下列事件为必然事件的是( ) A .至少有1个球是红球 B .至少有1个球是白球 C .至少有2个球是红球D .至少有2个球是白球7. 若m ,n 均为正整数,且()642,3222==⋅nmn m ,则mn+m+n 的值为( )A .10B .11C .12D .138. 如图,△ABC 中,∠ABC=50°,∠C=30°,将△ABC 绕点B 逆时针旋转()︒≤︒900αα ,得到△DBE ,若DE ∥BC ,则α为( )A .50°B .70°C .80°D .90°AO CB βαA D CBFG E 第5题 第4题 A DCBE第8题9. 在平面直角坐标系中,已知点A (1,2),B (2,1),C (3,1--),D (3,2-),其中不可能与点E (1,3)在同一函数图像上的一个点是( )A .点AB .点BC .点CD .点D10. P 是抛物线542+-=x x y 上一点,过点P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别是M ,N ,则PM+PN 的最小值是( )A .45B .411 C .3 D .5二、填空题(本大题有10小题,每小题4分,共24分) 11. 若二次根式3-x 有意义,则x 的取值范围是____________.12. 2017年5月12日是第106个国际护士节,从数串 “2 017 512”中随机抽取一个数字,抽到数字2的概率是____________.13. 计算:=⨯⨯-20172016440332_____________.14. 如图,矩形ABCD 中,AB=2,点O 在AB 边上,以O 为圆心OB长为半径的⊙O 与CD 相切,交AD 于点F ,连接OF ,若扇形OBF的面积为π34,则CD 的长是__________.15. 对于锐角α,tan α_______sin α(填“>”,“<”或“=”)。
2017-2018学年度九年级上学期数学期中考试卷及答案
2017-2018学年第一学期期中考试九年级数学试题一、选择题(共6小题,每小题3分,满分18分)1.计算(-332的结果是()A.3B. -3C. _3D.92.若P (x, —3)与点Q (4, y)关于原点对称,则x + y=()A 7 B、一7 C 1 D、一13.下列二次根式是最简二次根式的是()A. 1B. ,3C. 、4D. 、,84. 一元二次方程2x2 +3x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断5.用配方法解方程x2+4x+1=0,则配方正确的是()A(x +2)2=3 B、(x +2)2 = —5 C 、(x + 2)2 = —3 D、(x+4)2=36.如图,AB、AC都是圆O的弦,OM,AB, ON,AC,垂足分别为M、N ,如果MN = 3,那么BC =().A. 4B.5 C . 6 D.7二、填空题(共8小题,每小题3分,满分24分)7. W x=2在实数范围内有意义,则x的取值范围是8. 2x2 -1 =届的二次项系数是 , 一次项系数是 ,常数项是——9. 一只蚂蚁沿图中所示的折线由A点爬到了C点,则蚂蚁一共爬行了cm.(图中小方格边长代表1cm)10 .关于x 的一元二次方程(m+2)x 2 —mx+m 2_4=0有一根为0,则m=. 11 .对于任意不相等的两个数 a,b ,定义一种运算*如下:a * b =;J^ ,如3* 2=-3±2 = 5 ,那么 a-b 3-23* ( -5)= .12 .有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心 的弦;④在同圆或等圆中,相等的两条弦所对的弧是等弧,其中真命题是 。
13 .有两个完全重合的矩形, 将其中一个始终保持不动, 另一个矩形绕其对称中心 O 按逆时针方向进行旋转,每次均旋转22.5◎,第2次旋转后得到图①,第 4次旋转后得到图②・,则第20次旋转后得到的14 .等腰三角形两边的长分别为方程 x 2 -9x+20 =0的两根,则三角形的周长是 三、解答题(共4小题,每小题6分,共24分)计算:.18 - 2-- ( ..5 -1)02 2' 17 .下面两个网格图均是 4X4正方形网格,请分别在两个网格图中选取两个白色的单位正方形并涂黑, 使整个网格图满足下列要求.图形与图①〜图④中相同的是 图④ 15. 解方程:x(x-2) + x-2 = 0轴X 除图形 中心对称图形16. (填写序图②18.如图,大正方形的边长为,H5 +J5 ,小正方形的边长为J15 - J5 ,求图中的阴影部分的面积.四、(本大题共2小题,每小题8分,共16分)19.数学课上,小军把一个菱形通过旋转且每次旋转120。
【必考题】九年级数学上期中试题及答案
【必考题】九年级数学上期中试题及答案一、选择题1.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴为直线l.则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是()A.①③B.②③C.②④D.②③④2.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上3.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为( )A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=194.如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须()A.大于60°B.小于60°C.大于30°D.小于30°5.如图,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为()A.1B.22C.2D.26.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°7.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( )A .30°B .60°C .90°D .120° 8.抛物线y =2(x -3)2+4的顶点坐标是( ) A .(3,4)B .(-3,4)C .(3,-4)D .(2,4) 9.一元二次方程2410x x --=配方后可化为( ) A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -= 10.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是 ( )A .120B .19100C .14D .以上都不对 11.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( )A .2y xB .2(12)y x =-C .(12)y x x =-D .2(12)y x =-12.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( ) A .-41 B .-35 C .39 D .45二、填空题13.已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.若1211+x x =﹣1,则k 的值为_____. 14.已知、是方程的两个根,则代数式的值为______.15.新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.16.如图,Rt △ABC 中,∠A =90°,AB =4,AC =6,D 、E 分别是AB 、AC 边上的动点,且CE =3BD ,则△BDE 面积的最大值为_____.17.关于x 的方程的260x x m -+=有两个相等的实数根,则m 的值为________.18.