(易错题)高中数学选修1-1第三章《变化率与导数》测试题(答案解析)(1)
(常考题)北师大版高中数学选修1-1第三章《变化率与导数》测试(含答案解析)(1)

一、选择题1.已知函数()ln f x x =,()1g x ax =+,若存在01x e≥使得()()00f x g x =-,则实数a 的取值范围是( )A .212,e e ⎡⎤-⎢⎥⎣⎦B .21,2e e ⎡⎤-⎢⎥⎣⎦C .21,2e e ⎡⎤⎢⎥⎣⎦D .21,2e e ⎡⎤⎢⎥⎣⎦2.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( )A .ln 2B .1C .1ln2-D .1ln2+3.若曲线2ln (0)y a x x a =+>的切线的倾斜角的取值范围是,32ππ⎡⎫⎪⎢⎣⎭,则a =( ) A .124 B .38C .34D .324.已知函数32()f x x ax bx c =+++的图象关于(0,2)对称,()f x 的图象在点(1,(1))f 处的切线过点(2,7),若图象在点0x =处的切线的倾斜角为α,则cos tan()2παπα⎛⎫+⋅- ⎪⎝⎭的值为( )A .10-B .10C .4D 5.设()f x 为可导函数,且满足0(1)(1)lim 12x f f x x→-+=,则曲线()y f x =在点(1,(1))f 处的切线斜率为( ) A .12B .12-C .2D .2-6.已知函数()()ln 211f x x f x '=+--,则函数()f x 的图象在点()()1,1f 处的切线方程为( ) A .320x y --= B .350x y --= C .20x y ++=D .10x y ++=7.设()'f x 是()f x 的导函数,若2()2(2)12f x x xf '=++在闭区间[0, ]m 上有最大值12,最小值4-,则m 的取值范围是( ) A .[2, )+∞ B .[2, 4] C .[4, )+∞D .[4, 8]8.函数()|cos |f x x =(0)x ≥的图象与过原点的直线恰有四个交点,设四个交点中横坐标最大值为θ,则()21sin 2θθθ+( )A .-2B .2C .12-D .129.已知函数2()1f x x =-,()ln g x x =,下列说法中正确的是( ) A .(),()f x g x 在点(1,0)处有相同的切线 B .对于任意0x >,()()f x g x ≥恒成立 C .(),()f x g x 的图象有且只有一个交点 D .(),()f x g x 的图象有且只有两个交点 10.已知函数,若方程()()F x f x ax =-有4个零点,则 a的可能的值为( ) A .14B .1C .12D .1e11.三次函数()323212f x ax x x =-++的图象在点()()1,1f 处的切线与x 轴平行,则()f x 在区间()1,3上的最小值是( )A .83B .116C .113D .5312.已知函数()f x 的导函数为()()()2,232ln f x f x x xf x ''=-+,则()2f '=( ) A .92B .94C .174D .178二、填空题13.若直线y kx b =+是曲线ln y x =的切线,也是曲线2x y e -=的切线,则k =________. 14.已知曲线2()x f x e x =+,则曲线在(0,(0))f 处的切线与坐标轴围成的图形面积为_______.15.在1x =附近,取0.3x ∆=,在四个函数①y x =;②2y x ;③3y x =;④1y x=中,平均变化率最大的是__________.16.已知函数()1f x -的图像关于直线1x =对称,当0x ≤时,1()x f x e x --=-,则曲线()y f x =在点()1,2处的切线方程是________.17.过坐标原点O 作曲线:C x y e =的切线l ,则曲线C 、直线l 与y 轴所围成的封闭图形的面积为______ 18.曲线sin xy x=在点M(π,0)处的切线方程为________.19.函数2()ln f x x x =在点()1,0处的切线方程为___. 20.曲线21y x x=+在点(1,2)处的切线方程为______________. 三、解答题21.设函数()bf x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为3240x y --=. (1)求()f x 的解析式;(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形的面积为定值,并求此定值. 22.已知函数1()ln f x x x b x=++的图像与直线2y =相切. (1)求b 的值;(2)当1[,]x e e∈时,()f x ax ≤恒成立,求实数a 的取值范围. 23.设函数()()224ln ,R.f x x ax x a =-∈(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)若对任意[)()21,,0x f x x a ∈+∞+->恒成立,求实数a 的取值范围.24.求下列函数的导函数(1)y = x 4-3x 2-5x +6 (2)21y x x=+ (3)y = x 2cos x (4)y =tan x 25.已知函数()()ln f x x a x =+.(1)当0a =时,求()f x 在1x =处的切线方程; (2)当0a >时,若()f x 有极小值,求实数a 的取值范围. 26.已知函数,其中. (Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)求证: 当时,.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】利用()()00f x g x =-,把问题转化为ln y x =与1y ax =-+在1x e≥有交点,利用数形结合进行分析,即可求解 【详解】()()00f x g x =-,所以,00ln 1x ax =-+,即ln y x =与1y ax =-+在1x e≥有交点,分情况讨论:①直线1y ax =-+过点1(,1)e -,即11a e-=-+,得2a e =;②直线1y ax =-+与ln y x =相切,设切点为(,)m n ,得1ln 1am ma m -+=⎧⎪⎨-=⎪⎩⇒221m e a e ⎧=⎪⎨=-⎪⎩,切点为2(,2)e ,故实数a 的取值范围是21,2e e ⎡⎤-⎢⎥⎣⎦故选:B 【点睛】本题考查函数方程的交点问题,主要考查学生的数形结合能力,属于中档题2.D解析:D由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.3.B解析:B 【分析】先求得2a y x x '=+≥=,根据曲线切线的倾斜角的取值范围是,32ππ⎡⎫⎪⎢⎣⎭,得到k ≥.【详解】由题意,函数2ln (0)y a x x a =+>,可得2a y x x '=+≥= 当且仅当2a x x=时,即x =时,等号成立,又由曲线2ln (0)y a x x a =+>的切线的倾斜角的取值范围是,32ππ⎡⎫⎪⎢⎣⎭,可得切线的斜率的取值范围是k ≥=,解得38a =.故选:B. 【点睛】本题主要考查了利用导数的几何意义求解参数问题,其中解答中熟练利用导数的几何意义求得切线的斜率,结合斜率与倾斜角的关系求解是解答的关键,着重考查推理与运算能力.4.B解析:B 【分析】首先根据函数()f x 的图象关于点(0,2)对称得到0a =,2c =,即3()2f x x bx =++.利用导数的切线过点(2,7)得到12b =,再求函数()f x 在0x =处的切线倾斜角的正切值和正弦值,代入式子cos()tan()2παπα+-计算即可.【详解】因为函数()f x 的图象关于点(0,2)对称,所以()()4f x f x +-=. 即:32324x ax bx c x ax bx c +++-+-+=,解得0a =,2c =.所以3()2f x x bx =++,(1)3f b =+,切点为(1,3)b +.2()3f x x b '=+,(1)3k f b '==+.切线为:(3)(3)(1)y b b x -+=+-.因为切线过点(2,7),所以7(3)(3)(21)b b -+=+-,解得12b =. 所以31()22f x x x =++,21()32f x x '=+. 1(0)tan 2f α'==,所以sin α=.所以51cos()tan()sin tan 25210παπααα+-==⨯=. 故选:B【点睛】本题主要考查导数的切线问题,同时考查三角函数的诱导公式,属于中档题.5.D解析:D 【分析】由导数的几何意义0(1)(1)li )m'(1x f x f xk f →+-==,结合题设0(1)(1)lim12x f f x x →-+=,找到倍数关系,即得解. 【详解】由导数的几何意义,可知:0(1)(1)(1)(1)lim2lim 21212'()x x f x f k f f xf x x →→+--+=-=-⋅==-=故选:D 【点睛】本题考查了导数的几何意义和导数的定义,考查了学生概念理解,转化划归,数学运算的能力,属于基础题.6.A解析:A 【分析】 对函数求导,可得fx 的表达式,令1x =-,可得()1f '-的值,进而可求得()1f 、()1f '的值,即可得到切点及切线斜率,进而可求得切线方程.【详解】 由题意,()()121f x f x''=+-,则()()1121f f ''-=-+-,解得()11f '-=, 所以()ln 21f x x x =+-,()12f x x'=+, 则()1ln1211f =+-=,()1123f '=+=,故切点为()1,1,切线斜率为3,所以切线方程为()131y x -=-,即320x y --=. 故选:A. 【点睛】本题考查导数的几何意义,考查切线方程的求法,考查学生的计算求解能力,属于基础题.7.D解析:D 【分析】首先对函数()f x 求导,令2x =,得到关于()2f '的方程,即可求出()2f ',再利用二次函数的图象和性质,即可确定m 的取值范围. 【详解】依题可得,()()222f x x f ''=+,令2x =,得()()2422f f ''=+,解得()24f '=-,所以()22()81244f x x x x =-+=--,因为()012f =,()44f =-,而由二次函数的对称性可知,()812f =,故48m ≤≤. 故选:D . 【点睛】本题主要考查导数的四则运算法则和基本初等函数导数公式的应用,以及二次函数的图象与性质的应用,属于中档题.8.A解析:A 【分析】依题意,过原点的直线与函数()|cos |f x x =(0)x ≥在区间3,22ππ⎛⎫⎪⎝⎭内的图像相切,利用导数知识可求得切线方程,利用直线过原点,可求得1tan θθ=-,代入所求关系式即可得到答案. 【详解】函数()|cos |f x x =(0)x ≥的图象与过原点的直线恰有四个交点,∴直线与函数|cos |y x =(0)x ≥在区间3,22ππ⎛⎫⎪⎝⎭内的图象相切, 在区间3,22ππ⎛⎫⎪⎝⎭上,y 的解析式为cos y x =,故由题意切点坐标为(,cos )θθ,∴切线斜率sin sin ,x k y x θθ===-=-' ∴由点斜式得切线方程为:cos sin (),y x θθθ-=--sin sin cos y x θθθθ∴=-++,直线过原点,sin cos 0θθθ∴+=,得1tan θθ=-, ()21sin 2θθθ+∴211sin 2tan =1tan θθθ⎛⎫+ ⎪⎝⎭-1tan sin 2tan θθθ⎛⎫=-+ ⎪⎝⎭sin cos 2sin cos cos sin θθθθθθ⎛⎫=-+⋅ ⎪⎝⎭()222sin cos 2θθ=-+=-.故选:A. 【点睛】本题考查了导数的几何意义、点斜式方程、二倍角公式以及同角三角函数的基本关系,需熟记公式,属于基础题.9.D解析:D 【解析】 【分析】根据导数与切线,函数的关系求解. 【详解】因为()2f x x '=,(1)2f '=,1()g x x'=,(1)1g '=, 所以(),()f x g x 在点(1,0)处的切线不同。
(常考题)北师大版高中数学选修1-1第三章《变化率与导数》测试(包含答案解析)(1)

一、选择题1.已知函数32()2f x x x x =-+-,若过点()1,P t 可作曲线()y f x =的三条切线,则t 的取值范围是( ) A .1(0,)30B .1(0,)29C .1(0,)28D .1(0,)272.已知过点P 作曲线y =x 3的切线有且仅有两条,则点P 的坐标可能是( ) A .(0,1) B .(0,0) C .(1,1)D .(-2,-1)3.直线:l y kx b =+是曲线()()ln 1f x x =+和曲线()()2ln g x e x =的公切线,则b =( ) A .2B .12C .ln2e D .()ln 2e4.若直线l 与曲线y x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1B .y =2x +12 C .y =12x +1 D .y =12x +125.已知函数()f x 满足()11f =-,()12f '=,则函数()x y f x e ⋅=在1x =处的瞬时变化率为( ) A .1B .2C .eD .2e6.设函数()()2121ln 2f x f x x f x ⎛⎫'=-+ ⎪⎝⎭,曲线()f x 在()()1,1f 处的切线方程是( )A .540x y --=B .320x y --=C .0x y -=D .1x =7.设函数的定义域为D ,若满足条件:存在[],a b D ⊆,使()f x 在[],a b 上的值域为,22a b ⎡⎤⎢⎥⎣⎦,则称()f x 为“倍缩函数”.若函数()2xt f x e =+为“倍缩函数”,则实数t 的取值范围是( )A .(],1ln 2-∞--B .(),1ln2-∞--C .[)1ln 2,++∞D .()1ln 2,++∞8.已知点P 在直线y =2x +1上,点Q 在曲线y =x +ln x 上,则P ,Q 两点间距离的最小值为( )A .5B .5C .D .9.某种新产品的社会需求量y 是时间t 的函数,记作:y =f (t ).若f (0)=y 0,社会需求量y 的市场饱和水平估计为500万件,经研究可得,f (t )的导函数f '(t )满足:f '(t )=kf (t )(500﹣f (t ))(k 为正的常数),则函数f (t )的图象可能为( )③ ④① ②A .①②B .①③C .②④D .①②③10.函数()|cos |f x x =(0)x ≥的图象与过原点的直线恰有四个交点,设四个交点中横坐标最大值为θ,则()21sin 2θθθ+( )A .-2B .2C .12-D .1211.已知函数21()ln f x x x x ⎛⎫=- ⎪⎝⎭,则曲线()f x 在1x =-处切线方程为() A .230x y -+=B .210x y +-=C .210x y -+=D .20x y ++=12.在平面直角坐标系中,直线l 在两坐标轴上的截距互为相反数,且直线l 与曲线ln y x =相切,则直线l 的方程为( ) A .y ex =B .y x e =-C .1y x e =或y x e =- D .1y x e=或1y x =- 二、填空题13.若直线y kx b =+是曲线ln y x =的切线,也是曲线2x y e -=的切线,则k =________. 14.如图,直线l 是曲线()y f x =在4x =处的切线,则(4)(4)f f '+=____________.15.若直线y kx b =+是曲线2x y e -=的切线,也是曲线1x y e =-的切线,则b =__________.16.已知函数2()x f x e =,则过原点且与曲线()y f x =相切的直线方程为____________. 17.曲线y =2ln (x +2)在点(﹣1,0)处的切线方程为_____. 18.设曲线1cosx y sinx +=在点π,12⎛⎫⎪⎝⎭处的切线与直线x ay 10-+=平行,则实数a =______.19.函数()ln f x x x =在x e =处的切线方程是____.(其中e 为自然对数的底数) 20.若函数()xxf x e ae -=+的导函数是奇函数,并且曲线()y f x =的一条切线的斜率是32,则切点的横坐标是___. 三、解答题21.已知函数3()3f x x x =-.(1)求曲线()y f x =在(1,(1))f 处的切线方程; (2)求曲线()y f x =过点(2,6)-的切线方程.22.