非常全面的概率论与数理统计复习材料

合集下载

省考研数学复习资料概率论与数理统计

省考研数学复习资料概率论与数理统计

省考研数学复习资料概率论与数理统计概率论与数理统计是省考研数学复习中不可或缺的一部分。

在这篇文章中,我将介绍一些概率论与数理统计的重要知识点,并提供一些复习资料和学习方法,帮助考生更好地备考省考研数学。

1. 概率论基础概率论是研究随机现象的数学分支,它主要涉及到随机事件、样本空间、概率等概念。

在复习概率论时,可以从概率的定义开始。

概率的定义通常有公理化定义和频率定义两种,可以选择其中一种进行学习。

此外,还需要了解常用的概率分布,如离散型概率分布(如二项分布、泊松分布)和连续型概率分布(如正态分布、指数分布)等。

2. 数理统计基础数理统计是概率论在统计学中的应用,主要研究如何通过样本推断总体的性质。

在复习数理统计时,需要了解抽样分布、点估计和区间估计等基本概念。

抽样分布包括正态分布、t分布和χ²分布等。

点估计主要包括最大似然估计和矩估计等方法,而区间估计则与置信区间有关。

3. 概率论与数理统计的应用概率论与数理统计在实际问题中有着广泛的应用。

在复习过程中,可以选择一些相关的应用问题进行练习,如假设检验、回归分析等。

此外,还可以结合真实的案例,用概率论与数理统计的方法进行分析和解决问题。

4. 复习资料推荐为了帮助考生更好地复习概率论与数理统计,以下是一些备考资料的推荐:- 《概率论与数理统计教程》刘建中编著,高等教育出版社- 《数理统计学》张家骧编著,高等教育出版社- 《概率与数理统计习题解析》王传喜编著,高等教育出版社以上资料都是经典的教材,内容详尽,例题丰富,适合用来辅助自学和复习。

5. 学习方法在复习概率论与数理统计时,可以采用以下学习方法:- 建立完整的知识体系,确保基础知识的牢固掌握。

- 针对重要概念和公式进行重点记忆,可以制作概念卡片和公式卡片,随时温习。

- 多做题,通过练习巩固知识点,并加深对解题方法的理解。

- 制定合理的学习计划,分配好学习时间,保证每个知识点都得到充分的复习和理解。

概率论与数理统计考研复习资料

概率论与数理统计考研复习资料

概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德•摩根律B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kkii i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX kk P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数). 2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(xx dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布 (1)X ~U (a,b) 区间(a,b)上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2)参数为μ,σ的正态分布222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0. 特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(zα)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布 1.若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=0y h y h f y f X Y其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布 一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性 0≤p i j ≤1 .(2)归一性∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y ,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),(则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y) 关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i·( i =1,2,…) 归一性11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p·j( j =1,2,…) 归一性11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y ,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j= p i ··p ·j( i ,j =1,2,…)对一切x i ,y j成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X(x)f Y(y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称,}{},{jj i j j i p p y Y P y Y x X P ∙=====P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X)∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2D(X) . 2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p)2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/12 5.X 服从参数为θ的指数分布 θ θ2 6.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E {[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l}第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i XX n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i ki k X X n B 1)(1( k=1,2,…),}{},{∙=====i j i i j i p p x X P y Y x X P二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2/n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) .③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2Y S22则212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意:.).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p (x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,Xn的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧kθθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.文 - 汉语汉字 编辑词条文,wen ,从玄从爻。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

概率论与数理统计总复习

概率论与数理统计总复习

概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。

随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。

2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。

6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。

例:从甲、乙两班各选一个代表。

②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。

统计学复习资料概率论与数理统计重点知识点整理

统计学复习资料概率论与数理统计重点知识点整理

统计学复习资料概率论与数理统计重点知识点整理概率论与数理统计是统计学的基础课程之一,也是应用最为广泛的数学工具之一。

下面将对概率论与数理统计的重点知识点进行整理,以供复习使用。

一、概率论的基本概念1. 样本空间和事件:样本空间是指随机试验的所有可能结果构成的集合,事件是样本空间的子集。

2. 古典概型和几何概型:古典概型是指样本空间中的每个结果具有相同的概率,几何概型是指采用几何方法进行分析的概率模型。

3. 概率公理和条件概率:概率公理是概率论的基本公理,条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