若关于 x 的一元二次方程2x 2-x+m=0 有两个相等的实数根,则 m 的值为__________.19.如图,已知△ABC 内接于⊙O ,∠C =45°,AB =4,则⊙O 的半径为_____.20.如图,将ABC 绕点A 逆时针旋转150︒,得到ADE ,这时点B C D 、、恰好在同一直线上,则B 的度数为______.三、解答题21.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A .“解密世园会”、B .“爱我家,爱园艺”、C .“园艺小清新之旅”和D .“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C .“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.22.如图,四边形ABCD 内接于⊙O ,4OC =,42AC =.(1)求点O 到AC 的距离;(2)求ADC ∠的度数.23.已知关于x 的方程x 2+4x +3-a =0.(1)若此方程有两个不相等的实数根,求a 的取值范围;(2)在(1)的条件下,当a 取满足条件的最小整数,求此时方程的解.24.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于210cm ? (2)在(1)中,PQB 的面积能否等于27cm ?请说明理由.25.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A ,B ,C ,D 四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s ) 频数(人数) A90<s≤100 4 B80<s≤90 x C70<s≤80 16 D s≤70 6根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n= ,C 等级对应的扇形的圆心角为 度;(3)该校准备从上述获得A 等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a 1,a 2表示)和两名女生(用b 1,b 2表示),请用列表或画树状图的方法求恰好选取的是a 1和b 1的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧, ∴﹣2b a>0, ∴b >0, ∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0),∴a ﹣b+c=0,故②正确;③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确;④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确.故选D .考点:二次函数图象与系数的关系.2.C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C .点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.D解析:D【解析】【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【详解】方程移项得:2610x x -=,配方得:26919x x -+=,即2(3)19x -=,故选D . 4.D解析:D【解析】试题解析:连接OA ,OB ,AB ,BC ,如图:∵AB=OA=OB ,即△AOB 为等边三角形,∴∠AOB=60°,∵∠ACB 与∠AOB 所对的弧都为AB ,∴∠ACB=12∠AOB=30°, 又∠ACB 为△SCB 的外角,∴∠ACB >∠ASB ,即∠ASB <30°.故选D5.D解析:D【解析】【分析】【详解】解:连接AO ,并延长交⊙O 于点D ,连接BD ,∵∠C=45°,∴∠D=45°,∵AD 为⊙O 的直径,∴∠ABD=90°,∴∠DAB=∠D=45°,∵AB=2,∴BD=2,∴22222222AB BD +=+=∴⊙O 的半径AO=22AD =. 故选D .【点睛】 本题考查圆周角定理;勾股定理.6.D解析:D【解析】分析:根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半. 详解:根据圆周角定理,得∠ACB=12(360°-∠AOB )=12×250°=125°. 故选D . 点睛:此题考查了圆周角定理.注意:必须是一条弧所对的圆周角和圆心角之间才有一半的关系.7.D解析:D【解析】根据题意旋转角为∠ABA 1,由∠ABC=60°,∠C=90°,A 、B 、C 1在同一条直线上,得到∠ABA 1=180°-∠A 1BC 1=180°-60°=120°解:旋转角为∠ABA 1,∵∠ABC=60°,∠C=90°,∴∠ABA 1=180°-∠A 1BC 1=180°-60°=120°;故答案为D点评:本题考查了弧长的计算公式:l=n R 180π,其中l 表示弧长,n 表示弧所对的圆心角的度数. 8.A【解析】根据2()y a x h k =-+ 的顶点坐标为(,)h k ,易得抛物线y=2(x ﹣3)2+4顶点坐标是(3,4).故选A.9.D解析:D【解析】【分析】根据移项,配方,即可得出选项.【详解】解:x 2-4x-1=0,x 2-4x=1,x 2-4x+4=1+4,(x-2)2=5,故选:D .【点睛】本题考查了解一元二次方程的应用,能正确配方是解题的关键.10.C解析:C【解析】解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004=, 故选C . 点睛: 本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.11.C解析:C【解析】【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数.【详解】∵长方形的周长为24cm ,其中一边长为()x cm ,∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =- 故选C【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.解析:C【解析】【分析】根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a 2-5a-1=0,a+b=5,ab=-1,把22a 3ab 8b 2a ++-变形为2(a 2-5a-1)+3ab+8(a+b)+2,即可得答案.【详解】∵a ,b 为方程2x 5x 10--=的两个实数根,∴a 2-5a-1=0,a+b=5,ab=-1,∴22a 3ab 8b 2a ++-=2(a 2-5a-1)+3ab+8(a+b)+2=2×0+3×(-1)+8×5+2 =39.故选:C .【点睛】本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax 2+bx+c=0(a≠0)的两个根为x 1、x 2,则x 1+x 2=b a -,x 1·x 2=c a;熟练掌握韦达定理是解题关键. 二、填空题13.【解析】【分析】利用根与系数的关系结合=﹣1可得出关于k 的方程解之可得出k 的值由方程的系数结合根的判别式△>0可得出关于k 的不等式解之即可得出k 的取值范围进而可确定k 的值此题得解【详解】∵关于x 的一 解析:【解析】【分析】 利用根与系数的关系结合1211+x x =﹣1可得出关于k 的方程,解之可得出k 的值,由方程的系数结合根的判别式△>0可得出关于k 的不等式,解之即可得出k 的取值范围,进而可确定k 的值,此题得解.【详解】∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0的两根为x 1,x 2,∴x 1+x 2=﹣(2k +3),x 1x 2=k 2, ∴1211+x x =1212x x x x +=﹣223k k+=﹣1, 解得:k 1=﹣1,k 2=3.∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根,∴△=(2k +3)2﹣4k 2>0,解得:k>﹣34,∴k1=﹣1舍去.∴k=3.故答案为:3.【点睛】本题考查了一元二次方程根与系数的关系及根的判别式,熟练运用根与系数的关系及根的判别式是解决问题的关键.14.【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0b2-b-3=0即a2=a+3b2=b+3则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5整理解析:【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5,整理得2a2-2a+17,然后再把a2=a+3代入后合并即可.【详解】∵a,b是方程x2-x-3=0的两个根,∴a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5=2a2-2a+17=2(a+3)-2a+17=2a+6-2a+17=23.15.3【解析】【分析】设横向的甬路宽为3x米则纵向的甬路宽为2x米由剩余部分的面积为144米2即可得出关于x的一元二次方程解之取其较小值即可得出结论【详解】设横向的甬路宽为3x米则纵向的甬路宽为2x米根解析:3【解析】【分析】设横向的甬路宽为3x米,则纵向的甬路宽为2x米,由剩余部分的面积为144米2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】设横向的甬路宽为3x米,则纵向的甬路宽为2x米,根据题意得:(20﹣2×2x)(12﹣3x)=144整理得:x2﹣9x+8=0,解得:x1=1,x2=8.∵当x=8时,12﹣3x=﹣12,∴x=8不合题意,舍去,∴x=1,∴3x=3.故答案为3.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.【解析】【分析】设BD=x则EC=3xAE=6﹣3x根据S△DEB=·BD·AE得到关于S与x的二次函数解析式利用配方法变形为顶点式即可【详解】解:设BD=x则EC=3xAE=6﹣3x∵∠A=90°解析:3 2【解析】【分析】设BD=x,则EC=3x,AE=6﹣3x,根据S△DEB=12·BD·AE得到关于S与x的二次函数解析式,利用配方法变形为顶点式即可.【详解】解:设BD=x,则EC=3x,AE=6﹣3x,∵∠A=90°,∴EA⊥BD,∴S△DEB=12•x(6﹣3x)=﹣32x2+3x=﹣32(x﹣1)2+32,∴当x=1时,S最大值=3 2 .故答案为:32.【点睛】本题主要考查二次函数的最值问题,解此题的关键在于根据题意设出未知数,根据题意列出函数解析式.17.9【解析】【分析】因为一元二次方程有两个相等的实数根所以△=b2-4ac=0根据判别式列出方程求解即可【详解】∵关于x的方程x2-6x+m=0有两个相等的实数根∴△=b2-4ac=0即(-6)2-4解析:9【解析】【分析】因为一元二次方程有两个相等的实数根,所以△=b2-4ac=0,根据判别式列出方程求解即可.【详解】∵关于x的方程x2-6x+m=0有两个相等的实数根,∴△=b2-4ac=0,即(-6)2-4×1×m=0,解得m=9故答案为:9【点睛】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.【解析】【分析】根据关于x的一元二次方程2x2-x+m=0有两个相等的实数根结合根的判别式公式得到关于m的一元一次方程解之即可【详解】根据题意得:△=1-4×2m=0整理得:1-8m=0解得:m=故解析:1 8【解析】【分析】根据“关于x的一元二次方程2x2-x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【详解】根据题意得:△=1-4×2m=0,整理得:1-8m=0,解得:m=18,故答案为:18.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.19.【解析】【分析】连接OAOB根据一条弧所对的圆周角等于它所对的圆心角的一半得∠AOB=90°又OA=OBAB=4根据勾股定理得圆的半径是2【详解】解:连接OAOB∵∠C=45°∴∠AOB=90°又∵解析:22.【解析】【分析】连接OA,OB,根据一条弧所对的圆周角等于它所对的圆心角的一半,得∠AOB=90°,又OA=OB,AB=4,根据勾股定理,得圆的半径是22.【详解】解:连接OA,OB∵∠C=45°∴∠AOB=90°又∵OA=OB,AB=4∴2224OA OB+=∴OA=.【点睛】本题主要考查了圆周角定理以及勾股定理根据圆周角定理得出∠AOB=90°是解题的关键. 20.15【解析】分析:先判断出∠BAD=150°AD=AB再判断出△BAD是等腰三角形最后用三角形的内角和定理即可得出结论详解:∵将△ABC绕点A逆时针旋转150°得到△ADE∴∠BAD=150°AD=解析:15【解析】分析:先判断出∠BAD=150°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.详解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=12(180°-∠BAD)=15°,故答案为15°.点睛:此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD是等腰三角形是解本题的关键.三、解答题21.(1) 14;(2)14【解析】【分析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.【详解】解:(1)在这四条线路任选一条,每条被选中的可能性相同,∴在四条线路中,李欣选择线路C.“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为41164=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.2;(2)135°.【解析】【分析】(1)作OM ⊥AC 于M ,根据等腰直角三角形的性质得到2即可得到结论;(2)连接OA ,根据等腰直角三角形的性质得到∠MOC=∠MCO=45°,求得∠AOC=90°,根据圆内接四边形的性质即可得到结论.【详解】(1)作OM AC ⊥于M ,∵42AC =∴22AM CM ==∵4OC =, ∴2222OM OC MC =-=(2)连接OA ,∵OM MC =,090OMC ∠=,∴045MOC MCO ∠=∠=,∵OA OC =,∴045OAM ∠=,∴090AOC ∠=,∴045B ∠=,∵0180D B ∠+∠=,∴0135D ∠=.【点睛】本题考查了垂径定理,勾股定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.23.(1)a >-1;(2) x 1=-3,x 2=-1.【解析】试题分析:(1)方程有两个不相等的实数根,可得△>0,代入后解不等式即可得a 的取值范围;(2)把a 代入后解方程即可.试题解析:(1)∵方程有两个不相等的实数根∴16-4(3-a )>0,∴a >-1 .(2)由题意得:a =0 ,方程为x 2+4x +3=0 ,解得12-3,-1x x == .点睛:本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.24.(1)3秒后,PQ 的长度等于10;(2)PQB ∆的面积不能等于27cm .