记()()f x g x '',分别为函数()()f x g x ,的导函数.若存在0x R ∈,满足()()00f x g x ''=,且()()00f x g x =,则称0x 为函数()f x 与()g x 的一个“公共切点”.(1)若()23f x x x =+-,()3221g x x x x =-++,求()f x 与()g x 的“公共切点”;(2)若函数()21f x ax =-与()ln g x x =存在“公共切点”,求实数a 的值;23.已知曲线31433y x =+ (1)求曲线在点(2,4)P 处的切线方程;(2)求曲线过点(2,4)P 的切线方程24.已知曲线()()1xf x e ax =+在1x =处的切线方程为y bx e =-.(Ⅰ)求,a b 值.(Ⅱ)若函数()()3xg x f x e m =--有两个零点,求实数m 的取值范围.25.已知函数()ln x f x ae b x =-在点(1,(1))f 处的切线方程为(1)1y e x =-+. (1)求a ,b 的值; (2)求证:()2f x >.26.设函数f (x )=13x 3-2a x 2+bx +c ,其中a >0,曲线y =(x )在点P (0,f (0))处的切线方程为y =1,确定b 、c 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】首先设过点P 的切线方程():1l y k x t =-+,切点()00,x y ,利用导数的几何意义列式,转化为320001254t x x x +=-+有三个解,通过设函数()32254g x x x x =-+,问题转化为1y t =+与()y g x =有三个交点,求t 的取值范围. 【详解】设过点P 的直线为():1l y k x t =-+,()2341f x x x '=-+-,设切点为()00,x y ,则()20032000034112x x k k x t x x x ⎧-+-=⎪⎨-+=-+-⎪⎩ ,得320001254t x x x +=-+有三个解, 令()32254g x x x x =-+,()()()261042132g x x x x x '=-+=--,当()0g x '>,得1x >或25x <,()0g x '<,得213x <<, 所以()g x 在2,3⎛⎫-∞ ⎪⎝⎭,()1,+∞单调递增,2,13⎛⎫⎪⎝⎭单调递减, 又228327g ⎛⎫=⎪⎝⎭,()11g =,()1g x t =+有三个解, 得281127t <+<,即1027t <<. 故选:D 【点睛】方法点睛:本题考查根据方程实数根的个数求参数的取值范围,一般可采用1.直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解,此时需要根据零点个数合理寻找“临界”情况,特别注意边界值的取舍.2.C解析:C 【分析】求出函数的导数,设切点为3(,)m m ,求得切线的斜率,以及切线的方程,运用代入法,将选项代入切线的方程,解方程即可得到结论. 【详解】3y x =的导数为23y x '=,设切点为3(,)m m ,可得切线的斜率为23m ,切线的方程为323y m m x m -=-(),若(0,0)P ,则3230)(m m m -=-,解得0m =,只有一解;若(01)P ,,则32130)(m m m -=-,可得312m =-,只有一解; 若(1,1)P ,则32131m m m -=-(),可得322310m m -+=, 即为2(1)20(1)m m -+=,解得1m =或12-,有两解; 若(2,1)P --,则32132)m m m --=-(-, 可得322610m m +-=,由322()261()612f m m m f m m m '=-=++,,当20m -<<时,()f m 递减;当0m >或2m <-时,()f m 递增. 可得(0)1f =-为极小值,(2)7f -=为极大值, 则322610m m +-=有3个不等实数解. 故选:C . 【点睛】本题考查导数的运用:求切线的方程,考查导数的几何意义,正确求导和设出切点是解题的关键,注意运用排除法,属于中档题.3.C解析:C 【分析】由()f x k '=可求得直线l 与曲线()()ln 1f x x =+的切点的坐标,由()g x k '=可求得直线l 与曲线()()2ln g x e x =的切点坐标,再将两个切点坐标代入直线l 的方程,可得出关于k 、b 的方程组,进而可求得实数b 的值. 【详解】设直线l 与曲线()()ln 1f x x =+相切于点()11,A x y ,直线l 与曲线()()2ln g x e x =相切于点()22,B x y ,()()ln 1f x x =+,则()11f x x '=+,由()1111f x k x '==+,可得11k x k-=, 则()()111ln 1ln y f x x k ==+=-,即点1,ln k A k k -⎛⎫- ⎪⎝⎭, 将点A 的坐标代入直线l 的方程可得1ln kk k b k--=⋅+,可得ln 1b k k =--,① ()()2ln 2ln g x e x x ==+,则()1g x x'=,由()221g x k x '==,可得21x k =,()222ln y g x k ==-,即点1,2ln B k k ⎛⎫- ⎪⎝⎭,将点B 的坐标代入直线l 的方程可得12ln 1k k b b k-=⋅+=+,1ln b k ∴=-,② 联立①②可得2k =,1ln 2ln 2e b =-=. 故选:C. 【点睛】本题考查利用两曲线的公切线求参数,要结合切点以及切线的斜率列方程组求解,考查计算能力,属于中等题.4.D解析:D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】 设直线l在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x =-,即00x x -+=, 由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 故选:D. 【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.5.C解析:C 【分析】求得函数的导数)(()x x y f x e f x e ⋅+''⋅=,代入1x =,结合题设条件,代入即可求解. 【详解】由函数()x y f x e ⋅=,可得)(()xx y f x e f x e ⋅+''⋅=,所以函数在1x =的导数为111|(1)(1)x y f e f e =⋅+'⋅'=,又由()11f =-,()12f '=,所以11|2x e y e e =⨯-⨯'==, 即函数()xy f x e ⋅=在1x =处的瞬时变化率为e . 故选:C. 【点睛】本题主要考查了导数的四则运算,以及瞬时变化率的概念与计算,其中解答中熟记瞬时变化率的概念,以及熟练应用导数的运算法则求解是解答的关键,着重考查了运算与求解能力.6.A解析:A 【分析】取1x =,可得()1122f f ⎛⎫'=-⎪⎝⎭,把已知等式求导,取12x =求得()1f ,进一步得到12f ⎛⎫' ⎪⎝⎭,求得函数解析式,进而求得曲线()f x 在()()1,1f 处的切线方程. 【详解】由题意,函数()()2121ln 2f x f x x f x ⎛⎫'=-+ ⎪⎝⎭,可得()1122f f ⎛⎫'=- ⎪⎝⎭, 又由()()2121ln 2f x f x x f x ⎛⎫'=-+ ⎪⎝⎭,得()()11222f f x f x x ⎛⎫''=-+ ⎪⎝⎭, 取12x =,可得()1122122f f f ⎛⎫⎛⎫''=-+ ⎪ ⎪⎝⎭⎝⎭,()11f =,代入()1122f f ⎛⎫'=-⎪⎝⎭,得132f ⎛⎫'= ⎪⎝⎭,∴()232ln f x x x x =-+,则()162f x x x'=-+,∴()15f '=, ∴曲线()f x 在()()1,1f 处的切线方程是()151y x -=-,即540x y --=. 故选:A . 【点睛】本题主要考查了利用导数研究过曲线上某点处的切线方程,其中解答中熟记导数的几何意义,合理利用导数运算是解答的关键,着重考查了推理与运算能力.7.B解析:B 【分析】判处出()2xt f x e =+单调递增,可得2222a b t a e t b e ⎧+=⎪⎪⎨⎪+=⎪⎩,进而可得a ,b 为方程2x x t e -=的两个实根,进一步转化为函数1xy e =与22x t y -=有两个交点,求出斜率为12的切线方程为111ln 222y x ⎛⎫-=- ⎪⎝⎭,切线在y 轴上的截距为1ln 22+,只需1ln 222t +->即可. 【详解】因为函数()2xtf x e =+为“倍缩函数”, 所以存在[],a b D ⊆,使()f x 在[],a b 上的值域为,22a b ⎡⎤⎢⎥⎣⎦,由于()2xt f x e =+单调递增,所以2222a b t ae t be ⎧+=⎪⎪⎨⎪+=⎪⎩,即a ,b 为方程2xx te -=的两个实根, 进一步转化为函数1xy e =与22x ty -=有两个交点, 不妨先求出与函数1xy e =相切且斜率为12的直线方程. 对于数1x y e =,求导得1x y e '=,令12xe =,解得1ln 2x =,112y =, 所以斜率为12的切线方程为111ln 222y x ⎛⎫-=- ⎪⎝⎭,该直线在y 轴上的截距为1ln 22+, 要使函数1xy e =与22x t y -=有两个交点,则1ln 222t +->,所以1ln 2t <--,故选:B . 【点睛】本题是函数的新定义题目,考查了函数的单调性求值域、导数的几何意义求切线方程,属于中档题.8.B解析:B 【分析】易得当在Q 点处的切线与21y x =+平行,且过Q 作21y x =+的垂线垂足为P 时,P Q 的距离最小,再利用公式求距离即可. 【详解】由题可知, 当在Q 点处的切线与21y x =+平行,且过Q 作21y x =+的垂线垂足为P 时,P Q 的距离最小.此时ln y x x =+的导函数1'1y x=+.设()00,Q x y ,则001121x x +=⇒=,000ln 1y x x =+=,即()1,1Q . 此时,P Q 的距离最小值为()1,1Q 到直线21y x =+即210x y -+=的距离d ===. 故选:B 【点睛】本题主要考查了曲线上与直线上点的最值问题,需要利用导数的几何意义进行求解,属于基础题.9.B解析:B 【分析】令()0f t '=,则()0f t =或500,即当()0f t =或500时,曲线的切线斜率接近0,从而得到答案. 【详解】因为()()()()500f t kf t f t '=﹣, 令()0f t '=,则()0f t =或500,即当()0f t =或500时,曲线的切线斜率接近0, 由选项可知,只有①③符合题意, 故选:B. 【点睛】本题考查函数的实际应用,考查导数的几何意义,根据导数的值求函数图像切线的斜率,属于中档题.10.A解析:A【分析】依题意,过原点的直线与函数()|cos |f x x =(0)x ≥在区间3,22ππ⎛⎫⎪⎝⎭内的图像相切,利用导数知识可求得切线方程,利用直线过原点,可求得1tan θθ=-,代入所求关系式即可得到答案. 【详解】函数()|cos |f x x =(0)x ≥的图象与过原点的直线恰有四个交点,∴直线与函数|cos |y x =(0)x ≥在区间3,22ππ⎛⎫⎪⎝⎭内的图象相切, 在区间3,22ππ⎛⎫⎪⎝⎭上,y 的解析式为cos y x =,故由题意切点坐标为(,cos )θθ,∴切线斜率sin sin ,x k y x θθ===-=-' ∴由点斜式得切线方程为:cos sin (),y x θθθ-=--sin sin cos y x θθθθ∴=-++,直线过原点,sin cos 0θθθ∴+=,得1tan θθ=-, ()21sin 2θθθ+∴211sin 2tan =1tan θθθ⎛⎫+ ⎪⎝⎭-1tan sin 2tan θθθ⎛⎫=-+ ⎪⎝⎭sin cos 2sin cos cos sin θθθθθθ⎛⎫=-+⋅ ⎪⎝⎭()222sin cos 2θθ=-+=-.故选:A. 【点睛】本题考查了导数的几何意义、点斜式方程、二倍角公式以及同角三角函数的基本关系,需熟记公式,属于基础题.11.A解析:A 【分析】先求出0x <时,()f x 的解析式,求出其导数,由导数的几何意义即可求出方程。
(易错题)高中数学选修1-1第三章《变化率与导数》测试卷(含答案解析)(1)

一、选择题1.设a R ∈,函数()x x f x e ae -=-的导函数为'()f x ,且'()f x 是奇函数,则a 为( )A .0B .1C .2D .-12.已知函数34(x)sin 1xf x x e =+++,其导函数为'()f x ,则(2020)'(2020)(2020)'(2020)f f f f ++---的值为( )A .4040B .4C .2D .03.已知函数()f x 满足()11f =-,()12f '=,则函数()x y f x e ⋅=在1x =处的瞬时变化率为( ) A .1B .2C .eD .2e4.下列函数求导:①()222log x x e '=;②()31log ln 3x x '=;③()x x e e '=;④1ln x x '⎛⎫= ⎪⎝⎭;⑤()1x x x e e '⋅=+;运算正确的个数为( ) A .1 B .2C .3D .45.已知点P 在直线y =2x +1上,点Q 在曲线y =x +ln x 上,则P ,Q 两点间距离的最小值为( )A B C .D .6.已知函数()2bf x x ax =+的导数()23f x x '=+,则数列()()*12n f n ⎧⎫⎪⎪∈⎨⎬+⎪⎪⎩⎭N 的前n项和是( )A .1nn +B .()121n n -+C .()22n n +D .()()12nn n ++7.若点P 在函数3()3f x x x =-+的图象上,且函数3()3f x x x =-+的图象在点P 处的切线平行于直线21y x =+,则点P 的坐标为( ) A .(1,3)B .(1,3)-C .(1,3)和(1,3)-D .(1)3-, 8.已知函数2()2(0)f x x x a x =++<,点1122(,())(,())A x f x B x f x 、为函数()f x 图象上两点,且过A B 、两点的切线互相垂直,若12x x <,则21x x -的最小值为( ) A .1B .12C .32D .29.已知函数sin a x y x =在点M (π,0)处的切线方程为xb y π-+=,则( ) A .a =-1,b =1B .a =-1,b =-1C .a =1,b =1D .a =1,b =-110.已知函数()ln f x x = ,若f x () 在1x x = 和()212x x x x =≠ 处切线平行,则( )A .2212512x x +>B .12128x x <C .1232x x +<D12> 11.三次函数()323212f x ax x x =-++的图象在点()()1,1f 处的切线与x 轴平行,则()f x 在区间()1,3上的最小值是( )A .83B .116C .113D .5312.已知过点(,0)A a 作曲线:x C y x e =⋅的切线有且仅有1条,则实数a 的取值是( ) A .0B .4C .0或-4D .0或4二、填空题13.曲线2x y ae +=的切线方程为260x y -+=,则实数a 的值为_______.14.已知函数()ln x ax f x x-=,若有且仅有一个整数k ,使()()20f k f k -⎤⎣⎦>⎡,则实数a 的取值范围是__________.15.若直线y kx b =+是曲线2x y e -=的切线,也是曲线1x y e =-的切线,则b =__________.16.函数()2ln 2f x x x x =-+过原点的切线方程为____________________.17.曲线y =2ln (x +2)在点(﹣1,0)处的切线方程为_____.18.已知函数f (x )=x 4+ax 2-bx ,且f ′(0)=-13,f ′(-1)=-27,则a +b 等于____. 19.已知直线l 与曲线()sin f x x =切于点(,sin )A αα,且直线l 与曲线()sin f x x =交于点(,sin )B ββ ,若-αβπ=,则tan α的值为________.20.已知直线1l 是曲线ln y x =在1x =处的切线,直线2l 是曲线x y e =的一条切线,且12l l //,则直线2l 的方程是__________.三、解答题21.