4. 独立事件和全概率公式:独立事件是指两个事件的发生与否互不影响,全概率公式是用于计算复杂事件的概率的公式。

5. 随机变量和概率分布函数:随机变量是对样本空间中的每个结果赋予一个数值,概率分布函数是随机变量的分布情况。

二、概率分布的基本类型1. 离散型概率分布:包括二项分布、泊松分布和几何分布等。

2. 连续型概率分布:包括正态分布、指数分布和均匀分布等。

三、多维随机变量及其分布1. 边缘分布和条件分布:边缘分布是指多维随机变量中的某一个或几个变量的分布,条件分布是指在已知某些变量取值的条件下,其他变量的分布。

2. 二维随机变量的相关系数:相关系数用于刻画两个随机变量之间的线性关系的强度和方向。

3. 多维随机变量的独立性:多维随机变量中的各个分量独立时,称为多维随机变量相互独立。

四、参数估计与假设检验1. 参数估计方法:包括点估计和区间估计,点估计是通过样本数据得到参数的估计值,区间估计是对参数进行一个范围的估计。

2. 假设检验的基本概念:假设检验是用于对统计推断的一种方法,通过与某个假设进行比较来得出结论。

3. 假设检验的步骤:包括建立原假设和备择假设、选择显著性水平、计算检验统计量和做出统计决策等步骤。

五、回归分析与方差分析1. 简单线性回归分析:简单线性回归分析是研究两个变量之间的线性关系的方法,通过建立回归方程来拟合数据。

非常全面的《概率论与数理统计》复习材料

非常全面的《概率论与数理统计》复习材料
例3某物品成箱出售,每箱20件,假设各箱中含0、1件次品的概率分别为0.8和0.2,一顾客在购买时,他可以开箱,从箱中任取三件检查,当这三件都是合格品时,顾客才买下该箱物品,否则退货。试求:(1)顾客买下该箱的概率;
(2)顾客买下该箱物品,问该箱确无次品的概率。
[解]:设事件A0—箱中0件次品, A1—箱中1件次品,事件B—买下该箱。由已知P(A0)=0.8, P(A1)=0.2,
要求函数P(A)满足以下公理:
(1)非负性,有P(A)0;
(2)规范性:P()=1;
(3)可列可加性:对两两互斥事件A1,A2,…,An有P(A1∪A2∪…∪An)=P(A1)+ P(A2)+…+ P(An)
概率公式
求逆公式P( )=1- P(A)
加法公式P(A∪B)=P(A)+P(B)-P(AB)
[解]:因为F(+∞)=1, F(-∞)=0,所以A + B/2=1,A - B/2=0,
解得A=1/2, B=1/.即F(x) = + arctanx .
落入(-1,1)的概率为P{-1<<1}=F(1)-F(-1)
= + arctan1 – ( + arctan(-1))= + =
离散型随机变量
二项概率---在n重独立试验中,事件A恰好发生k次的概率为b(k;n,p),则
b(k;n,p)= C pk(1-p)n-k(k=0,1,2,3,…,n)。
第二章 随机变量与概率分布
随机变量的分布函数
分布函数定义:
F(x)=P{≤x}, -<x<+
分布函数(x)实质上表示随机事件P{≤x}发生的概率。

《概率论与数理统计》综合复习资料全

《概率论与数理统计》综合复习资料全

《概率论与数理统计》综合复习资料一、填空题1、一个盒子中有10 个球,其中有 3 个红球, 2 个黑球, 5 个白球,从中取球两次,每次取一个(无放回),则:第二次取到黑球的概率为;取到的两只球至少有一个黑球的概率为。