【解析】【分析】(1)由题意根据PQ=10,利用勾股定理BP 2+BQ 2=PQ 2,求出即可;(2)由(1)得,当△PQB 的面积等于7cm 2,然后利用根的判别式判断方程根的情况即可;【详解】解:(1)设x 秒后,10PQ =,5BP x =-,2BQ x =,∵222BP BQ PQ +=∴()()(2225210x x -+= 解得:13x =,21x =-(舍去)∴3秒后,PQ 的长度等于10(2)设t 秒后,5PB t =-,2QB t =, 又∵172PQB S BP QB ∆=⨯⨯=,()15272t t ⨯-⨯=, ∴2570t t -+=,25417252830∆=-⨯⨯=-=-<,∴方程没有实数根,∴PQB ∆的面积不能等于27cm .【点睛】本题主要考查一元二次方程的应用,找到关键描述语“△PBQ 的面积等于27cm ”,得出等量关系是解决问题的关键.25.(1)14;(2)10、40、144;(3)恰好选取的是a 1和b 1的概率为16. 【解析】【分析】(1)根据D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x 的值;(2)用A 、C 人数分别除以总人数求得A 、C 的百分比即可得m 、n 的值,再用360°乘以C 等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a 1和b 1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人, ∴x=40﹣(4+16+6)=14,故答案为14; (2)∵m%=440×100%=10%,n%=1640×10%=40%, ∴m=10、n=40,C 等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144; (3)列表如下:a 1和b 1的有2种结果,∴恰好选取的是a 1和b 1的概率为21126=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.。
2017-2018学年福建省福州一中初中部九年级(上)月考数学试卷(10月份)
2017-2018学年福建省福州一中初中部九年级(上)月考数学试卷(10月份)一、选择题(共10小题,每小题4分,满分40分)1.(4分)下列图形是中心对称图形的是()A.B.C. D.2.(4分)把二次函数y=x2﹣4x+3化成y=a(x﹣h)2+k的形式是()A.y=(x﹣2)2﹣1 B.y=(x+2)2﹣1 C.y=(x﹣2)2+7 D.y=(x+2)2+7 3.(4分)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()A.70°B.90°C.110° D.120°4.(4分)⊙O的半径为5,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定5.(4分)已知函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>0,c>0 B.a<0,c<0 C.a<0,c>0 D.a>0,c<06.(4分)将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣37.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD 的长为()A.2 B.4 C.4 D.88.(4分)小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm,弧长是6πcm,那么这个的圆锥的高是()A.4cm B.6cm C.8cm D.2cm9.(4分)已知⊙O的半径为1,点P到圆心O的距离为d,若抛物线y=x2﹣2x+d 与x轴有两个不同的交点,则点P()A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.无法确定10.(4分)小刚在实践课上要做一个如图1所示的折扇,折扇扇面的宽度AB是骨柄长OA的,折扇张开的角度为120°.小刚现要在如图2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料长为24cm,宽为21cm.小刚经过画图、计算,在矩形布料上裁剪下了最大的扇面,若不计裁剪和粘贴时的损耗,此时扇面的宽度AB为()A.21cm B.20 cm C.19cm D.18cm二、填空题(共6小题,每小题4分,满分24分)11.(4分)一个正n边形的边长为a,面积为S,则它的边心距为.12.(4分)圆锥的母线长是3,底面半径是1,则这个圆锥侧面展开图圆心角的度数为.13.(4分)已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求这两条平行弦AB,CD之间的距离.14.(4分)在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是.15.(4分)阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是;由此可证明直线PA,PB都是⊙O的切线,其依据是.16.(4分)如图,E、F是正方形ABCD的边AD上有两个动点,满足AE=DF,连接CF交BD于G,连接BE交AG于点H,若正方形的边长为3,则线段DH长度的最小值是.三、解答题(共10小题,满分86分)17.(5分)计算或化简:①sin60°+2cos30°﹣tan45°;②•(﹣÷3)(a>0,b>0).18.(5分)如图是一块圆形砂轮破碎后的部分残片,试找出它的圆心,并将它还原成一个圆.要求:①尺规作图:②保留作图痕迹(可不写作法)19.(6分)如图,⊙O的半径OB=5cm,AB是⊙O的弦,点C是AB延长线上一点,且∠OCA=30°,OC=8cm,求AB的长.20.(8分)如图,在Rt△ABC中,∠C=90°,sinA=,D为线段AC上一点,∠BDC=45°,DC=6,求AB的长.21.(8分)已知,如图,正六边形ABCDEF的边长为6cm,求这个正六边形的外接圆半径R,边心距γ6,面积S6.22.(8分)如图所示,一座圆弧形拱桥的跨度AB长为40米,桥离水面最大距离CD为10米,若有一条水面上宽度为30米,宽度为6米的船能否通过这座桥?请说明理由.23.(10分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB 的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.(10分)如图,已知⊙O的直径AB垂直于弦CD于E,连接AD、BD、OC、OD,且OD=5.(1)若sin∠BAD=,求CD的长;(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π).25.(12分)如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4).(1)当x=时,求弦PA、PB的长度;(2)当x为何值时,PD•CD的值最大?最大值是多少?26.(14分)在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C 在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.2017-2018学年福建省福州一中初中部九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)下列图形是中心对称图形的是()A.B.C. D.【分析】根据中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.【点评】此题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(4分)把二次函数y=x2﹣4x+3化成y=a(x﹣h)2+k的形式是()A.y=(x﹣2)2﹣1 B.y=(x+2)2﹣1 C.y=(x﹣2)2+7 D.y=(x+2)2+7【分析】利用配方法将原式配方,即可得出顶点式的形式.