(1)已知曲线3y x =,求曲线在1x =处的切线方程; (2)已知直线1y kx =-与曲线ln y x =相切,求k 的值. 22.已知函数1()ln f x a x b x=++,曲线()y f x =在1x =处的切线方程为21y x =+. (Ⅰ)求实数a 和b .(Ⅱ)求()f x 的最小值. 23.函数()1xf x x0x <(),令1()=()f x f x ,*1()=(())n n f x f f x n N +∈. (1)求23()()f x f x ,并猜想()n f x 的表达式(不需要证明); (2)()()n g x f x =与250x y n --=相切,求n 的值. 24.已知函数()()ln f x x a x =+.(1)当0a =时,求()f x 在1x =处的切线方程; (2)当0a >时,若()f x 有极小值,求实数a 的取值范围. 25.已知函数()()ln f x x a x =-()a R ∈. (1)若1a =,求()f x 在1x =处的切线方程;(2)若对于任意的正数x ,()0f x ≥恒成立,求实数a 的值; (3)若函数()f x 存在两个极值点,求实数a 的取值范围. 26.已知函数()()2xf x x e =+.(1)求曲线()y f x =在点()()0,0f 处的切线方程; (2)设()()()22f x g x x =+,计算()g x 的导数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】∵函数()xxf x e ae -=-∴()x x f x e ae -'=+ ∵()'f x 是奇函数 ∴(0)0f '=,即10a +=. ∴1a =- 故选D.点睛:正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数()f x 为奇函数或偶函数必要不充分条件;(2)()()f x f x -=-或()()f x f x -=是定义域上的恒等式.2.B解析:B 【分析】计算得到()()4f x f x +-=,()()''0f x f x --=,代入数据得到答案. 【详解】函数34(x)sin 1x f x x e =++⇒+()()44411x x x e f x f x e e +-=+=++, ()()224'3cos 1xxe f x x x e=-+++,()()''0f x f x --=,(2020)'(2020)(2020)'(2020)=4f f f f ++---,故答案选B . 【点睛】本题考查了函数的奇偶性,计算出()()4f x f x +-=是解题的关键.3.C解析:C 【分析】求得函数的导数)(()xx y f x e f x e ⋅+''⋅=,代入1x =,结合题设条件,代入即可求解. 【详解】由函数()x y f x e ⋅=,可得)(()xx y f x e f x e ⋅+''⋅=,所以函数在1x =的导数为111|(1)(1)x y f e f e =⋅+'⋅'=,又由()11f =-,()12f '=,所以11|2x e y e e =⨯-⨯'==, 即函数()xy f x e ⋅=在1x =处的瞬时变化率为e . 故选:C. 【点睛】本题主要考查了导数的四则运算,以及瞬时变化率的概念与计算,其中解答中熟记瞬时变化率的概念,以及熟练应用导数的运算法则求解是解答的关键,着重考查了运算与求解能力.4.B解析:B 【分析】根据导数的运算法则和导数的基本公式计算后即可判断 【详解】①()22ln 2x x '=,故①错误②()31log ln 3x x '=,故②正确③()xxe e '=,故③正确④()211ln ln x x x '⎛⎫=- ⎪⎝⎭,故④错误 ⑤()x x x x e e xe '⋅=+,故⑤错误故选:B 【点睛】本题考查的是导数的计算,较简单.5.B解析:B 【分析】易得当在Q 点处的切线与21y x =+平行,且过Q 作21y x =+的垂线垂足为P 时,P Q 的距离最小,再利用公式求距离即可. 【详解】由题可知, 当在Q 点处的切线与21y x =+平行,且过Q 作21y x =+的垂线垂足为P 时,P Q 的距离最小.此时ln y x x =+的导函数1'1y x=+.设()00,Q x y ,则001121x x +=⇒=,000ln 1y x x =+=,即()1,1Q . 此时,P Q 的距离最小值为()1,1Q 到直线21y x =+即210x y -+=的距离d ===. 故选:B 【点睛】本题主要考查了曲线上与直线上点的最值问题,需要利用导数的几何意义进行求解,属于基础题.6.C解析:C 【分析】利用导数求得a 、b 的值,然后利用裂项求和法可求得数列()()*12n f n ⎧⎫⎪⎪∈⎨⎬+⎪⎪⎩⎭N 的前n 项和. 【详解】()2b f x x ax =+,()21223b f x bx a x -'∴=+=+,则223b a =⎧⎨=⎩,得31a b =⎧⎨=⎩,()23f x x x ∴=+,()()()2111112321212f n n n n n n n ∴===-+++++++,因此,数列()()*12n f n ⎧⎫⎪⎪∈⎨⎬+⎪⎪⎩⎭N 的前n 项和111111233412n S n n =-+-++-++()112222n n n =-=++. 故选:C. 【点睛】本题考查利用导数求参数,同时也考查了裂项求和法,考查计算能力,属于中等题7.B解析:B 【分析】对()f x 求导,由于在点P 处的切线平行于直线21y x =+,故2312m -=,求解m ,又点(1,3)在直线21y x =+,排除即得解.【详解】设P 点坐标为(,)P m n ,则33n m m =-+2()31x f x '=-由于在点P 处的切线平行于直线21y x =+ 故2312m -=,1m ∴=±,代入33n m m =-+, 故点P 坐标为(1,3)和(1,3)-又点(1,3)在直线21y x =+,此时切线与21y x =+重合,排除 故点P 坐标为(1,3)- 故选:B 【点睛】本题考查了导数在曲线切线中的应用,考查了学生概念理解,数学运算,综合分析的能力,属于中档题.8.A解析:A 【分析】根据题意,对函数求导,且过A B 、两点的切线互相垂直,则有21()()1f x f x ''⋅=-,构造()2112122222x x x x -=-+++⎡⎤⎣⎦根据基本不等式,即可求解最值. 【详解】()22f x x '=+120x x <<,过,A B 两点的切线互相垂直,()()1222221x x ∴++=-,12220,220x x ∴+<+>,()21121222212x x x x ⎡⎤∴-=-+++≥=⎣⎦, 当且仅当()1222221x x -+=+=, 即1231,22x x =-=-时等号成立,21x x ∴-的最小值为1.故选:A 【点睛】本题考查导数几何意义和基本不等式求最值问题,考查转化与化归思想,属于中等题型.9.C解析:C 【分析】先对函数求导,求得()af ππ'=-,(0)0f =,再由点斜式求得切线方程.【详解】 由题意可知2cos sin ax x a xy x -'=,故在点(π0)M ,处的切线方程为 1(π)ππa y x x -=-=-b +,11a b =⎧⎨=⎩,则,故选C . 【点睛】本题考查导数的几何意义,求切线的方程即函数()f x 在()()00,x f x 处的切线方程为()()()000y f x f x x x '-=-. 10.A解析:A【分析】1211x x=-12=,则116≤,由x 1≠x 2,利用基本不等式求得x 12+x 22>512. 【详解】由f (x )=lnx ,得f ′(x )1x=(x >0),∴1211x x -=,2112x x x x -=12+=,∴12=≥116≤, ∴x 1x 2≥256, ∵x 1≠x 2,∴x 1x 2>256.∴2212x x +>2x 1x 2=512.故选:A . 【点睛】本题考查了利用导数研究曲线上某点的切线方程,训练了利用基本不等式求最值,是中档题.11.D解析:D 【分析】由()10f '=求出实数a 的值,然后利用导数能求出函数()y f x =在区间()1,3上的最小值. 【详解】()323212f x ax x x =-++,()2332f x ax x '∴=-+,由题意得()1310f a '=-=,解得13a =,()32132132f x x x x ∴=-++,()232f x x x '=-+,令()=0f x ',得1x =或2x =.当12x <<时,()0f x '<;当23x <<时,()0f x '>. 所以,函数()y f x =在区间()1,3上的最小值为()283522221323f =-⨯+⨯+=. 故选:D. 【点睛】本题考查利用切线与直线平行求参数,同时也考查了利用导数求函数的最值,考查运算求解能力,属于中等题.12.C解析:C 【解析】 【分析】求出导函数,转化求解切线方程,通过方程2000x ax a --=有两个相等的解,推出结果即可. 【详解】设切点为000(,)xx x e ,且函数x y x e =⋅的导数(1)xy x e '=+⋅,所以000|(1)xx x y x e ='=+⋅,则切线方程为00000(1)()x x y x e x e x x -=+⋅-,切线过点(,0)A a ,代入得00000(1)()x x x ex e a x -=+⋅-,所以2001x a x =+,即方程2000x ax a --=有两个相等的解,则有240a a ∆=+=,解得0a =或4a =, 故选C . 【点睛】本题主要考查了导数的几何意义的应用,其中解答中熟记导数的几何意义,求解曲线在某点处的切线方程是解答的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.二、填空题13.2【分析】根据题意设直线与曲线的切点坐标为利用导数求出切线的方程与比较分析可得且解可得即可得切点的坐标将切点坐标代入曲线方程分析可得答案【详解】根据题意设曲线与的切点的坐标为其导数则切线的斜率又由切解析:2 【分析】根据题意,设直线与曲线的切点坐标为2m m ae +(,),利用导数求出切线的方程,与260x y -+=比较分析可得22m ae +=且226m -+=,解可得2m =-,即可得切点的坐标,将切点坐标代入曲线方程,分析可得答案. 【详解】根据题意,设曲线2x y ae +=与260x y -+=的切点的坐标为2m m ae +(,),其导数2x y ae+'=,则切线的斜率2m k ae += ,又由切线方程为260x y -+=,即26y x =+,则22m k ae +==, 则切线的方程为22m m y aeae x m ++-=-(),又由22m ae +=,则切线方程为22y x m -=-(),即222y x m =-+,则有226m -+=,解可得2m =- ,则切点的坐标为22-(,) ,则有(2)22a e -+=⨯ , 2a ∴=. 故答案为:2. 【点睛】本题考查利用导数计算曲线的切线方程,关键是求出切点的坐标.14.【解析】因故由题设问题转化为有且仅有一个整数使得或因为所以当时函数单调递增;当时函数单调递减即函数在处取最大值由于因此由题设可知解之得应填答案点睛:解答本题的关键是准确理解题设中条件有且仅有一个整数解析:11ln 21ln 3123a -≤<-【解析】 因ln ()xf x a x=-,故由题设问题转化为“有且仅有一个整数k 使得()1f k >或()0f k <”.因为21ln ()xf x x-'=,所以当0x e <<时,()0f x '>,函数ln ()x f x a x =-单调递增;当x e >时,()0f x '<,函数ln ()xf x a x=-单调递减,即函数ln ()xf x a x =-在x e =处取最大值,由于23e <<,因此由题设可知(2)1(3)1f f ≤⎧⎨>⎩,解之得11ln21ln3123a -≤<-,应填答案11ln21ln3123a -≤<-. 点睛:解答本题的关键是准确理解题设中条件“有且仅有一个整数k ,使()()20f k f k ⎡⎤->⎣⎦”.求解时先将问题进行等价转化为“有且仅有一个整数k 使得()1f k >或()0f k <”.进而将问题转化为断定函数图像的形状问题,然后先对函数进行求导,依据导数与函数的单调性之间的关系推断出该函数在在x e =处取最大值,从而借助题设条件得到不等式组(2)1(3)1f f ≤⎧⎨>⎩,通过解不等式组使得问题获解.15.【分析】分别设出直线与曲线和曲线的切点然后求导利用切线的几何意义利用斜率相等可得答案【详解】设直线与曲线切于点与曲线切于点则有从而所以切线方程所以故答案为:【点睛】本题主要考查导数的几何意义两曲线的解析:11ln 222-【分析】分别设出直线y kx b =+与曲线2x y e -=和曲线1xy e =-的切点,然后求导利用切线的几何意义利用斜率相等可得答案. 【详解】设直线y kx b =+与曲线2x y e-=切于点1211(,)x P x e-,与曲线e 1xy =-切于点222(,1)xP x e -,则有21122221(e 1)x x x x e k ee x x ----===-,从而122x x -=,12k =,212xe =,2ln 2x =-.所以切线方程21111(ln 2)1ln 22222x y x e x =++-=+-, 所以11ln 222b =-.故答案为:11ln 222-. 【点睛】本题主要考查导数的几何意义,两曲线的公切线问题,属于中档题.16.【分析】假设切点坐标利用斜率等于导数值并利用原点和切点表示出斜率从而构造出方程求出切点坐标从而求得斜率最终得到切线方程【详解】设切点可得所以切线斜率整理得解得(舍)切线的斜率为:所以函数图象上的点处 解析:()32y ln x =-【分析】假设切点坐标,利用斜率等于导数值,并利用原点和切点表示出斜率,从而构造出方程,求出切点坐标,从而求得斜率,最终得到切线方程. 【详解】设切点()(),m f m ,可得()2ln 1f x x x '=--所以切线斜率2ln 22ln 1m m m k m m m-+=--=整理得220m m --=,解得2m =,1m =-(舍) 切线的斜率为:3ln 2-所以函数()f x 图象上的点()2,62ln2P -处的切线方程为()3ln2y x =-本题正确结果:()3ln2y x =-【点睛】本题考查导数的几何意义,解题关键是求解过非切点的切线时,首先假设切点,利用切线斜率构造出方程,从而求解出切线斜率,得到结果.17.2x ﹣y+2=0【解析】【分析】求得函数的导数可得切线的斜率由点斜式方程可得所求切线方程【详解】的导数为可得切线的斜率为即有曲线在处的切线方程为即故答案为【点睛】本题考查导数的运用:求切线方程考查直解析:2x ﹣y +2=0 【解析】 【分析】求得函数y 的导数,可得切线的斜率,由点斜式方程可得所求切线方程. 【详解】()2ln 2y x =+的导数为22y x '=+,可得切线的斜率为2k =, 即有曲线在()10-,处的切线方程为()21y x =+, 即220x y -+=,故答案为220x y -+=. 【点睛】本题考查导数的运用:求切线方程,考查直线方程的运用,属于基础题.18.18【分析】计算导函数结合题意建立方程计算ab 即可【详解】计算导函数得到结合代入建立等式得到解得故【点睛】本道题考查了导函数计算方法关键抓住导函数的计算建立方程计算参数即可难度中等解析:18 【分析】计算导函数,结合题意,建立方程,计算a,b ,即可. 【详解】计算导函数得到()3'42f x x ax b =+-,结合()()'013,'127f f =--=-,代入,建立等式,得到134227b a b -=-⎧⎨---=-⎩,解得135b a =⎧⎨=⎩,故18a b += 【点睛】本道题考查了导函数计算方法,关键抓住导函数的计算,建立方程,计算参数,即可,难度中等.19.【分析】由导数的几何意义求出切线方程代入点坐标由代入后可求得【详解】由题意∴直线的方程为又直线过∴由得∴整理得∴故答案为:【点睛】本题考查导数的几何意义考查同角间的三角函数关系与诱导公式解题时只要由解析:2π【分析】 由导数的几何意义求出切线方程,代入B 点坐标,由βαπ=-代入后可求得tan α. 【详解】由题意()cos f x x '=,∴直线l 的方程为sin cos ()y x ααα-=-,又直线l 过(,sin )B ββ,∴sin sin cos ()βααβα-=-,由得βαπ=-,∴sin()sin cos ()απααπ--=-,整理得2sin cos απα=,∴tan 2πα=.故答案为:2π. 【点睛】本题考查导数的几何意义,考查同角间的三角函数关系与诱导公式.