2、 X 的概率密度为 f ( x)1 e x2 2 x 1(x) ,则DX。

3、已知随机变量X ~N(1,1),Y~N(3,1) 且 X 与Y 相互独立,设随机变量Z 2X Y 5,则EX;DX。

4、已知随机变量X 的分布列为X-102P k0.40.2p则: EX=;DX =。

5、设X与Y独立同分布,且X~N(2,22) ,则D( 3X2Y) =。

6、设对于事件A、B、 C有 P(A)P(B)1,P(ABC)1P(C),412P( AB) P( BC )P(AC)1。

,则 A 、 B、 C 都不发生的概率为87、批产品中一、二、三等品各占60% 、30%、 10%,从中任取一件,结果不是三等品,则取到的是二等品的概率为。

8、相互独立,且概率分布分别为1,1 y 3f (x)e ( x 1)x) ;( y)(,其它则:E(X Y)=;E(2X3 2 )=。

Y9 、已知工厂A、 B 生产产品的次品率分别为2%和1%,现从由A、 B 工厂分别占30%和70%的一批产品中随机抽取一件,发现是次品,则该产品是 B 工厂的概率为。

10、设X、Y的概率分布分别为, 1 x 54e4 y,y01/ 4( x);( y),,其它0y0则: E(X 2Y) =;(X 2 4 ) =。

E Y二、选择题1、设X 和 Y 相互独立,且分别服从N(1,22) 和N (1,1),则。

A .P{ X Y 1}1/ 2B.P{ X Y0}1/ 2C .P{ X Y0}1/ 2D.P{ X Y 1}1/ 22、已知P( A)0.4,P(B)0.6,P(B | A)0.5 ,则P( A B)。

A .1B.0.7C .0.8D .0.53、设某人进行射击,每次击中的概率为1/3,今独立重复射击10 次,则恰好击中 3 次的概率为。

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象数量规律的学科,它在众多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。

以下是对概率论与数理统计知识点的超详细总结。

一、随机事件与概率(一)随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。

随机事件通常用大写字母 A、B、C 等来表示。

(二)样本空间样本空间是指随机试验的所有可能结果组成的集合,通常用Ω表示。

(三)事件的关系与运算1、包含关系:若事件 A 发生必然导致事件 B 发生,则称事件 B 包含事件 A,记作 A⊂B。

2、相等关系:若 A⊂B 且 B⊂A,则称事件 A 与事件 B 相等,记作A = B。

3、并事件:事件 A 与事件 B 至少有一个发生的事件称为 A 与 B的并事件,记作 A∪B。

4、交事件:事件 A 与事件 B 同时发生的事件称为 A 与 B 的交事件,记作A∩B 或 AB。

5、互斥事件:若事件 A 与事件 B 不能同时发生,则称 A 与 B 为互斥事件,即 AB =∅。

6、对立事件:若事件 A 与事件 B 满足 A∪B =Ω 且 AB =∅,则称 A 与 B 为对立事件,记作 B =A。

(四)概率的定义与性质1、概率的古典定义:若随机试验的样本空间Ω只包含有限个基本事件,且每个基本事件发生的可能性相等,则事件 A 的概率为 P(A) =n(A) /n(Ω) ,其中 n(A) 为事件 A 包含的基本事件个数,n(Ω) 为样本空间Ω包含的基本事件个数。

2、概率的统计定义:在大量重复试验中,事件 A 发生的频率稳定在某个常数 p 附近,则称 p 为事件 A 的概率,即 P(A) = p 。

3、概率的公理化定义:设随机试验的样本空间为Ω,对于Ω中的每一个事件 A,都赋予一个实数 P(A),如果满足以下三个条件:(1)非负性:0 ≤ P(A) ≤ 1 ;(2)规范性:P(Ω) = 1 ;(3)可列可加性:对于两两互斥的事件 A1,A2,,有P(A1∪A2∪)= P(A1) + P(A2) +,则称 P(A) 为事件 A 的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 2 从 1,2,…,9,这九个数中任取三个数,求:1 三数之和为 10 的概率 p1;2 三数之积
为 21 的倍数的概率 p2;
解:p1=错误!=错误!, p2= 错误!= 错误!
前提是如果在某一区域任取一 例 1 把长度为 a 的棒任意折成三段,求它们可以构成一个三角形的概率;
点,而所取的点落在中任意两 解:设折得的三段长度分别为 x,y 和 a-x-y,那么,样本空间,S={x,y|0xa,0ya,0a-x-ya};
A、A=
B、AB= C、A错误!=
D、B=错误!
运 A1,A2,…,An 构成的一个完备事件组或分斥指 A1,A2,…,An 两两互不相容,且错误!Ai=