【解答】解:y=x2﹣4x+3=x2﹣4x+4﹣1,=(x﹣2)2﹣1.故选:A.【点评】此题主要考查了配方法求二次函数顶点时形式,熟练地应用配方法这是中考中考查重点.3.(4分)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()A.70°B.90°C.110° D.120°【分析】根据圆周角定理求得∠BOC=100°,进而根据三角形的外角的性质求得∠BDC=70°,然后根据邻补角求得∠ADC的度数.【解答】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故选:C.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.4.(4分)⊙O的半径为5,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定【分析】根据直线和园的位置关系可知,圆的半径小于直线到圆距离,则直线l 与O的位置关系是相离.【解答】解:∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与O的位置关系是相交.故选:A.【点评】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.5.(4分)已知函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>0,c>0 B.a<0,c<0 C.a<0,c>0 D.a>0,c<0【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由抛物线的开口向上知a>0,与y轴的交点为在y轴的负半轴上,∴c<0.故选:D.【点评】考查二次函数y=ax2+bx+c系数符号的确定.6.(4分)将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选:A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD 的长为()A.2 B.4 C.4 D.8【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.8.(4分)小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm,弧长是6πcm,那么这个的圆锥的高是()A.4cm B.6cm C.8cm D.2cm【分析】一只扇形的弧长是6πcm,则底面的半径即可求得,底面的半径,圆锥的高以及母线正好构成直角三角的三边,利用勾股定理即可求解.【解答】解:设圆锥的底面半径是r,则2πr=6π,解得:r=3,则圆锥的高是:=4cm.故选:A.【点评】本题主要考查圆锥侧面展开图的知识和圆锥侧面面积的计算.用到的知识点:圆锥的侧面展开图是一个扇形,扇形的弧长等于圆锥底面的周长,扇形的半径是圆锥的母线长.9.(4分)已知⊙O的半径为1,点P到圆心O的距离为d,若抛物线y=x2﹣2x+d 与x轴有两个不同的交点,则点P()A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.无法确定【分析】根据△=b2﹣4ac>0时,抛物线与x轴有2个交点,可求出d的取值范围,再根据点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r ②点P在圆上⇔d=r ③点P在圆内⇔d<r即可判断点P的位置.【解答】解:∵抛物线y=x2﹣2x+d与x轴有两个不同的交点,∴△=b2﹣4ac>0,即d<1,∵⊙O的半径为1,∴d<r,∴点P在圆内.故选:A.【点评】本题考查了点与圆的位置关系以及抛物线与x轴的交点,是中考中常见题目.10.(4分)小刚在实践课上要做一个如图1所示的折扇,折扇扇面的宽度AB是骨柄长OA的,折扇张开的角度为120°.小刚现要在如图2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料长为24cm,宽为21cm.小刚经过画图、计算,在矩形布料上裁剪下了最大的扇面,若不计裁剪和粘贴时的损耗,此时扇面的宽度AB为()A.21cm B.20 cm C.19cm D.18cm【分析】根据题意得出在矩形布料上裁剪下了最大的扇面时对应位置关系,进而结合直角三角形的性质求出BO,AB的长.【解答】解:如图所示:由题意可得:当在矩形布料上裁剪下了最大的扇面,此时扇形与矩形的边长相切,切点为E,过点O作OF⊥CB,于点F,则∠ABC=∠OBF=30°,OF=BO,AC=AB,设FO=xcm,则BF=xcm,BO=2xcm,∵折扇扇面的宽度AB是骨柄长OA的,∴AB=6xcm,故AC=3xcm,BC=3xcm,故2×(x+3x)=24,解得:x=3,故AB=6x=18(cm),故选:D.【点评】此题主要考查了直角三角形的性质以及扇形面积,正确得出扇形与矩形的关系是解题关键.二、填空题(共6小题,每小题4分,满分24分)11.(4分)一个正n边形的边长为a,面积为S,则它的边心距为.【分析】设边心距为r,根据一个正n边形的边长为a,面积为S可知每个三角形的面积为,再由三角形的面积公式即可得出结论.【解答】解:设边心距为r,∵正n边形的边长为a,面积为S,∴每个三角形的面积为,∴=ar,解得r=.故答案为:.【点评】本题考查的是正多边形和圆,熟记正多边形的定义是解答此题的关键.12.(4分)圆锥的母线长是3,底面半径是1,则这个圆锥侧面展开图圆心角的度数为120°.【分析】圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:圆锥侧面展开图的弧长是:2π,设圆心角的度数是x度.则=2π,解得:x=120.故答案为120°.【点评】正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.13.(4分)已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求这两条平行弦AB,CD之间的距离8cm或22cm.【分析】分情况进行讨论,(1)如图,AB和CD再圆心的同侧,连接OB,OD,作OM⊥AB交CD于点N,由AB∥CD,即可推出ON⊥CD,则MN为AB,CD之间的距离,通过垂径定理和勾股定理即可推出OM和ON的长度,根据图形即可求出MN=OM﹣ON,通过计算即可求出MN的长度,(2)AB和CD在圆心两侧,连接OB,OD,做直线OM⊥AB交CD于点N,由AB∥CD,即可推出MN⊥CD,则MN为AB,CD之间的距离,通过垂径定理和勾股定理即可推出OM和ON的长度,根据图形即可求出MN=OM+ON,通过计算即可求出MN的长度.【解答】解:(1)如图1,连接OB,OD,做OM⊥AB交CD于点N,∵AB∥CD,∴ON⊥CD,∵AB=40cm,CD=48cm,∴BM=20cm,DN=24cm,∵⊙O的半径为25cm,∴OB=OD=25cm,∴OM=15cm,ON=7cm,∵MN=OM﹣ON,∴MN=8cm,(2)如图2,连接OB,OD,做直线OM⊥AB交CD于点N,∵AB∥CD,∴ON⊥CD,∵AB=40cm,CD=48cm,∴BM=20cm,DN=24cm,∵⊙O的半径为25cm,∴OB=OD=25cm,∴OM=15cm,ON=7cm,∵MN=OM+ON,∴MN=22cm.∴平行弦AB,CD之间的距离为8cm或22cm,故答案为:8cm或22cm.【点评】本题主要考查垂径定理和勾股定理的运用,平行线间的距离的定义,平行线的性质等知识点,关键在于根据题意分情况进行讨论,正确的做出图形,认真的做出辅助线构建直角三角形,熟练运用垂径定理和勾股定理推出OM和ON 的长度,利用数形结合的思想即可求出结果.14.