解题时只要由导数几何意义写出切线方程,代入已知条件即可求解.20.【分析】求出直线的斜率得直线的斜率再求出直线的切点坐标得方程【详解】的导数为时即的导数为设切点为则∴直线的方程为故答案为:【点睛】本题考查导数的几何意义求切线方程未知切点时可设切点坐标由其他条件求出 解析:1y x =+【分析】求出直线1l 的斜率,得直线2l 的斜率,再求出直线2l 的切点坐标,得方程.【详解】ln y x =的导数为1y x'=,1x =时,1y '=,即1k =, x y e =的导数为e x y '=,设切点为11(,)x y ,则11x e =,10x =,011y e ==,∴直线2l 的方程为1y x =+. 故答案为:1y x =+. 【点睛】本题考查导数的几何意义.求切线方程未知切点时,可设切点坐标,由其他条件求出切点坐标,得切线方程.三、解答题21.(1)320x y --= (2)1 【分析】(1)利用导数几何意义求斜率即可(2)设切点为()00,x y ,根据两函数在该点导数相等及该点为公共点列方程组即可求解. 【详解】(1)切点为()1,1 又2'3y x = 所以=3k 切所以切线方程为:320x y --= (2)设切点为()00,x y ,又1'y x=所以00000011101y kx x k y x k y lnx ⎧=+=⎧⎪⎪⎪=⇒=⎨⎨⎪⎪=⎩⎪=⎩ 【点睛】本题主要考查了导数的几何意义及切线方程的求法,属于中档题. 22.(Ⅰ) 3a =,2b =. (Ⅱ)()f x 的最小值为53ln3-. 【解析】分析:(Ⅰ)由切线方程可知,切点为()1,3,斜线斜率为2,求导数'()f x ,则(1)=3f ,'(1)=2f ,求得a 和b 的值.(Ⅱ)由(Ⅰ)可知函数()f x ,再求导,根据导数和函数最值的关系即可求出最小值. 详解:解:(Ⅰ)由题意可得,点()1,3在曲线()1ln f x a x b x=++上, ∴()11ln1131f a b b =++=+=,∴2b =, 又∵()21'a f x x x=-, ∴()'112f a =-=,∴3a =, 综上可得:3a =,2b =.(Ⅱ)由(Ⅰ)可得:()13ln 2f x x x=++, ∴()223131'x f x x x x-=-=, 令()'0f x =,得13x =, 当10,3x ⎛⎫∈ ⎪⎝⎭时,()'0f x <,()f x 单调递减;当1,3x ⎛⎫∈+∞ ⎪⎝⎭时,()'0f x >,()f x 单调递增. ∴13x =为函数()13ln 2f x x x=++的极小值点, ∴()min 113ln3253ln333f x f ⎛⎫==++=- ⎪⎝⎭. 综上,()f x 的最小值为53ln3-.点睛:本题考查过曲线某点的切线方程的求法,利用导数研究函数的单调性和最值,考查计算能力.利用导函数研究函数最值的步骤; (1)求导(确定定义域);(2)解方程'()=0f x ,求出函数定义域内的所有根;(3)检验()f x 在'()=0f x 的根左右两侧值的符号,如果左正右负,那么()f x 取极大值,如果左负右正,那么()f x 取极小值.(4)将函数()f x 各极值点的函数值和区间端点的函数值比较,其中最大的一个为最大值,最小的一个为最小值. 23.(1)见解析;(2)4 【解析】 【分析】(1)分别求出()2f x 和()3f x 的解析式,结合函数()1f x 的解析式归纳出函数()n f x 的解析式;(2)设切点()00,P x y ,由函数()y g x =在点P 处的切线斜率等于直线250x y n --=,以及点P 为直线250x y n --=与函数()y g x =图象的公共点,利用这两个条件列方程组求出n 的值。
(易错题)高中数学选修1-1第三章《变化率与导数》检测题(含答案解析)(1)

一、选择题1.已知函数()()xx af x e a R e=+∈,若()f x 为奇函数,则曲线()y f x =在0x =处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =2.若()f x lnx =与()2g x x ax =+两个函数的图象有一条与直线y x =平行的公共切线,则a =() A .1B .2C .3D .3或1- 3.设a R ∈,函数()x x f x e ae -=-的导函数为'()f x ,且'()f x 是奇函数,则a 为( )A .0B .1C .2D .-14.已知函数()1f x xx=+,若()()1f x f x =,()()()1n n f x f f x +=,则曲线()7y f x =在点()()71,1f 处切线的斜率为( )A .164-B .149-C .164D .1495.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( )A .ln 2B .1C .1ln2-D .1ln2+6.德国数学家莱布尼茨是微积分的创立者之一,他从几何问题出发,引进微积分概念.在研究切线时认识到,求曲线的切线的斜率依赖于纵坐标的差值和横坐标的差值,以及当此差值变成无限小时它们的比值,这也正是导数的几何意义.设()f x '是函数()f x 的导函数,若()0f x '>,且对1x ∀,2x R ∈,且12x x ≠总有()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭,则下列选项正确的是( ) A .()()()π2f f e f << B .()()()2πf f e f '''<< C .()()()()1212f f f f <-'<'D .()()()()2211f f f f ''<-<7.已知函数()0sin cos f x x x =+,()()'10f x f x =,()()'21f x f x =,…,()()'1n n f x f x +=,n N ∈,那么()2020f x =( )A .cos sin x x -B .sin cos x x -C .sin cos x x +D .sin cos x x --8.点P 在曲线321233y x x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ) A .30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .0,2π⎡⎫⎪⎢⎣⎭C .3,,424ππππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭D .3,24ππ⎛⎤⎥⎝⎦ 9.函数()()23ln 0,f x x x bx a b a R =+-+>∈的图像在点()(),b f b 处的切线斜率的最小值是( )A B .C .2D .10.若过点(1,)P n 可作两条不同直线与曲线()2212y x x x -+=≤≤相切,则n ( ) A .既有最大值又有最小值 B .有最大值无最小值 C .有最小值无最大值D .既无最大值也无最小值11.已知函数()()ln 211f x x f x '=+--,则函数()f x 的图象在点()()1,1f 处的切线方程为( ) A .320x y --= B .350x y --= C .20x y ++=D .10x y ++=12.设a R ∈,函数()xxf x e a e -=+⋅为奇函数,曲线()y f x =的一条切线的切点的纵坐标是0,则该切线方程为( ) A .20x y -=B .20x y +=C .40x y -=D .40x y +=二、填空题13.已知函数32()(,)f x ax bx x a b =++∈R ,若曲线()y f x =在点(1,(1))f 处的切线方程为1y x =+,则(1)f '-=_________.14.已知函数2()2ln f x x x =-,则()f x 在()()1,1f 处的切线方程_____________.15.二项展开式012233(1),N n n n n n n n n x C C x C x C x C x n ++=+++++∈,两边对x 求导,得112321(1)23n n n n n n n n x C C x C x nC x --+=++++,令1x =,可得1231232nn n n n n C C C nC n -++++=⋅,类比上述方法,则2122232123nn n n n C C C n C ⋅+⋅+⋅++⋅=______.16.曲线y =2ln (x +2)在点(﹣1,0)处的切线方程为_____. 17.已知函数()2sinxf x cosx=+,如果当0x >时,若函数()f x 的图象恒在直线y kx =的下方,则k 的取值范围是________ .18.已知函数f (x )=x 4+ax 2-bx ,且f ′(0)=-13,f ′(-1)=-27,则a +b 等于____. 19.已知函数()f x 为R 上的奇函数,若当0x <,()22x f x ex --=-,则函数()f x 在2x =处的切线方程为______.20.正弦曲线sin y x =上一点P ,正弦曲线以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是______.三、解答题21.设()2(0)f x ax bx c a =++≠,()22f x x '=+.且方程()0f x =有两个相等的实根.(1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积. 22.求下列函数的导数: (1)y =e x lnx ; (2)y 1cosxsinx+=. 23.设函数()()224ln ,R.f x x ax x a =-∈(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)若对任意[)()21,,0x f x x a ∈+∞+->恒成立,求实数a 的取值范围.24.已知函数311()32f x x =+.(1)求曲线()y f x =在点5(1,)6P 处的切线与x 轴和y 轴围成的三角形面积;(2)若过点(2,)a 可作三条不同直线与曲线()y f x =相切,求实数a 的取值范围 25.设函数()bf x ax x=-,若曲线y=f (x )在点(2,f (2))处的切线方程为5x-4y-4=0.(Ⅰ)求f (x )的解析式;(Ⅱ)求证:在曲线y=f (x )上任意一点处的切线与直线x=0和y=x 所围成的三角形面积为定值,并求出此定值.26.已知函数31()43f x x x a =-++. (1)当4a =-时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)当函数()f x 只有一个零点时,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由函数()f x 为奇函数,解得1a =-,得到1()xx f x e e=-,求得(0)f ',得到切线的斜率,进而可求解切线的方程. 【详解】由题意,因为函数()()xxa f x e a R e =+∈为奇函数,则()000a f e e =+=,解得1a =-,即1()xx f x e e =-,则1()x x f x e e +'=,所以1(0)2f e e '=+=,即2k =, 且当0x =时,01(0)0f e e =-=,即切点的坐标为(0,0), 所以切线的方程为2y x =,故选C. 【点睛】本题主要考查了利用导数求解在某点处的切线方程,其中熟记导数的几何意义求解切线的斜率,再利用直线的点斜式求解切线的方程是解答的关键,着重考查了推理与运算能力,属于基础题.2.D解析:D 【分析】先根据和曲线()ln f x x =相切得到切线方程,再根据和二次函数相切得到参数值. 【详解】设在函数()ln f x x =处的切点设为(x,y ),根据导数的几何意义得到111k x x==⇒=,故切点为(1,0),可求出切线方程为y=x-1,直线和 ()2g x x ax =+也相切,故21x ax x +=-,化简得到()2110x a x +-+=,只需要满足()21401 3.a a ∆=--=⇒=-或故答案为D. 【点睛】求切线方程的方法:①求曲线在点P 处的切线,则表明P 点是切点,只需求出函数在点P 处的导数,然后利用点斜式写出切线方程;②求曲线过点P 的切线,则P 点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.3.D解析:D 【解析】∵函数()xxf x e ae -=-∴()x x f x e ae -'=+ ∵()'f x 是奇函数 ∴(0)0f '=,即10a +=. ∴1a =-故选D.点睛:正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数()f x 为奇函数或偶函数必要不充分条件;(2)()()f x f x -=-或()()f x f x -=是定义域上的恒等式.4.C解析:C 【分析】根据题意依次计算得()717xf x x=+,再根据导数的几何意义求解即可. 【详解】解:因为函数()1f x xx=+,若()()1f x f x =,()()()1n n f x f f x +=, 所以()11xf x x=+,()212x f x x =+,()313x f x x =+,…,()717x f x x =+,所以()()72117f x x '=+,所以()()721116417f '==+. 故()7y f x =在点()()71,1f 处切线的斜率为164. 故选:C. 【点睛】本题考查函数解析式的求解,导数的几何意义,考查运算能力,是中档题.5.D解析:D 【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.6.D解析:D 【分析】由()0f x '>,得()f x 在R 上单调递增,并且由()f x 的图象是向上凸,进而判断选项. 【详解】由()0f x '>,得()f x 在R 上单调递增,因为2e π>>,所以()()()2ff e f π>>,故A 不正确;对1x ∀,2x R ∈,且12x x ≠,总有()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭,可得函数的图象是向上凸,可用如图的图象来表示,由()f x '表示函数图象上各点处的切线的斜率,由函数图象可知, 随着x 的增大,()f x 的图象越来越平缓,即切线的斜率越来越小, 所以()()()2f f e f π'''<<,故B 不正确;()()()()212121AB f f f f k --==-,表示点()()1,1f 与点()()22f ,连线的斜率,由图可知()()21AB f k f ''<<,所以D 正确,C 不正确. 故选:D . 【点睛】本题考查以数学文化为背景,导数的几何意义,根据函数的单调性比较函数值的大小,属于中档题型.7.C解析:C 【分析】由题意,依次求出1234(),(),(),()f x f x f x f x ,观察所求的结果,归纳出周期性规律,求解即可 【详解】由题意得,()0sin cos f x x x =+,()10'()cos sin f x f x x x ==-, ()21'()sin cos f x f x x x ==--, ()32'()cos sin f x f x x x ==-+,()43()sin cos f x f x x x ==+,以此类推,可得()4()n n f x f x +=, 所以()20200()sin cos f x f x x x ==+,故选:C. 【点睛】此题考查三角函数的导数,关键是通过求导计算分析其变化的规律,属于中档题.8.A解析:A 【分析】利用二次函数值域可求得导函数的范围,即切线斜率的范围,根据斜率和倾斜角的关系可求得结果. 【详解】243y x x '=-+,1y '∴≥-,即切线斜率tan 1k α=≥-,30,,24ππαπ⎡⎫⎡⎫∴∈⎪⎪⎢⎢⎣⎭⎣⎭.故选:A . 【点睛】本题考查利用直线斜率求解倾斜角所处范围的问题,关键是能够利用导数几何意义和二次函数值域求得切线斜率所处的范围.9.B解析:B 【分析】先求导,再将x b =代入,即()k f b '=,进而根据均值不等式求得最小值. 【详解】由题,()23232x bx f x x b x x-+'=+-=, 则函数()f x 的图像在点()(),b f b 处的切线斜率为()22233b b k f b b b b-+'===+,设()3g b b b =+≥当且仅当3b b=,即b =,所以()g b 的最小值为即min k = 故选:B 【点睛】本题考查利用导数求函数图像某点处的切线斜率,考查利用均值不等式求最值.10.C解析:C 【分析】数形结合分析临界条件再判断即可. 