交换律 A∪B=B∪A A∩B=B∩A 运
结合律 A∪B∪C=A∪B∪C A∩B∩C=A∩B∩C 算
分配律 A∪B∩C=AC∪BC A∩B∪C=A∪C∩B∪C 法
题 例 3 某物品成箱出售,每箱 20 件,假设各箱中含 0、1 件次品的概率分别为和,一顾客在购买时,他可以开箱,从箱中任取
三件检查,当这三件都是合格品时,顾客才买下该箱物品,否则退货;试求:1 顾客买下该箱的概率 ;
2 顾客买下该箱物品,问该箱确无次品的概率 ;
解:设事件 A0—箱中 0 件次品, A1—箱中 1 件次品,事件 B—买下该箱;由已知 PA0=, PA1=,
必然事件---每次试验中必定发生的事件; 不可能事件--每次试验中一定不发生的事件;
事 包含 AB 件 相等 A=B 之 对立事件,也称 A 的逆事件 间 互斥事件 AB=也称不相容事件 的 A,B 相互独立 PAB=PAPB 关
例 1 事件 A,B 互为对立事件等价于 D A、A,B 互不相容 B、A,B 相互独立 C、A∪B=Ω D、A,B 构成对样本空间的一个剖分 例 2 设 PA=0,B 为任一事件,则 C A、A= B、AB C、A 与 B 相互独立 D、A 与 B 互不相容
பைடு நூலகம்
几 个度量相等的子区域的可能性 而随机事件 A:”三段构成三角形”相应的区域 G 应满足两边之和大于第三边的原则,
何 是一样的;
得到联立方程组,
概 若 A,
型 则 PA= 错误!
错误!解得 0<x<错误! , 0<y<错误! , 错误!<x+y<a ; 即 G={x,y| 0<x<错误! , 0<y<错误! , 错误!<x+y<a }
= 错误!
定义:随机变量只能取有限个或可数个孤立的值离散型随机变量的概率分布简称为分布列:
错误! 其中每一个 pi≥0 且 错误!=1
离散型随机变量的分布函数是非降的阶梯函数;

散 离散型随机变量常见分布:
型 1 两点分布 X~0,1;X 的取值只有 0 或 1,其概率为 P{X=0}=p, P{X=1}=1-p

事 事件的交 AB 或 A∩B
例 1 设事件 A、B 满足 A∩错误!=,由此推导不出 D
件 事件的并 A∪B
A、AB B、错误!错误! C、A∪B=B
D、A∩B=B

例 2 若事件 B 与 A 满足 B – A=B,则一定有 B
间 的
事件的差 A-B
注意: A-B = A
错误! = A-AB = A∪B-B
则 对偶律 错误!=错误!∩错误! 错误!=错误!∪错误!
文氏图
事件与集合论的对应关系表
记号
概率论
集合论
样本空间,必然事件
全集
不可能事件
空集
基本事件
元素
A
事件
全集中的一个子集
A 的对立事件
A 的补集
AB 事件 A 发生导致事件 B 发生
A 是 B 的子集
A=B 事件 A 与事件 B 相等
A 与 B 相等
选 C,
Fx=P{≤x}, -<x<+
因为 P{≤/4} =F/4=sin/4
分布函数 x 实质上表示随机事件 P{≤ A、0
B、1/2
C、错误!/2
D、1
x}发生的概率;
例 2.设随机变量 1 和 2 的分布函数分别为 F1x 和 F2x,为使 Fx=aF1x - bF2x 是某
分布函数 Fx 的性质
能够进入正式比赛的概率分别是、、和,求任选一名选手能进入正式比赛的概率;
应 解:设 Ak=选中第 k 级选手, k=1,2,3,4,B=进入正式比赛;由已知 PA1=1/5, PA2=2/5, PA3=7/20, PA4=1/20; PB|A1=, PB|A2=,
用 PB|A3=, PB|A4=. PB=PA1PB|A1+ PA2PB|A2+ PA3PB|A3+ PA4PB|A4=1/5+2/5+7/20+1/20=
解:因为 F+∞=1, F-∞=0,所以 A + B/2=1,A - B/2=0,
解得 A=1/2, B=1/ . 即 Fx = 错误! + 错误! arctanx .
落入-1,1 的概率为 P{-1<<1}=F1-F-1
=错误! + 错误! arctan1 – 错误! + 错误! arctan-1= 错误! + 错误!
例 1 设随机变量的分布列为 P{=k}=错误!,k=1,2,…,则常 解:的分布列为
数 C=
12
3
4
5