(4分)在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是.【分析】过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.分别求出PD、DC,相加即可.【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.∵AB=2,∴AE=,PA=2,∴PE=1.∵点D在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴点D的横坐标为2,∴OC=2,∴DC=OC=2,∴a=PD+DC=2+.故答案为:2+.【点评】本题综合考查了一次函数与几何知识的应用,题中运用圆与直线的关系以及直角三角形等知识求出线段的长是解题的关键.注意函数y=x与x轴的夹角是45°.15.(4分)阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对的圆周角是90°;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端,且与半径垂直的直线是圆的切线.【分析】分别利用圆周角定理以及切线的判定方法得出答案.【解答】解:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是:直径所对的圆周角是90°;由此可证明直线PA,PB都是⊙O的切线,其依据是:经过半径外端,且与半径垂直的直线是圆的切线.故答案为:直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线.【点评】此题主要考查了切线的判定以及圆周角定理,正确把握切线的判定方法是解题关键.16.(4分)如图,E、F是正方形ABCD的边AD上有两个动点,满足AE=DF,连接CF交BD于G,连接BE交AG于点H,若正方形的边长为3,则线段DH长度的最小值是(﹣1).【分析】根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.【解答】解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=,在Rt△AOD中,OD==,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=(﹣1).故答案为:(﹣1).【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出DH最小时点H的位置是解题关键,也是本题的难点.三、解答题(共10小题,满分86分)17.(5分)计算或化简:①sin60°+2cos30°﹣tan45°;②•(﹣÷3)(a>0,b>0).【分析】①根据特殊角的三角函数值得到原式=×+2×﹣×1,然后进行乘法运算后合并即可;②根据二次根式的乘除法则运算.【解答】解:①原式=×+2×﹣×1=+﹣=;②原式=•(﹣)••=﹣a2b.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了特殊角的三角函数值.18.(5分)如图是一块圆形砂轮破碎后的部分残片,试找出它的圆心,并将它还原成一个圆.要求:①尺规作图:②保留作图痕迹(可不写作法)【分析】由垂径定理知,直径是弦的中垂线,不同的直径的交点是圆心,故作两弦垂直平分线,其交点就是圆心.【解答】解:在圆弧作两条弦AB,BF,分别作出AB,BF的中垂线,交于点O,以点O为圆心,OA的长为半径,则圆O是所求的圆.【点评】此题主要考查了应用设计与作图,正确掌握垂径定理是解题关键.19.(6分)如图,⊙O的半径OB=5cm,AB是⊙O的弦,点C是AB延长线上一点,且∠OCA=30°,OC=8cm,求AB的长.【分析】首先过点O作OD⊥AB于点D,连接OA,由在Rt△ODC中,∠OCA=30°,OC=8cm,可求得OD的长,由在Rt△OAD中,OA=5cm,即可求得AD的长,继而求得答案.【解答】解:过点O作OD⊥AB于点D,连接OA,∵在Rt△ODC中,∠OCA=30°,OC=8cm,∴OD=OC=4cm,∵在Rt△OAD中,OA=5cm,∴AD==3,∴AB=2AD=6.【点评】此题考查了垂径定理以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20.(8分)如图,在Rt△ABC中,∠C=90°,sinA=,D为线段AC上一点,∠BDC=45°,DC=6,求AB的长.【分析】由已知得△BDC为等腰直角三角形,所以CD=BC=6,又因为已知∠A的正弦值,即可求出AB的长.【解答】解:∵∠C=90°,∠BDC=45°∴BC=CD=6又∵sinA=,∴AB=6÷=15.【点评】此题考查解直角三角形问题,直角三角形知识的牢固掌握和三角函数的灵活运用.21.(8分)已知,如图,正六边形ABCDEF的边长为6cm,求这个正六边形的外接圆半径R,边心距γ6,面积S6.【分析】连接OA,OB,过点O作OG⊥AB于G,易得△AOB是等边三角形,继而可得正六边形的外接圆半径R,然后由勾股定理求得边心距,又由S正六边形=6S△ABC求得答案.【解答】解:连接OA,OB,过点O作OG⊥AB于G,∵∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=6,即R=6,∵OA=OB=6,OG⊥AB,∴AG=AB=×6=3,∴在Rt△AOG中,r6=OG=cm,∴S6=×6×6×3=54cm2.【点评】此题考查了正六边形的性质、等边三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.22.(8分)如图所示,一座圆弧形拱桥的跨度AB长为40米,桥离水面最大距离CD为10米,若有一条水面上宽度为30米,宽度为6米的船能否通过这座桥?请说明理由.【分析】先恢复弧形桥所在的圆,求出圆的半径,再根据船的宽度求出可以通过的船的最高高度,就可以判断能否通过.【解答】解:如图,假设船能通过,弧形桥所在的圆恢复如图,在Rt△AOD中,r2=202+(r﹣10)2,解得r=25,∴OD=r﹣10=15,在Rt△OEG中,r2=152+OG2,解得OG=20,∴可以通过的船的高度为GD=OG﹣OD=20﹣15=5,∵6>5,∴船不能通过.【点评】此题考查垂径定理问题,恢复弧形所在的圆,构造直角三角形利用勾股定理求出圆的直径是解题突破口,也是解题的关键.数学建模思想的应用.23.(10分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB 的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【分析】(1)连接BD,利用直径所对的圆周角是直角得两个直角三角形,再由角平分线得:∠ACD=∠DCB=45°,由同弧所对的圆周角相等可知:△ADB是等腰直角三角形,利用勾股定理可以求出直角边AD=5,AC的长也是利用勾股定理列式求得;(2)连接半径OC,证明垂直即可;利用直角三角形中一直角边是斜边的一半得:这条直角边所对的锐角为30°,依次求得∠COB、∠CEP、∠PCE的度数,最后求得∠OCP=90°,结论得出.【解答】解:(1)连接BD,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°',∵CD平分∠ACB,∴∠ACD=∠DCB=45°,∴∠ABD=∠ACD=45°,∠DAB=∠DCB=45°,∴△ADB是等腰直角三角形,∵AB=10,∴AD=BD==5,在Rt△ACB中,AB=10,BC=5,∴AC==5,答:AC=5,AD=5;(2)直线PC与⊙O相切,理由是:连接OC,在Rt△ACB中,AB=10,BC=5,∴∠BAC=30°,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠COB=60°,∵∠ACD=45°,∴∠OCD=45°﹣30°=15°,∴∠CEP=∠COB+∠OCD=15°+60°=75°,∵PC=PE,∴∠PCE=∠CEP=75°,∴∠OCP=∠OCD+∠ECP=15°+75°=90°,∴直线PC与⊙O相切.