【详解】对()2212y x x x -+=≤≤求导有'22y x =+()12x -≤≤,当2x =时'6y =,此时切线方程为()()22226264y x y x -+⨯=-⇒=-,此时642n =-=.此时刚好能够作出两条切线,为临界条件,画出图像有:又当1x =时 3y =为另一临界条件,故[)2,3n ∈.故n 有最小值无最大值. 故选:C 【点睛】本题主要考查了导数的几何意义的运用,需要数形结合分析临界条件进行求解.属于中档题.11.A解析:A 【分析】 对函数求导,可得fx 的表达式,令1x =-,可得()1f '-的值,进而可求得()1f 、()1f '的值,即可得到切点及切线斜率,进而可求得切线方程.【详解】 由题意,()()121f x f x''=+-,则()()1121f f ''-=-+-,解得()11f '-=, 所以()ln 21f x x x =+-,()12f x x'=+, 则()1ln1211f =+-=,()1123f '=+=,故切点为()1,1,切线斜率为3,所以切线方程为()131y x -=-,即320x y --=. 故选:A.本题考查导数的几何意义,考查切线方程的求法,考查学生的计算求解能力,属于基础题.12.A解析:A 【分析】根据奇函数的定义先求得1a =-的值,再利用导数的几何意义求得切线方程. 【详解】因为函数()xxf x e a e -=+⋅是奇函数,所以()()f x f x -=-对一切x ∈R 恒成立,所以x x x x e a e e a e --+⋅=--⋅对一切x ∈R 恒成立, 所以()()10xxe a e-++=对一切x ∈R 恒成立,所以10a +=,解得1a =-,所以()xxf x e e -=-,所以()'xxf x e e -=+.因为曲线()y f x =的一条切线的切点的纵坐标是0, 所以令()0xxf x e e-=-=,解得0x =.所以曲线()y f x =的这条切线的切点的坐标为()0,0, 切线的斜率为()'0002fe e -=+=.故曲线()y f x =的这条切线方程为()020y x -=-,即20x y -=. 故选:A. 【点睛】本题考查函数的奇偶性、导数的几何意义,考查函数与方程思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意涉及切线问题时,要先明确切点坐标.二、填空题13.【分析】求出函数的导函数及再求出可得到ab 的方程解出可得到答案【详解】得①又由切点在即②由①②得所以则故答案为:-11【点睛】本题考查导数的几何意义求曲线的切线要注意过点P 的切线与在点P 处的切线的差 解析:11-【分析】求出函数()f x 的导函数及(1)f ',再求出(1)f 可得到a 、b 的方程,解出可得到答案. 【详解】2()321f x ax bx '=++,(1)3211k f a b ∴==++=',得320a b +=①又(1)1f a b =++,由切点)1,1(a b ++在1y x =+,即111a b ++=+②, 由①②得32b a =⎧⎨=-⎩,所以2()661f x x x '=-++,则(1)66111f '-=--+=-.故答案为:-11.本题考查导数的几何意义,求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.14.【分析】求导数得切线斜率然后可写出切线方程【详解】由已知所以又所以切线方程为即故答案为:【点睛】关键点点睛:本题考查导数的几何意义求出导函数得出切线斜率后直接写出切线方程解题时要注意所给点是不是切点 解析:310x y --=【分析】求导数得切线斜率,然后可写出切线方程. 【详解】由已知1()4f x x x'=-,所以(1)413f '=-=,又(1)2f =, 所以切线方程为23(1)y x -=-,即310x y --=.故答案为:310x y --=. 【点睛】关键点点睛:本题考查导数的几何意义,求出导函数,得出切线斜率后直接写出切线方程.解题时要注意所给点是不是切点,问题是求函数在某点处的切线方程还是过某点的切线方程,如果是求过点00(,)P x y ,则设切点为11(,)x y ,由此点求出切线方程,代入00(,)x y 后求得切点坐标,从而得切线方程.15.【分析】依据类比推理观察式子的特点可得然后进行求导并对取特殊值可得结果【详解】两边对求导左边右边令故答案为:【点睛】本题考查类比推理以及二项式定理与导数的结合难点在于找到式子属中档题 解析:2(1)2n n n -+⋅【分析】依据类比推理观察式子的特点,可得112233(1)23n n nn n n n nx x C x C x C x nC x -+=++++,然后进行求导并对x 取特殊值,可得结果. 【详解】112233(1)23n n nn n n n nx x C x C x C x nC x -+=++++, 两边对x 求导,左边12(1)(1)(1)n n n x n x x --⎡⎤=++-+⎣⎦右边212223221123n n n n n n C C x C x n C x -=⋅+⋅+⋅++⋅令1x =,21222322123(1)2nn n n n n C C C n C n n -⋅+⋅+⋅++⋅=+⋅.故答案为:2(1)2n n n -+⋅【点睛】本题考查类比推理以及二项式定理与导数的结合,难点在于找到式子112233(1)23n n nn n n n nx x C x C x C x nC x -+=++++,属中档题.16.2x ﹣y+2=0【解析】【分析】求得函数的导数可得切线的斜率由点斜式方程可得所求切线方程【详解】的导数为可得切线的斜率为即有曲线在处的切线方程为即故答案为【点睛】本题考查导数的运用:求切线方程考查直解析:2x ﹣y +2=0 【解析】 【分析】求得函数y 的导数,可得切线的斜率,由点斜式方程可得所求切线方程. 【详解】()2ln 2y x =+的导数为22y x '=+,可得切线的斜率为2k =, 即有曲线在()10-,处的切线方程为()21y x =+, 即220x y -+=,故答案为220x y -+=. 【点睛】本题考查导数的运用:求切线方程,考查直线方程的运用,属于基础题.17.【分析】先由因为函数的图像横在直线的下方且两函数都过原点可知当直线为函数的切线时切点为进而可求出切线的方程结合函数图像即可判断结果【详解】因为函数的图像横在直线的下方且两函数都过原点所以当直线为函数解析:1,3⎡⎫+∞⎪⎢⎣⎭【分析】先由因为函数()f x 的图像横在直线y kx =的下方,且两函数都过原点,可知当直线y kx =为函数()f x 的切线时,切点为()0,0,进而可求出切线的方程,结合函数图像,即可判断结果. 【详解】因为函数()f x 的图像横在直线y kx =的下方,且两函数都过原点,所以当直线y kx =为函数()f x 的切线时,切点为()0,0,由()2sinx f x cosx =+得()()()()222cosx cosx sinx sinx f x cosx +=+'--,所以切线斜率为210193+-=, 所以可得切线方程为13y x =,结合图像可得13k ≥. 故答案为1,3⎡⎫+∞⎪⎢⎣⎭【点睛】本题主要考查利用导数研究曲线上某点切线方程的问题,常用数形结合的方法,结合导数的几何意义来解决,属于中档试题.18.18【分析】计算导函数结合题意建立方程计算ab 即可【详解】计算导函数得到结合代入建立等式得到解得故【点睛】本道题考查了导函数计算方法关键抓住导函数的计算建立方程计算参数即可难度中等解析:18 【分析】计算导函数,结合题意,建立方程,计算a,b ,即可. 【详解】计算导函数得到()3'42f x x ax b =+-,结合()()'013,'127f f =--=-,代入,建立等式,得到134227b a b -=-⎧⎨---=-⎩,解得135b a =⎧⎨=⎩,故18a b +=【点睛】本道题考查了导函数计算方法,关键抓住导函数的计算,建立方程,计算参数,即可,难度中等.19.【分析】先根据奇偶性得当时再根据导数的几何意义求解即可得答案【详解】解:因为是奇函数所以当时所以所以处的切线斜率因为时所以在处的切线的方程是即故答案为:【点睛】本题考查导数的几何意义由奇偶性求函数解 解析:320x y +-=【分析】先根据奇偶性得当0x >时,()()22x f x e x -=-+,再根据导数的几何意义求解即可得答案. 【详解】解:因为()f x 是奇函数,所以当0x >时,()()()22x f x f x e x -=--=-+,所以()221x f x e-'=--,所以2x =处的切线斜率()222213k f e -'==--=-.因为2x =时()24f =-,所以()y f x =在2x =处的切线的方程是()432y x +=--,即320x y +-=. 故答案为:320x y +-= 【点睛】本题考查导数的几何意义,由奇偶性求函数解析式,考查运算能力,是中档题.20.【分析】由可得直线的斜率为即可求出答案【详解】由可得切线为直线的斜率为:设直线的倾斜角则且所以故答案为:【点睛】本题考查求曲线上的切线的倾斜角的范围属于中档题解析:30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭【分析】由sin y x =可得()sin cos x x '=,直线l 的斜率为[]cos 1,1k x =∈-,即[]tan 1,1k α=∈-可求出答案.【详解】由sin y x =可得()sin cos x x '=, 切线为直线l 的斜率为:[]cos 1,1k x =∈-设直线l 的倾斜角α,则[]tan 1,1k α=∈-且0απ≤<.所以α30,,44πππ⎡⎤⎡⎫∈⋃⎪⎢⎥⎢⎣⎦⎣⎭故答案为:30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭【点睛】本题考查求曲线上的切线的倾斜角的范围,属于中档题.三、解答题21.(1)()221f x x x =++;(2)13【分析】(1)求导得到()222f x ax b x '=+=+,得到1a =,2b =,再根据0∆=解得答案. (2)直接利用定积分计算面积得到答案. 【详解】(1)()2(0)f x ax bx c a =++≠,故()222f x ax b x '=+=+,故1a =,2b =,方程()0f x =有两个相等的实根,故()220f x x x c =+=+,440c ∆=-=,故1c =,故()221f x x x =++.(2)()01f =,取()2210f x x x =+=+,则1x =-,故()()0023211111121011333S f x dx x x dx x x x ---⎛⎫==++=++=--+-= ⎪⎝⎭⎰⎰.【点睛】本题考查了根据导数求参数,定积分求面积,意在考查学生的计算能力和应用能力. 22.(1)y ′=e x (lnx 1x +);(2)y ′21cosxsin x--= 【分析】(1)根据导数的积的运算法则和求导公式计算即可; (2)根据导数商的求导法则和求导公式进行求解即可. 【详解】 (1)y ′=e x lnx +e x 1x⋅=e x (lnx 1x +).(2)y ′=(1cosxsinx +)′()2222211sinxsinx cosx cosx sin x cos x cosx cosx sin x sin x sin x --+-----===. 【点睛】本题主要考查函数的导数的计算,根据函数的导数的运算法则是解决本题的关键.23.(1)220x y +-=;(2)(),1-∞. 【分析】(1)求出函数的导数,计算f (1),f′(1),由点斜式可求切线方程;(2)g (x )=f (x )+x 2﹣a ,求出函数的导数,通过讨论a 的范围,得到函数g (x )的单调性,求出g (x )的最小值,从而求出a 的范围即可. 【详解】解:(1)当1a =时, ()10f =,()()()44ln 24f x x x x =+'--,()'12,f =- 所以曲线()y f x =在点()()1,1f 处的切线方程为()21,y x =-- 即220x y +-=.(2)设()()()[)22224ln ,1,,g x f x x a x ax x x a x =+-=-+-∈+∞则()()()()()44ln 2424ln 1,1,g x x a x x a x x a x x =-+-+=-+≥' 当1a ≤时, ()g x 在[)1,+∞上单调递增,所以,对任意1x ≥,有()()110g x g a ≥=->,所以 1.a <当1a >时, ()g x 在[)1,a 上单调递减,在(),a +∞上单调递增,所以()()()2min 12ln g x g a a a a ==--,由条件知, ()212ln 0a a a -->,即()12ln 10.a a -->设()()12ln 1,1,h a a a a =-->则()12ln 0,1,h a a a =-'- 所以()h a 在()1,+∞上单调递减,又()10h =, 所以()()10h a h <=与条件矛盾. 综上可知,实数a 的取值范围为(),1.-∞ 【点睛】本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题. 24.(1)172;(2)119,26⎛⎫ ⎪⎝⎭【分析】(1)对()f x 求导,求得切线方程,解得与坐标轴的交点,从而得到三角形面积;(2)通过假设切点,得到切线方程;将问题转化为y a =与3221232y t t =-++有三个不同的交点,通过图像交点求得取值范围. 【详解】(1)由题意得:()2f x x '= ()11f ⇒'=即切线斜率1k =,可得切线方程为516y x -=-,整理得:6610x y --= ∴直线与x 轴交于1,06⎛⎫⎪⎝⎭,与y 轴交于10,6⎛⎫- ⎪⎝⎭∴三角形面积111126672S =⨯⨯= (2)设切点坐标为311,32t t ⎛⎫+⎪⎝⎭,则切线斜率()2k f t t ='= ∴切线方程为:()321132y t t x t ⎛⎫-+=- ⎪⎝⎭又()2,a 在切线上,则()3211232a t t t ⎛⎫-+=- ⎪⎝⎭过点()2,a 可作()f x 三条不同的切线,等价于y a =与3221232y t t =-++有三个不同的交点 设()3221232g t t t =-++,则()224g t t t '=-+ 令()0g t '=,解得10t =,22t =()()02g a g ∴<<可解得:119,26a ⎛⎫∈ ⎪⎝⎭【点睛】本题主要考查利用导数的几何意义求解切线方程的问题,要注意区分“在”某点的切线和“过”某点的切线的不同求法;解题关键在于将过某点作曲线切线条数问题转化为方程根的个数问题、函数图像交点问题来进行求解. 25.(Ⅰ)1y x x=-(Ⅱ)见证明 【分析】(Ⅰ)求导函数,利用曲线y =f (x )在点(2,f (2))处的切线方程为5440x y --=,建立方程,可求得a =1,b =1,从而可得f (x )的解析式;(Ⅱ)设()00,P x y 为曲线f (x )上任一点,求出切线方程为()002011y y x x x ⎛⎫-=+- ⎪⎝⎭,令x =0,可得02y x =-,切线方程与直线y =x 联立,求得交点横坐标为x =2x 0,计算曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积,即可得到结论. 【详解】(Ⅰ)由题意的()2'b f x a x =+,()()5'24432222b f a b f a ⎧=+=⎪⎪⎨⎪⎪=-=⎩解得1a b ==,1y x x =-;(Ⅱ)设()00,P x y 为曲线上任一点, 由211y x '=+知,曲线在点()00,P x y 处的切线方程为()002011y y x x x ⎛⎫-=+- ⎪⎝⎭, 当0x =得002y x =-,令y x =,得02y x x ==, 所以点()00,P x y 处的切线与直线0x =,y x =所围成的三角形的面积为0012222S x x =-⨯=. 【点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为0x x =. 26.(1)93100x y --=;(2)161633a a ><-或 【解析】分析:(1)先求切点坐标,再求导求切线的斜率,再写出切线方程.(2)先求函数f(x)的单调性和极值,再结合图像分析得到a 的取值范围.详解:(1)当4a =-时,()31443f x x x =-+- ()1111,33f A ⎛⎫=-∴- ⎪⎝⎭ ()2'4f x x =-+ ()'13A k f ∴==在点处切线的斜率()1313y x ∴+=-切线方程为 93100x y --=即 (2)()()()2'422f x x x x =-+=-+-,令()'022f x x x =∴==-或()()23f x f a ∴=-=-+极小 ()()23f x f a ==+极大. 当-x x →+∞→∞时函数值无限变大,时函数值无限变小 所以当函数只有一个零点时()()16160033f x a f x a =-+>=+<极小极大或 即161633a a ><-或. 点睛:(1)本题主要考查导数的几何意义和切线方程的求法,考查利用导数求函数的单调性和极值,考查利用导数研究函数的零点问题,意在考查学生对这些知识的掌握水平和分析推理转化能力.(2)解答本题第2问时,不要漏了当x x-∞∞→+时函数值无限变大,时函数值无限变小,这一点对于分析函数的图像很关键.。