A、1/4 B、1/2
C、1
D、2
概率 p

因为错误!P{=k}=1, 即错误!=1, 所以 c=1
例 3 设离散型随机变量的
01 2

例 2 某射手有 5 发子弹,射一次命中的概率为,如果命中了 概率分布为
A∪B 事件 A 与事件 B 至少有一个发生
A 与 B 的并集
AB 事件 A 与事件 B 同时发生
A 与 B 的交集
A-B 事件 A 发生但事件 B 不发生
A 与 B 的差集
AB= 事件 A 与事件 B 互不相容互斥
A 与 B 没有相同的元素
古典概型的前提是={1, 2, 3,…, 例 1 设 3 个球任意投到四个杯中去,问杯中球的个数最多为 1 个的事件 A1,最多为 2
PB|A0=1, PB|A1=19/20 18/19 17/18=17/20,
1 =PB= PA0PB|A0+ PA1PB|A1=1+7/20= ;
2 =PA0|B= PA0B/PB= PA0PB|A0/PB==
事 如果事件 A 与事件 B 满足 PAB=PAPB,则称事件 A 与事件 B 相互独立;
随机变量的分布函数,则在下列给定的各组数值中应取
10≤Fx≤1;
随 2 错误!Fx=0, 机 错误!Fx=1
变 3 单调非减,当 x1<x2 时,Fx1≤Fx2
量 4 右连续 错误!Fx=Fx0
的 一些概率可用分布函数来表示
分 P{a<≤b}=Fb-Fa, 布 P{=a}=Fa-Fa-0, P{<a}=Fa-0, 函 P{>a}=1-Fa, 数 P{≥a}=1-Fa-0,

一般有 PABC=PAPB|APC|AB 其中 PAB>0
式 全概率公式:PB= 错误!PB|AiPAi 其中 A1,A2,…,An 构成的一个分斥; 贝叶斯公式:PAk|B= 错误! = 错误!
例 1 设两两相互独立的三个事件 A, B 和 C 满足条件:ABC=,PA=PB=PC<1/2, 且已知
PA∪B∪C=9/16,则 PA=
;
解: PA∪B∪C=PA+PB+PC-PAB+PAC+PBC+PABC,
令 PA=x, 则 3x –3x2=9/16 16x2-16x+3=0 x=1/4 或 3/4 舍去 则 PA=1/4
例 2 某射击队共有 20 个射手,其中一级射手 4 人,二级射手 8 人,三级射手 7 人,四级射手 1 人,一、二、三、四级射手
理化定义 1 非负性,有 PA0;
2 规范性:P=1;
3 可列可加性:对两两互斥事件 A1,A2,…,An 有 PA1∪A2∪…∪An=PA1+ PA2+…+ PAn
概 求逆公式 P错误!=1- PA
加法公式 PA∪B=PA+PB-PAB 率
PA∪B∪C=PA+PB+PC-PAB-PAC-PBC+PABC 公
A、a=3/5,b=-2/5
B、a=3/5,b=2/5
C、a=3/5,b=-3/5
D、a=2/5,b=2/5
选 A,因为 F+∞=1= aF1+∞ - bF2+∞=a-b
例 3.连续型随机变量 的分布函数为 Fx = A + B arctanx, -∞<x<∞
求:1 常数 A,B; 2 落入-1,1 的概率;
求差公式:PA-B=PA-PAB; 当 AB 时,有 PA-B=PA-PB 式
注意: A-B = A错误! = A-AB = A∪B-B
条件概率公式:PA|B=错误! ; PB>0

PA|B 表示事件 B 发生的条件下,事件 A 发生的概率;
率 乘法公式:PAB=PAPB|A= PBPA|B 其中 PA>0, PB>0
努 发生的概率相同 PA=p, P错误!=1-p;

二项概率---在 n 重独立试验中,事件 A 恰好发生 k 次的概率为 bk;n,p,则


bk;n,p= C错误!pk1-pn-k k=0,1,2,3,…,n;
相关文档
最新文档