【点评】本题考查了直线和圆的位置关系,直线和圆的位置关系有三种:相离、相切、相交;重点是相切,本题是常考题型,在判断直线和圆的位置关系时,首先要看直线与圆有几个交点,根据交点的个数来确定其位置关系,在证明直线和圆相切时有两种方法:①有半径,证明垂直,②有垂直,证半径;本题属于第①种情况.24.(10分)如图,已知⊙O的直径AB垂直于弦CD于E,连接AD、BD、OC、OD,且OD=5.(1)若sin∠BAD=,求CD的长;(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π).【分析】(1)首先根据锐角三角函数求得直角三角形ABC的两条直角边,再根据面积计算其斜边上的高,进一步根据垂径定理计算弦长;(2)根据直角三角形的两个锐角互余结合已知条件求得扇形所对的圆心角,进一步求其面积.【解答】解:(1)∵AB是⊙O的直径,OD=5,∴∠ADB=90°,AB=10,在Rt△ABD中,sin∠BAD=,sin∠BAD=,∴,BD=6,∴AD==8,∵∠ADB=90°,AB⊥CD,∴DE•AB=AD•BD,CE=DE,∴DE×10=8×6,∴DE=∴CD=2DE=;(2)∵AB是⊙O的直径,AB⊥CD,∴,∴∠BAD=∠CDB,∠AOC=∠AOD,∵AO=DO,∴∠BAD=∠ADO,∴∠CDB=∠ADO,设∠ADO=4x,则∠CDB=4x.由∠ADO:∠EDO=4:1,则∠EDO=x.∵∠ADO+∠EDB+∠EDO=90°,∴4x+4x+x=90°,解得:x=10°,∴∠AOD=180°﹣(∠OAD+∠ADO)=100°,∴∠AOC=∠AOD=100°,∴S=.扇形OAC【点评】本题为圆的综合题,综合考查了解直角三角形、三角函数、阴影部分面积等相关知识.25.(12分)如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4).(1)当x=时,求弦PA、PB的长度;(2)当x为何值时,PD•CD的值最大?最大值是多少?【分析】(1)由直线l与圆相切于点A,且AB为圆的直径,根据切线的性质得到AB垂直于直线l,又PC垂直于直线l,根据垂直于同一条直线的两直线平行,得到AB与PC平行,根据两直线平行内错角相等得到一对内错角相等,再由一对直角相等,利用两对对应角相等的两三角形相似可得出△PCA与△PAB相似,由相似得比例,将PC及直径AB的长代入求出PA的长,在直角三角形PAB中,由AB及PA的长,利用勾股定理即可求出PB的长;(2)过O作OE垂直于PD,与PD交于点E,由垂径定理得到E为PD的中点,再由三个角为直角的四边形为矩形得到OACE为矩形,根据矩形的对边相等,可得出EC=OA=2,用PC﹣EC的长表示出PE,根据PD=2PE表示出PD,再由PC﹣PD表示出CD,代入所求的式子中,整理后得到关于x的二次函数,配方后根据自变量x的范围,利用二次函数的性质即可求出所求式子的最大值及此时x的取值.【解答】解:(1)∵⊙O与直线l相切于点A,且AB为⊙O的直径,∴AB⊥l,又∵PC⊥l,∴AB∥PC,∴∠CPA=∠PAB,∵AB是⊙O的直径,∴∠APB=90°,又PC⊥l,∴∠PCA=∠APB=90°,∴△PCA∽△APB,∴=,即PA2=PC•AB,∵PC=,AB=4,∴PA==,∴Rt△APB中,AB=4,PA=,由勾股定理得:PB==;(2)过O作OE⊥PD,垂足为E,∵PD是⊙O的弦,OE⊥PD,∴PE=ED,又∵∠CEO=∠ECA=∠OAC=90°,∴四边形OACE为矩形,∴CE=OA=2,又PC=x,∴PE=ED=PC﹣CE=x﹣2,∴PD=2(x﹣2),∴CD=PC﹣PD=x﹣2(x﹣2)=x﹣2x+4=4﹣x,∴PD•CD=2(x﹣2)•(4﹣x)=﹣2x2+12x﹣16=﹣2(x﹣3)2+2,∵2<x<4,∴当x=3时,PD•CD的值最大,最大值是2.【点评】此题考查了切线的性质,平行线的性质,矩形的判定与性质,垂径定理,勾股定理,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键.26.(14分)在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C 在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.【分析】方法一:(1)当k=1时,联立抛物线与直线的解析式,解方程求得点A、B的坐标;(2)如答图2,作辅助线,求出△ABP面积的表达式,然后利用二次函数的性质求出最大值及点P的坐标;(3)“存在唯一一点Q,使得∠OQC=90°”的含义是,以OC为直径的圆与直线AB 相切于点Q,由圆周角定理可知,此时∠OQC=90°且点Q为唯一.以此为基础,构造相似三角形,利用比例式列出方程,求得k的值.需要另外注意一点是考虑直线AB是否与抛物线交于C点,此时亦存在唯一一点Q,使得∠OQC=90°.方法二:(1)联立直线与抛物线方程求出点A,B坐标.(2)利用面积公式求出P点坐标.(3)列出定点O坐标,用参数表示C,Q点坐标,利用黄金法则二求出k的值.【解答】方法一:解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.联立两个解析式,得:x2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A(﹣1,0),B(2,3).(2)设P(x,x2﹣1).如答图2所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).∴PF=y F﹣y P=(x+1)﹣(x2﹣1)=﹣x2+x+2.S△ABP=S△PFA+S△PFB=PF(x F﹣x A)+PF(x B﹣x F)=PF(x B﹣x A)=PF∴S△ABP=(﹣x2+x+2)=﹣(x﹣)2+当x=时,y P=x2﹣1=﹣.∴△ABP面积最大值为,此时点P坐标为(,﹣).(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,则E(﹣,0),F(0,1),OE=,OF=1.在Rt△EOF中,由勾股定理得:EF==.令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.∴C(﹣k,0),OC=k.Ⅰ、假设存在唯一一点Q,使得∠OQC=90°,如答图3所示,则以OC为直径的圆与直线AB相切于点Q,根据圆周角定理,此时∠OQC=90°.设点N为OC中点,连接NQ,则NQ⊥EF,NQ=CN=ON=.∴EN=OE﹣ON=﹣.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴,即:,解得:k=±,∵k>0,∴k=.∴存在唯一一点Q,使得∠OQC=90°,此时k=.Ⅱ、若直线AB过点C时,此时直线与圆的交点只有另一点Q点,故亦存在唯一一点Q,使得∠OQC=90°,将C(﹣k,0)代入y=kx+1中,可得k=1,k=﹣1(舍去),故存在唯一一点Q,使得∠OQC=90°,此时k=1.综上所述,k=或1时,存在唯一一点Q,使得∠OQC=90°.方法二:(1)略.(2)过点P作x轴垂线,叫直线AB于F,设P(t,t2﹣1),则F(t,t+1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
励志中学2017-2018学年度初三上学期期中考试数学试卷
一.选择题
1. 抛物线y=(x −1)2
+2的对称轴为( )
A. 直线x=1
B. 直线x=−1
C. 直线x=2
D. 直线x=−2
2. 下面的图形中,中心对称图形的是( ) A.