(常考题)北师大版高中数学选修1-1第三章《变化率与导数》测试卷(答案解析)(1)

一、选择题1.设a R ∈,函数()x x f x e ae -=-的导函数为'()f x ,且'()f x 是奇函数,则a 为( )A .0B .1C .2D .-12.已知函数()1f x xx=+,若()()1f x f x =,()()()1n n f x f f x +=,则曲线()7y f x =在点()()71,1f 处切线的斜率为( ) A .164-B .149-C .164D .1493.直线:l y kx b =+是曲线()()ln 1f x x =+和曲线()()2ln g x e x =的公切线,则b =( ) A .2B .12C .ln2e D .()ln 2e4.已知:函数()cos f x x x =,其导函数()cos sin f x x x x '=-.若函数()g x 的导函数()sin g x x x '=,且02g π⎛⎫= ⎪⎝⎭,则()g π的值为( )A .-1B .1C .1π-D .1π+5.若函数231()(0)3f x ax x x =->的图象存在与直线20x y -+=平行的切线,则实数a 的取值范围是( ) A .[)1,+∞ B .(],1-∞-C .(][),11,-∞-+∞ D .(](),11,-∞-+∞6.已知函数32()f x x ax bx c =+++的图象关于(0,2)对称,()f x 的图象在点(1,(1))f 处的切线过点(2,7),若图象在点0x =处的切线的倾斜角为α,则cos tan()2παπα⎛⎫+⋅- ⎪⎝⎭的值为( )A .BCD 7.已知点P 在直线y =2x +1上,点Q 在曲线y =x +ln x 上,则P ,Q 两点间距离的最小值为( )A B C .D .8.设a R ∈,函数()xxf x e a e -=+⋅为奇函数,曲线()y f x =的一条切线的切点的纵坐标是0,则该切线方程为( ) A .20x y -=B .20x y +=C .40x y -=D .40x y +=9.已知函数()ln af x x x =+,直线3y x =-+与曲线()y f x =相切,则a =( ) A .1B .2C .3D .410.已知函数sin a x y x =在点M (π,0)处的切线方程为xb y π-+=,则( ) A .a =-1,b =1B .a =-1,b =-1C .a =1,b =1D .a =1,b =-111.若直线2y x =是曲线()y f x =的一条切线,则()f x 的解析式不可能为( ) A .()22xf x e =-B .()2sin f x x =C .()13f x x x=+D .()32f x x x =--12.已知函数()sin f x x =的图象与直线(0)y kx k =>有且仅有三个交点,交点的横坐标的最大值为α,令1sin 2A α=,212B αα+=,则( )A .AB > B .A B <C .A B =D .A 与B 的大小不确定二、填空题13.若()()321111322f x f x x x '=-++,则曲线() y f x =在点()(1,)1f 处的切线方程是______________________.14.在ABC ∆中,已知角A 的正切值为函数2ln y x x=-在1x =处切线的斜率,且2a b ==,则sin B =__________.15.已知函数()f x 的导函数为(x)f ',若32()(1)2f x x f x '=+-,则(1)f '的值为___. 16.设曲线1cosx y sinx +=在点π,12⎛⎫⎪⎝⎭处的切线与直线x ay 10-+=平行,则实数a =______.17.已知函数f (x )=x 4+ax 2-bx ,且f ′(0)=-13,f ′(-1)=-27,则a +b 等于____. 18.已知函数f(x)=e x -mx +1的图像是曲线C ,若曲线C 不存在与直线y =ex 垂直的切线,则实数m 的取值范围是_________.19.已知P 为直线1y x =+上的动点,Q 为函数()ln xf x x=图象上的动点,则PQ 的最小值为______.20.若指数函数x y a =(0a >且1)a ≠与一次函数y x =的图象恰好有两个不同的交点,则实数a 的取值范围是_________.三、解答题21.定义在实数集上的函数2()f x x x =+,31()23g x x x m =-+.(1)求函数()f x 的图象在1x =处的切线方程;(2)若()()f x g x ≥对任意的[]4,4x ∈-恒成立,求实数m 的取值范围. 22.已知函数f (x )=x 3﹣3x 2+a (a ∈R ).(1)若f (x )的图象在(1,f (1))处的切线经过点(0,2),求a 的值;(2)若对任意x 1∈[0,2],都存在x 2∈[2,3]使得f (x 1)+f (x 2)≤2,求实数a 的范围. 23.设函数321()(1)41()3f x ax a x x a =-+++∈R . (Ⅰ)当3a =时,求曲线()y f x =在点()()1,f x 处的切线方程; (Ⅱ)讨论函数()f x 的单调性.24.设函数()()ln xe f x a x x x=--(a 为常数).(1)当1a =时,求曲线()y f x =在1x =处的切线方程;(2)若函数()f x 在()0,1内存在唯一极值点0x x =,求实数a 的取值范围,并判断0x x =是()f x 在()0,1内的极大值点还是极小值点.25.已知函数()sin cos f x x x =-, (1)求()f x 在点,22P f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭处的切线方程; (2)若()2()f x f x '=,其中()f x '是()f x 的导函数,求221sin cos sin 2xx x+-值. 26.已知函数()()ln f x x a x =-()a R ∈.(1)若1a =,求()f x 在1x =处的切线方程;(2)若对于任意的正数x ,()0f x ≥恒成立,求实数a 的值; (3)若函数()f x 存在两个极值点,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】∵函数()xxf x e ae -=-∴()x x f x e ae -'=+ ∵()'f x 是奇函数∴(0)0f '=,即10a +=. ∴1a =- 故选D.点睛:正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数()f x 为奇函数或偶函数必要不充分条件;(2)()()f x f x -=-或()()f x f x -=是定义域上的恒等式.2.C解析:C 【分析】根据题意依次计算得()717xf x x=+,再根据导数的几何意义求解即可. 【详解】解:因为函数()1f x xx=+,若()()1f x f x =,()()()1n n f x f f x +=, 所以()11x f x x =+,()212x f x x =+,()313x f x x =+,…,()717x f x x=+, 所以()()72117f x x '=+,所以()()721116417f '==+. 故()7y f x =在点()()71,1f 处切线的斜率为164. 故选:C. 【点睛】本题考查函数解析式的求解,导数的几何意义,考查运算能力,是中档题.3.C解析:C 【分析】由()f x k '=可求得直线l 与曲线()()ln 1f x x =+的切点的坐标,由()g x k '=可求得直线l 与曲线()()2ln g x e x =的切点坐标,再将两个切点坐标代入直线l 的方程,可得出关于k 、b 的方程组,进而可求得实数b 的值. 【详解】设直线l 与曲线()()ln 1f x x =+相切于点()11,A x y ,直线l 与曲线()()2ln g x e x =相切于点()22,B x y ,()()ln 1f x x =+,则()11f x x '=+,由()1111f x k x '==+,可得11k x k-=,则()()111ln 1ln y f x x k ==+=-,即点1,ln k A k k -⎛⎫-⎪⎝⎭, 将点A 的坐标代入直线l 的方程可得1ln kk k b k--=⋅+,可得ln 1b k k =--,① ()()2ln 2ln g x e x x ==+,则()1g x x'=,由()221g x k x '==,可得21x k =, ()222ln y g x k ==-,即点1,2ln B k k ⎛⎫- ⎪⎝⎭,将点B 的坐标代入直线l 的方程可得12ln 1k k b b k-=⋅+=+,1ln b k ∴=-,② 联立①②可得2k =,1ln 2ln 2e b =-=. 故选:C. 【点睛】本题考查利用两曲线的公切线求参数,要结合切点以及切线的斜率列方程组求解,考查计算能力,属于中等题.4.C解析:C 【分析】求出函数()g x 的解析式,计算()g π的值即可. 【详解】由题意设()sin cos g x x x x c =-+,则()cos cos sin sin g x x x x x x x '=-+=,符合题意 故102g c π⎛⎫=+=⎪⎝⎭,解得:1c =-, 故()sin cos 1g x x x x =--,()sin cos 11g πππππ=--=-, 故选:C . 【点睛】本题考查了导数的运算法则以及导数 的计算,属于中档题.5.A解析:A 【分析】求出导函数()'f x ,由()1f x '=有正数解求解即可. 【详解】2()2f x ax x '=-,由题意2()21f x ax x '=-=有正数解,∵0x >,∴2112x a x +=≥=,当且仅当1x =时等号成立, ∴a 的取值范围是[1,)+∞.故选:A . 【点睛】本题考查导数的几何意义,考查二次方程的分布问题,掌握导数的几何意义是解题基础.6.B解析:B 【分析】首先根据函数()f x 的图象关于点(0,2)对称得到0a =,2c =,即3()2f x x bx =++.利用导数的切线过点(2,7)得到12b =,再求函数()f x 在0x =处的切线倾斜角的正切值和正弦值,代入式子cos()tan()2παπα+-计算即可.【详解】因为函数()f x 的图象关于点(0,2)对称,所以()()4f x f x +-=. 即:32324x ax bx c x ax bx c +++-+-+=,解得0a =,2c =.所以3()2f x x bx =++,(1)3f b =+,切点为(1,3)b +.2()3f x x b '=+,(1)3k f b '==+.切线为:(3)(3)(1)y b b x -+=+-.因为切线过点(2,7),所以7(3)(3)(21)b b -+=+-,解得12b =. 所以31()22f x x x =++,21()32f x x '=+. 1(0)tan 2f α'==,所以sin α=.所以51cos()tan()sin tan 25210παπααα+-==⨯=. 故选:B【点睛】本题主要考查导数的切线问题,同时考查三角函数的诱导公式,属于中档题.7.B解析:B 【分析】易得当在Q 点处的切线与21y x =+平行,且过Q 作21y x =+的垂线垂足为P 时,P Q 的距离最小,再利用公式求距离即可. 【详解】由题可知, 当在Q 点处的切线与21y x =+平行,且过Q 作21y x =+的垂线垂足为P 时,P Q 的距离最小.此时ln y x x =+的导函数1'1y x=+.设()00,Q x y ,则001121x x +=⇒=,000ln 1y x x =+=,即()1,1Q . 此时,P Q 的距离最小值为()1,1Q 到直线21y x =+即210x y -+=的距离d ===. 故选:B 【点睛】本题主要考查了曲线上与直线上点的最值问题,需要利用导数的几何意义进行求解,属于基础题.8.A解析:A 【分析】根据奇函数的定义先求得1a =-的值,再利用导数的几何意义求得切线方程. 【详解】因为函数()xxf x e a e -=+⋅是奇函数,所以()()f x f x -=-对一切x ∈R 恒成立,所以x x x x e a e e a e --+⋅=--⋅对一切x ∈R 恒成立, 所以()()10xxe a e-++=对一切x ∈R 恒成立,所以10a +=,解得1a =-,所以()xxf x e e -=-,所以()'xxf x e e -=+.因为曲线()y f x =的一条切线的切点的纵坐标是0, 所以令()0xxf x e e-=-=,解得0x =.所以曲线()y f x =的这条切线的切点的坐标为()0,0, 切线的斜率为()'0002fe e -=+=.故曲线()y f x =的这条切线方程为()020y x -=-,即20x y -=. 故选:A. 【点睛】本题考查函数的奇偶性、导数的几何意义,考查函数与方程思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意涉及切线问题时,要先明确切点坐标.9.B解析:B 【分析】设切点为()00,x y ,利用导数的几何意义与()00,x y 在()ln af x x x=+与3y x =-+上联立求解即可. 【详解】设切点为()00,x y ,则()21'af x x x =-,又直线3y x =-+与曲线()y f x =相切故20000000113ln a x x y x a y x x ⎧-=-⎪⎪⎪=-+⎨⎪⎪=+⎪⎩,消去0y 有0000003ln 3ln a a x x x x x x -+=+⇒=-+-,代入第一个式子有 ()0000013ln 2ln 20x x x x x --+-=-⇒+-=.易得01x =.代入20011ax x -=-有2a =. 故选:B 【点睛】本题主要考查了导数的几何意义的运用,需要根据在某点处导函数的值等于在该点处切线的斜率以及切点在切线方程与函数式上联立求解即可.属于中等题型.10.C解析:C 【分析】先对函数求导,求得()af ππ'=-,(0)0f =,再由点斜式求得切线方程.【详解】 由题意可知2cos sin ax x a xy x -'=,故在点(π0)M ,处的切线方程为 1(π)ππa y x x -=-=-b +,11a b =⎧⎨=⎩,则,故选C . 【点睛】本题考查导数的几何意义,求切线的方程即函数()f x 在()()00,x f x 处的切线方程为()()()000y f x f x x x '-=-. 11.C解析:C 【分析】由导数为2,求出斜率为2的切线的切点坐标,此切点在直线2y x =上,2y x =就是切线,不在,就不是切线. 【详解】若()22x f x e =-,则由()'22xf x e ==,得0x =,(0)0f =,点()0,0在直线2y x=上,则直线2y x =与曲线22xy e =-相切;若()2sin f x x =,则由()'2cos 2f x x ==,得()2x k k =π∈Z ,()20f k π=,则直线2y x =与曲线2sin y x =相切; 若()13f x x x=+,则由()2'132f x x -==,得1x =±,(1)4,(1)4f f =-=-,点()1,4,()1,4--都不在直线2y x =上,所以直线2y x =与曲线13y x x=+不相切; 若()32f x x x =--,则由()2'312f x x =-=,得1x =±,其中(1)2f -=-,()1,2--在直线2y x =上,所以直线2y x =与曲线32y x x =--相切. 故选:C. 【点睛】本题考查导数的几何意义,考查逻辑推理与数学运算的核心素养.12.C解析:C 【分析】作出函数()sin f x x =的图象与直线(0)y kx k =>,由图可知,当直线(0)y kx k =>与 函数()sin f x x =在[],2ππ上的图象相切时,刚好有三个交点,根据导数的几何意义即可得到cos k α=-,以及sin k αα=-,得tan αα=,化简B ,即可得出答案. 【详解】作出函数()sin f x x =的图象与直线(0)y kx k =>,如图所示:当直线(0)y kx k =>与函数()sin f x x =在[],2ππ上的图象相切时,刚好有三个交点. 所以,cos k α=-,sin k αα=-即得tan αα=,222222sin 111tan sin cos 1cos sin 22tan 2sin cos sin 22cos B ααααααααααααα++++=====,故A B =. 故选:C .【点睛】本题主要考查三角函数恒等变换,以及导数几何意义的应用,意在考查学生运用数形结合思想的能力和数学运算能力,属于中档题.二、填空题13.【分析】求得函数的导数令求得得出函数的解析式再求得结合直线的点斜式方程即可求解【详解】由题意函数可得令可得解得所以可得所以曲线在点处的切线方程是即故答案为:【点睛】本题主要考查了利用导数的几何意义求 解析:3310x y -+=【分析】求得函数的导数()()211f x f x x ''=-+,令1x =,求得()11f '=,得出函数的解析式,再求得()413f =,结合直线的点斜式方程,即可求解. 【详解】由题意,函数()()321111322f x f x x x '=-++,可得()()211f x f x x ''=-+, 令1x =,可得()()21111f f =-'+',解得()11f '=, 所以()32111322f x x x x =-++,可得()413f =, 所以曲线()y f x =在点()(1,)1f 处的切线方程是413y x -=-,即3310x y -+=. 故答案为:3310x y -+=. 【点睛】本题主要考查了利用导数的几何意义求解曲线在某点处的切线方程,其中解答中熟记导数的几何意义,以及导数的运算公式是解答的关键,着重考查推理与运算能力.14.【解析】∵∴则∵为三角形内角∴由正弦定理得:得故答案为解析:35【解析】 ∵2ln y x x =-,∴22122x y x x x='+=+ ,则1tan |3x A k y ='===,∵A 为三角形内角,tan 0A >,∴02A π<<,sin A =,2sin B =,得3sin 5B =,故答案为35.15.【解析】【分析】求函数的导函数令即可求出的值【详解】因为令则所以【点睛】本题主要考查了函数的导数及导函数求值属于中档题 解析:3-【分析】求函数的导函数,令1x =即可求出()1f '的值. 【详解】因为 2()32(1)f x x f x ''=+令1x =则(1)32(1)f f ''=+ 所以(1)3f '=- 【点睛】本题主要考查了函数的导数,及导函数求值,属于中档题.16.【解析】【分析】对函数求导求得得到a 的方程求解即可【详解】切线与直线平行斜率为又所以切线斜率所以的斜率为即解得故答案为【点睛】本题考查根据切线的斜率求参数熟记基本初等函数的求导公式准确计算是关键是基 解析:1-【解析】 【分析】 对函数1cosx y sinx +=求导,求得πf 2⎛⎫⎪⎝⎭',得到a 的方程求解即可. 【详解】切线与直线x ay 10-+=平行,斜率为1a, 又21cosxy sin x--=',所以切线斜率πk f'12⎛⎫==- ⎪⎝⎭,所以x ay 10-+=的斜率为1-, 即11a=-,解得a 1=-. 故答案为1-. 【点睛】本题考查根据切线的斜率求参数,熟记基本初等函数的求导公式,准确计算是关键,是基础题.17.18【分析】计算导函数结合题意建立方程计算ab 即可【详解】计算导函数得到结合代入建立等式得到解得故【点睛】本道题考查了导函数计算方法关键抓住导函数的计算建立方程计算参数即可难度中等解析:18 【分析】计算导函数,结合题意,建立方程,计算a,b ,即可.计算导函数得到()3'42f x x ax b =+-,结合()()'013,'127f f =--=-,代入,建立等式,得到134227b a b -=-⎧⎨---=-⎩,解得135b a =⎧⎨=⎩,故18a b +=【点睛】本道题考查了导函数计算方法,关键抓住导函数的计算,建立方程,计算参数,即可,难度中等.18.【分析】先求存在与直线垂直的切线即切线斜率为根据切线的斜率求再取的子集即可【详解】若曲线上存在与直线垂直的切线则对任意的使故所求的取值范围是【点睛】本题考查曲线在某个点处的导数与曲线在这个点处切线斜解析:1(,]e-∞ 【分析】先求存在与直线y ex =垂直的切线,即切线斜率为-,根据切线的斜率求m ,再取m 的子集即可. 【详解】()e x f x m '=-,若曲线C 上存在与直线y ex =垂直的切线,则对任意的x ,使e x m -=- 1e ,e x m =+ 1e > 1e ,故所求m 的取值范围是1,e ⎛⎤-∞ ⎥⎝⎦.【点睛】本题考查曲线在某个点处的导数与曲线在这个点处切线斜率的关系.求解中运用了正难则反的补集思想,这是本题解题的突破口.19.【分析】先求与直线平行且与相切的切线切点再根据点到直线距离公式求结果【详解】由题意的最小值为与直线平行且与相切的切线切点到直线的距离设切点为因为单调递增因此的最小值为故答案为:【点睛】本题考查导数几【分析】先求与直线1y x =+平行且与()ln xf x x=相切的切线切点,再根据点到直线距离公式求结果. 【详解】由题意,PQ 的最小值为与直线1y x =+平行且与()ln xf x x=相切的切线切点到直线1y x =+的距离,设切点为00(,)x y因为()22000221ln 1ln 1ln 1ln x x f x x x y x x x x --'=∴=∴+==+单调递增,01x ∴=因此PQln1|11|-+=【点睛】本题考查导数几何意义、点到直线距离公式,考查数形结合思想方法,属中档题.20.【分析】根据题意可判断利用函数的导数转化求解的最大值从而求出的取值范围【详解】由题意当时函数且的图象与一次函数的图象没有交点设当时指数函数且的图象与一次函数的图象恰好有两个不同的交点则设且与相切于则 解析:1(1,)ee【分析】根据题意可判断1a >,利用函数的导数,转化求解a 的最大值,从而求出a 的取值范围. 【详解】由题意,当0x ≤时,函数(0xy a a =>且)1a ≠的图象与一次函数y x =的图象没有交点,设当0x >时,指数函数(0x y a a =>且)1a ≠的图象与一次函数y x =的图象恰好有两个不同的交点,则1a >, 设(0xy aa =>且)1a ≠与y x =相切于(),A m m ,则m a m =,ln x y a a '=,所以,ln 1m a a =,解得m e =,此时1e a e =.即(0x y a a =>且)1a ≠与y x =恰好有两个不同的交点时实数a 的取值范围为11,e e ⎛⎫ ⎪⎝⎭. 故答案为:11,ee ⎛⎫ ⎪⎝⎭. 【点睛】本题考查了指数函数的性质,函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,属于中档题.三、解答题21.(1)310x y --=;(2)53m ≤-. 【解析】试题分析:(1)由2()f x x x =+⇒'()21f x x =+,(1)2f =⇒'(1)3f =⇒310x y --=;(2)化简321()33h x x x m x =-+-,原命题等价于max ()0h x ≤,再利用导数工具可max 5()03h x m =+≤⇒53m ≤-. 试题(1)∵2()f x x x =+,∴'()21f x x =+,(1)2f =,∴'(1)3f =,∴所求切线方程为23(1)y x -=-,即310x y --=. (2)令323211()()()2333h x g x f x x x m x x x x m x =-=-+--=-+-, ∴2'()23h x x x =--,当41x -<<-时,'()0h x >;当13x时,'()0h x <;当34x <<时,'()0h x >,要使()()f x g x ≥恒成立,即max ()0h x ≤, 由上知()h x 的最大值在1x =-或4x =取得,而5(1)3h m -=+,20(4)3h m =-, ∵52033m m +>-,∴503m +≤,即53m ≤-.考点:1、导数的几何意义;2、直线方程;3、函数与不等式.【方法点晴】本题考查导数的几何意义、直线方程、函数与不等式,涉及分类讨论思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 利用导数处理不等式问题.在解答题中主要体现为不等式的证明与不等式的恒成立问题.常规的解决方法是首先等价转化不等式,然后构造新函数,利用导数研究新函数的单调性和最值来解决,当然要注意分类讨论思想的应用. 22.(1)a =1;(2)a ≤3 【分析】(1)出导数,求出切线的斜率和切点,再由两点斜率公式,即可得到a ;(2)运用导数判断()f x 在[0,2],在[2,3]的单调性,求出最值,由题意得,()()12max min 2f x f x +≤得到不等式,解出即可. 【详解】(1)2()36f x x x '=-,(1)3f '∴=-,又(1)2f a =-,∴切点坐标(1,2)a -, 又∵切线经过点(0,2), ∴由两点的斜率公式,得431a -=-, 解得1a =;(2)2()363(2)f x x x x x '=-=-,当[0,2]x ∈时,()0,()f x f x '≤单调递减; 当[2,3]x ∈时,()0f x '≥,()f x 单调递增,1[0,2]x ∈,()1f x ∴的最大值为(0)f a =,又2[2,3]x ∈,()2f x ∴的最小值为(2)4f a =-,对任意1[0,2]x ∈,都存在2[2,3]x ∈使得()()122f x f x +≤,()()12max min 2f x f x +≤,即有42a a +-≤, 解得3a ≤. 【点睛】本题主要考查的是导数的运用:求切线方程和求单调区间,最值,考查恒成立和存在思想,注意转化为求最值,考查运算能力,属于中档题和易错题. 23.(Ⅰ)30x y +-=;(Ⅱ)讨论见解析 【分析】(Ⅰ)利用导数的几何意义求解即可;(Ⅱ)分类讨论参数a 的范围,利用导数证明单调性即可. 【详解】解:(Ⅰ)当3a =时,32()441f x x x x =-++所以2()384f x x x '=-+.所以(1)2,(1)1f f '==-.所以曲线()y f x =在点(1,(1))f 处的切线方程为30x y +-=. (Ⅱ)因为321()(1)413f x ax a x x =-+++, 所以2()2(1)4(2)(2)f x ax a x ax x '=-++=--.(1)当0a =时,因为()2(2)f x x '=--由()0f x '>得2x <, 由()0f x '<得2x >,所以()f x 在区间(,2)-∞内单调递增,在区间(2,)+∞内单调递减. (2)当0a ≠时,令()0f x '=,得1222,x x a==. ① 当0a <时, 由()0f x '>,得22x a<<; 由()0f x '<,得2x a<或2x >. 所以()f x 在区间2,2a ⎛⎫⎪⎝⎭内单调递增,在区间2,a ⎛⎫-∞ ⎪⎝⎭和(2,)+∞内单调递减.②当01a <<时,由()0f x '>得2x <或2x a>; 由()0f x '<得22x a<<. 所以()f x 在区间(,2)-∞和2,a ⎛⎫+∞⎪⎝⎭内单调递增,在区间22,a ⎛⎫ ⎪⎝⎭内单调递减. ③当1a =时,因为2()(2)0f x x '=- 所以()f x 在区间(,)-∞+∞内单调递增.④当1a >时,由()0f x '>得2x a<或2x >; 由()0f x '<得22x a<<. 所以()f x 在区间2,a ⎛⎫-∞ ⎪⎝⎭和(2,)+∞内单调递增,在区间2,2a ⎛⎫⎪⎝⎭内单调递减. 综上可知,当0a =时,()f x 在区间(,2)-∞内单调递增,在区间(2,)+∞内单调递减; 当0a <时,()f x 在区间2,2a ⎛⎫⎪⎝⎭内单调递增,在区间2,a ⎛⎫-∞ ⎪⎝⎭和(2,)+∞内单调递减;当01a <<时,()f x 在区间(,2)-∞和2,a ⎛⎫+∞ ⎪⎝⎭内单调递增,在区间22,a ⎛⎫ ⎪⎝⎭内单调递减;当1a =时,()f x 在区间(,)-∞+∞内单调递增; 当1a >时,()f x 在区间2,a ⎛⎫-∞ ⎪⎝⎭和(2,)+∞内单调递增,在区间2,2a ⎛⎫⎪⎝⎭内单调递减. 【点睛】本题主要考查了导数的几何意义以及利用利用导数证明含参函数的单调性,属于中档题. 24.(1) (1)y e =- (2) (),a e ∈+∞,且0x x =为函数()f x 的极小值点. 【分析】(1)先求出函数的导函数()()()21110x e x f x x x x⋅-'=-+>,再求出切线的斜率(1)f ',再由直线的点斜式方程求解即可;(2)函数()f x 在()0,1内存在唯一极值点等价于方程0x e ax -=在()0,1内存在唯一解,再构造函数()(),0,1xe g x x x =∈,求其值域,则可得a 的范围,再利用导数确定0x x =是极大值点或者极小值点.【详解】(1)当1a =时,()ln x e f x x x x=-+,()()()21110x e x f x x x x ⋅-'=-+>,所求切线的斜率()01f '=,又(1)1f e =-.所以曲线()y f x =在1x =处的切线方程为:(1)y e =-.(2)()()()()221111xx x e ax e x f x a x x x --⋅-⎛⎫'=--= ⎪⎝⎭, 又()0,1x ∈,则要使得()f x 在()0,1内存在唯一极值点,则()()()210x x e ax f x x --'==在()0,1存在唯一变号零点,即方程0xe ax -=在()0,1内存在唯一解,即e xy x=与y a=在()0,1范围内有唯一交点,设函数()(),0,1x e g x x x =∈,则()()210x x e g x x-'=<,()g x ∴在()0,1单调递减,又()()1g x g e >=;当0x →时,()g x →+∞(),a e ∴∈+∞时,e xy x=与y a =在()0,1范围内有唯一交点,不妨设交点横坐标为0x ,当()00,x x ∈时,()x e g x a x => ,0xe ax ->,则()()()210x x e ax f x x--'=<,()f x 在()00,x 为减函数;当()0,1x x ∈时,0xeax -<,则()()()210x x e ax f x x--'=>,()f x 在()0,1x 为增函数,即0x x =为函数()f x 的极小值点,综上所述:(),a e ∈+∞,且0x x =为函数()f x 的极小值点. 【点睛】本题考查了利用导数求曲线在某点处的切线方程,主要考查了利用导数求函数的单调区间及极值,重点考查了导数的应用,属中档题. 25.(1)12y x π-=-即12y x π=+-;(2)195-. 【分析】(1)先求导数,代入切点得到斜率,在计算切线方程.(2)根据条件先计算出tan 3x =,在利用齐次式上下同时除以2cos x 得到答案. 【详解】解:(1)12f π⎛⎫= ⎪⎝⎭因为()cos sin f x x x =+' 切线斜率12k f π'⎛⎫== ⎪⎝⎭所以在点,22P f ππ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭处的切线方程为:12y x π-=-即12y x π=+-(2)因为()cos sin f x x x =+',()()2f x f x '= 所以()cos sin 2sin cos x x x x +=- 解得tan 3x =所以22222221sin 1sin 2sin cos cos sin2cos 2sin cos cos 2sin cos x x x x x x x x x x x x +++==--- 22tan 11912tan 5x x +==--【点睛】本题考查了切线的计算,三角恒等变化,利用齐次式上下同时除以2cos x 是解题的关键. 26.(1)切线方程为0y =(2)1a =(3)2e 0a --<< 【分析】(1)利用导数的几何意义得到切线斜率,利用点斜式可得切线方程; (2)对ln x 分类讨论,简化不等式,即可得到实数a 的值; (3)函数()f x 存在两个极值点等价于()ln 1af x x x-'=+存在两个不相等的零点.设()ln 1ag x x x=-+,研究函数的单调性与极值即可. 【详解】(1)因为()()ln f x x a x =- ()a R ∈,所以当1a =时,()()1ln f x x x =-, 则()1ln 1f x x x+'=-, 当1x =时,()()10,10f f '==, 所以()f x 在1x =处的切线方程为0y =; (2)因为对于任意的正数x ,()0f x ≥恒成立, 所以当ln 0x =时,即1x =时,()0f x =,a R ∈; 当ln 0x >时,即1x >时,x a ≥恒成立,所以1a ≤; 当ln 0x ≤时,即1x <时,x a ≤恒成立,所以1a ≥, 综上可知,对于任意的正数x ,()0f x ≥恒成立,1a =. (3)因为函数()f x 存在两个极值点, 所以()ln 1af x x x-'=+存在两个不相等的零点. 设()ln 1a g x x x =-+,则()221a x a g x x x x='+=+. 当0a ≥时,()0g x '>,所以()g x 单调递增,至多一个零点.当0a <时,因为()0x a ∈-,时,()0g x '<,()g x 单调递减,()+x a ,∈-∞时,()0g x '>,()g x 单调递增,所以x a =-时,()()()min 2g x g a ln a =-=-+.因为()g x 存在两个不相等的零点,所以()20ln a -+<,解得2e 0a --<<. 因为2e 0a --<<,所以21e a a->>-. 因为211ln 10g a a a ⎛⎫⎛⎫-=-++> ⎪ ⎪⎝⎭⎝⎭,所以在()a -+∞,上存在一个零点. 因为2e 0a --<<,所以2a a <-.又因为()()2211ln 12ln 1g a a a a a=-+=-++-, 设t a =-,则2112ln 1(0)e y t t t =++<<,因为2210t y t-'=<, 所以2112ln 1(0)e y t t t =++<<单调递减,所以22212ln e 1e 30ey >++=->, 所以()221ln 10g aaa=-+>,所以在()0a ,-上存在一个零点. 综上可知:2e 0a --<<. 【点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.。