B. C. D.
3. 已知一元二次方程(x −1)(x −2)=0,则下列判断正确的是( )
A. 有两个不相等的实数根
B. 有两个相等的实数根
C. 没有实数根
D. 有两个负数根
4. 如图,△ABC 中,DE ∥BC,
AB AD =31,AE=2cm,则AC 的长是( ) A. 2cm B. 4cm C. 6cm
D. 8cm
第4题 第5题 第7题 第9题
5. 如图,点A 、B 、C 在⊙O 上,∠ACB=20∘,则∠AOB 的度数是( )
A. 10∘
B. 20∘
C. 40∘
D. 70∘
6. 抛物线y=−2(x −1)2−3与y 轴的交点纵坐标为( )
A. −3
B. −4
C. −5
D. −1
7. 如图,冰淇淋蛋筒下部呈圆锥形,则蛋筒圆锥部分包装纸的面积(接缝忽略不计)是( )
A. 20cm
2 B. 40cm 2 C. 20πcm 2 D. 40πcm 2
8. 若二次函数y=(x −m)2−1,当x ⩽2时,y 随x 的增大而减小,则m 的取值范围是( )
A. m=2
B. m>2
C. m ⩾2
D. m ⩽2
9. 如图,在平行四边形ABCD 中,E 为CD 上一 点,连接AE 、BE 、BD,且AE 、BD 交于点F,S
△DEF:S △EFB=4:9,则DE:EC=( )
A. 2:1
B. 2:3
C. 4:5
D. 4:9
10. 如图,⊙O 的半径为1,弦AB=1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C,则△
ABC 的最大面积是( )
A. 21
B. 22
C. 23
D.4
3 二.填空题
11. 已知点P(2,−3)关于原点对称的点的坐标是______.
12. 如图,将△ABC 绕点C 顺时针旋转30∘后得到△A ′B ′C,若A ′B ′⊥AC 于D ,则∠A 等
于__度
13. 已知m 是关于x 的方程x 2-2x-3=0的一个根,则2m 2-4m=________.
14. 如图,抛物线y=ax 2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a −b+c 的值为
___.
15. 已知P 为⊙O 外一点,PA 、PB 为⊙O 的切线,A 、B 为切点,∠P=70°,C 为⊙O 上的一
个动点,且不与点A 、B 重合,则∠BCA=______
16. 如图,在△ABC 中,4AB=5AC,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点
F,点G 在AF 上,FG=FD,连接EG 交AC 于点H.若点H 是AC 的中点,则AD
AG 的值为___.
第12题 第14题 第16题
三.解答题
17. (1)解方程:0232=-+x x (2)已知关于x 的一元二次方程0222
=-++k x x 有
两个不相等的实数根,求k 的取值范围
18. 已知:如图,在正方形ABCD 中,P 是BC 上的点,Q 是CD 上的点,且∠AQP=90∘. 求证:△ADQ ∽△QCP.
19. 如图所示,BC 为⊙O 的直径,弦AD ⊥BC 于E ,∠C=60°.求证:△ABD 为等边三角形.
20.已知△ABC在平面直角坐标系中的位置如图所示。
(1)分别写出图中点A和点C的坐标;
(2)画出△ABC绕点A按逆时针方向旋转90∘后的△AB′C′;
(3)在(2)的条件下,求点C旋转到点C′所经过的路线长(结果保留π).
21.如图,已知:⊙O的直径AB与弦AC的夹角∠A=30°,AC=CP.
(1)求证:CP是⊙O的切线;
(2)若PC=6,AB=4,求图中阴影部分的面积
22.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健
身球每天的销售量y(个)与销售单价x(元)有如下关系:y=−2x+80(20⩽x⩽40).设这种健身球每天的销售利润为w元。
(1)求w与x之间的函数关系式;
(2)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?
23.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一
点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;(2)若AB=6,AD=12,AF=5,求AE的长。
24.在Rt△ABC中,∠ACB=90∘,AC=BC,CD为AB边上的中线。
在Rt△AEF中,∠AEF=90∘,
AE=EF,AF<AC.连接BF,M,N分别为线段AF,BF的中点,连接MN.
(1)如图1,点F在△ABC内,求证:CD=MN;
(2)如图2,点F在△ABC外,依题意补全图2,连接CN,EN,判断CN与EN的数量关系与位置关系,并加以证明;
(3)将图1中的△AEF绕点A旋转,若AC=a,AF=b(b<a),直接写出EN的最大值与最小值。
25.已知二次函数y=x2−2mx+m2+3(m是常数).
(1)求证:不论m为何值,该函数的图象与x轴没有公共点;
(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?
(3)将抛物线y=x2−2mx+m2+3(m是常数)图象在对称轴左侧部分沿直线y=3翻折得到新图象为G,若与直线y=x+2有三个交点,请直接写出m的取值范围。