(易错题)高中数学选修1-1第三章《变化率与导数》测试题(含答案解析)(1)

一、选择题1.设a R ∈,函数()x x f x e ae -=-的导函数为'()f x ,且'()f x 是奇函数,则a 为( )A .0B .1C .2D .-12.已知函数()3213f x x bx =+在()()1,1A f 点处的切线与直线210x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬'⎪⎪⎩⎭的前n 项和为n S ,则2020S 的值为( ) A .20192020B .20192021C .20202021D .202120223.曲线e cos ax y x 在0x =处的切线与直线20x y +=垂直,则a =( )A .2-B .1-C .1D .24.若关于x 的方程|x 2﹣4x |﹣kx ﹣k =0有四个不同的实数根,则实数k 的取值范围为( )A .(0,6﹣25)B .(﹣∞,6﹣25)C .(0,6+25)D .(6﹣25,6+25)5.设函数()4cos f x x x =--的导函数为()g x ,则()g x 图象大致是( )A .B .C .D .6.函数()()23ln 0,f x x x bx a b a R =+-+>∈的图像在点()(),b f b 处的切线斜率的最小值是( ) A .3B .23C .2D .227.若过点(1,)P n 可作两条不同直线与曲线()2212y x x x -+=≤≤相切,则n ( ) A .既有最大值又有最小值 B .有最大值无最小值 C .有最小值无最大值 D .既无最大值也无最小值8.已知函数,若方程()()F x f x ax =-有4个零点,则 a 的可能的值为( ) A .14B .1C .12D .1e9.已知直线y =3x ﹣1与曲线y =ax +lnx 相切,则实数a 的值为( ) A .1B .2C .3D .410.若直线y x =与曲线x m y e +=(m R ∈,e 为自然对数的底数)相切,则m =( ) A .1B .2C .-1D .-211.设函数()f x 在R 上可导,()()2121f x x f x '=-+,则()22f a a -+与()1f 的大小关系是( )A .()()221f a a f -+>B .()()221f a a f -++C .()()221f aa f -+<D .不确定12.已知函数()f x 在R 上可导,且2()=2(1)f x x xf +',则函数()f x 的解析式为( ) A .2()4f x x x =- B .2()4f x x x =+ C .2()2f x x x =-D .2()2f x x x =+二、填空题13.若曲线C 与直线l 满足:①l 与C 在某点P 处相切;②曲线C 在P 附近位于直线l 的异侧,则称曲线C 与直线l “切过”.下列曲线和直线中,“切过”的有________.(填写相应的编号)①3y x =与0y = ②2(2)y x =+与2x =- ③x y e =与1y x =+ ④sin y x =与y x = ⑤tan y x =与y x =14.设曲线1cosx y sinx += 在点π,12⎛⎫⎪⎝⎭处的切线与直线x ay 10-+=平行,则实数a =______.15.函数()22,1,,1x x ax x f x e x a x ⎧-<-⎪=⎨--≥-⎪⎩有3个不同零点,则实数a 的取值范围____16.已知函数()([1,))x xf x ax x e=-∈+∞,其图象上存在两点M ,N ,在这两点处的切线都与x 轴平行,则实数a 的取值范围是____.17.函数2()ln f x x x =在点()1,0处的切线方程为___.18.对于三次函数32()f x ax bx cx d =+++(,,,,0)a b c d R a ∈≠有如下定义:设()'f x 是函数()f x 的导函数,()''fx 是函数()'f x 的导函数,若方程()''0f x =有实数解m ,则称点()(),m f m 为函数()y f x =的“拐点”.若点()1,3-是函数32()5(,)g x x ax bx a b R =-+-∈的“拐点”,也是函数()g x 图像上的点,则函数()211sin cos 32h x a x b x =+的最大值是__________.19.已知函数(),()xf x eg x kx ==:① 函数()f x 的单调递减区间为(,0)-∞;② 若函数()()()F x f x g x =-有且只有一个零点,则1k =±;③ 若(1,)(,)k e e ∈+∞,则b R ∃∈,使得函数()0f x b -=恰有2个零点1x ,2x ,()0g x b -=恰有一个零点3x ,且123x x x ≠≠,1231x x x ++=.其中,所有正确结论的序号是_______.20.已知a b ,为正实数,直线y x a =-与曲线1ln()y x b y x b '⎛⎫=+=⎪+⎝⎭相切于点()00x y ,,则11ab+的最小值是______. 三、解答题21.已知函数()(1)ln f x b x x =--与2()(1)g x a x =-在公共点(1,0)处有共同的切线. (1)求实数b 的值;(2)设()()()h x f x g x =-,若存在(1,2)k ∈,使得当(0,]x k ∈时,()h x 的值域是[(),)h k +∞,求实数a 的取值范围.22.已知函数()(ln )xe f x a x x x=+-,a R ∈.(1)求曲线()y f x =在点()1(1)f ,处的切线方程; (2)若()0f x >在[1,)+∞上恒成立,求a 的取值范围.23.记()()f x g x '',分别为函数()()f x g x ,的导函数.若存在0x R ∈,满足()()00f x g x ''=,且()()00f x g x =,则称0x 为函数()f x 与()g x 的一个“公共切点”.(1)若()23f x x x =+-,()3221g x x x x =-++,求()f x 与()g x 的“公共切点”;(2)若函数()21f x ax =-与()ln g x x =存在“公共切点”,求实数a 的值;24.已知顶点为原点的抛物线C 的焦点与椭圆2221y x a+=的上焦点重合,且过点.(1)求椭圆的标准方程;(2)若抛物线上不同两点A ,B 作抛物线的切线,两切线的斜率121k k =-,若记AB 的中点的横坐标为m ,AB 的弦长()g m ,并求()g m 的取值范围. 25.已知函数()ln 1x af x x x=-- (I )若()f x 在2x =处的切线的斜率为1ln2-,求a 的值; (Ⅱ)1x ∀>,不等式()11f x x >--恒成立,求整数a 的最大值. 26.已知函数()()ln f x x a x =+.(1)当0a =时,求()f x 在1x =处的切线方程; (2)当0a >时,若()f x 有极小值,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】∵函数()xxf x e ae -=-∴()x x f x e ae -'=+ ∵()'f x 是奇函数 ∴(0)0f '=,即10a +=. ∴1a =- 故选D.点睛:正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数()f x 为奇函数或偶函数必要不充分条件;(2)()()f x f x -=-或()()f x f x -=是定义域上的恒等式.2.C解析:C 【分析】由(1)2f '=得出2()f x x x '=+,进而得出111()1f n n n =-'+,利用裂项相消求和法得出答案. 【详解】由题意可得(1)2f '=,()22f x x bx '=+,则122b +=,12b =2()f x x x '∴=+,1111()(1)1f n n n n n ∴==-'++ 202011111112020112232020202120212021S ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故选:C 【点睛】本题主要考查了导数的几何意义以及裂项相消求和法的应用,属于中档题.3.D解析:D 【解析】因为cos (sin )ax ax y ae x e x =+-',所以由导数的几何意义可得切线的斜率0cos0k ae a ==,由题设可得1122a a -=-⇒=,应选答案D .4.A解析:A 【分析】将方程根有四个根,转化为函数图象有四个交点,利用导数的几何意义,数形结合即可求得结果. 【详解】关于x 的方程|x 2﹣4x |﹣kx ﹣k =0有四个不同的实数根, 即方程()241x x k x -=+有四个不同的实数根,不妨设()()()24,1f x x x g x k x =-=+,则只需()(),f x g x 有四个交点即可, 又()g x 表示斜率为k ,且过点()1,0-的直线. 画出()(),f x g x 的图象如下所示:数形结合可知,当直线()1y k x =+与()f x 在0x >时相切为临界情况. 设切点为(),m n ,显然()0,2m ∈ 又相切时,24,24y x x y x '=-+=-+,故可得242411n m mk m m m -+==-+=++,解得51m =, 则相切时斜率625k =-故要满足题意,只需(0,6k ∈-. 故选:A . 【点睛】本题考查由方程根的个数求参数范围,涉及导数的几何意义,属综合中档题.5.D解析:D 【分析】求出导函数()g x ,然后研究()g x 的性质,用排除法确定正确选项. 【详解】因为()4cos f x x x =--,所以()3'sin 4f x x x =-,所以()3sin 4g x x x =-,所以函数()g x 是奇函数,其图象关于原点成中心对称,而函数()g x 为偶函数,其图象关于y 轴对称,所以选项B ,C 错误;又因为其图象过原点O ,所以选项A 错误. 故选:D. 【点睛】本题考查导数的运算,考查由函数解析式选择函数图象,解题时可根据解析式确定函数的性质,利用排除法得出正确选项.6.B解析:B 【分析】先求导,再将x b =代入,即()k f b '=,进而根据均值不等式求得最小值. 【详解】由题,()23232x bx f x x b x x-+'=+-=, 则函数()f x 的图像在点()(),b f b 处的切线斜率为()22233b b k f b b b b-+'===+,设()3g b b b =+≥当且仅当3b b=,即b =,所以()g b 的最小值为即min k = 故选:B 【点睛】本题考查利用导数求函数图像某点处的切线斜率,考查利用均值不等式求最值.7.C解析:C 【分析】数形结合分析临界条件再判断即可. 【详解】对()2212y x x x -+=≤≤求导有'22y x =+()12x -≤≤,当2x =时'6y =,此时切线方程为()()22226264y x y x -+⨯=-⇒=-,此时642n =-=.此时刚好能够作出两条切线,为临界条件,画出图像有:又当1x =时 3y =为另一临界条件,故[)2,3n ∈.故n 有最小值无最大值. 故选:C 【点睛】本题主要考查了导数的几何意义的运用,需要数形结合分析临界条件进行求解.属于中档题.8.A解析:A 【分析】求出y Inx =在区间[]1,e 上的过坐标原点的切线的斜率,只需a 小于该斜率,且为正数即可. 【详解】根据函数()f x 的解析式,可知,函数的图像如下:要使得方程()()F x f x ax =-有4个零点,只需a 小于y Inx =在区间[]1,e 上的过坐标原点的切线的斜率即可.1y x'=,设切点为()00x ,y ,故可得切线方程为: ()0001y Inx x x x -=-,又其过()0,0 代入解得0x e =故此时切线的斜率为011x e= 故10,?a e ⎛⎫∈ ⎪⎝⎭故选:A. 【点睛】本题考查函数的零点问题,涉及数形结合,利用导数求切点,属函数综合题.9.B解析:B 【分析】对函数求导,设切点()00,x y ,表示出切线方程,与已知切线相同,从而得到关于a 和0x 的方程组,解出a 的值. 【详解】 设切点()00,x y ,因为ln y ax x =+,所以1y a x'=+ 所以切线斜率01k a x =+则切线为()()00001ln y ax x a x x x ⎛⎫-+=+- ⎪⎝⎭整理得001ln 1y a x x x ⎛⎫=++- ⎪⎝⎭又因为切线方程为31y x =-所以得0013ln 11a x x ⎧+=⎪⎨⎪-=-⎩,解得012x a =⎧⎨=⎩故选B 项. 【点睛】本题考查利用导数的几何意义,未知切点表示切线方程,属于中档题.10.C解析:C 【分析】 设切点坐标为()00,x mx e+,求得切线的方程()000x mx m y e e x x ++-=-,根据切线方程为y x =,分别代入(0,0),(1,1)点,即可求解.【详解】 设切点坐标为()00,x mx e +,由函数x my e+=,则x my e+'=,所以切线的斜率为0x m k e +=,所以切线方程为()000x mx m y ee x x ++-=-,又因为切线为y x =过(0,0),代入切线方程,解得01x =, 即切线方程为()111m m y ee x ++-=-将(1,1)代入切线方程,可得11m e +=,解得1m =-, 故选C . 【点睛】本题主要考查了利用导数的几何意义求解参数问题,其中解答中熟记导数的几何意义求得切线的方程,合理应用切线方程求解是解答的关键,着重考查了推理与运算能力,属于基础题.11.A解析:A 【分析】对()f x 求导,令1x =可求出()12f '=,从而可得到()2221f x x x =-+,然后利用二次函数的单调性可比较出()22f a a -+与()1f 的大小关系.【详解】由题意,()()212f x f x ''=-,则()()1212f f ''=-,可得()12f '=,则()2221f x x x =-+,由二次函数性质可知,函数()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,因为2217121242a a a ⎛⎫-+=-+>> ⎪⎝⎭,所以()()221f a a f -+>,故答案为A.【点睛】本题考查了导数的计算,考查了函数单调性的应用,考查了学生的计算能力,属于中档题.12.A解析:A 【分析】先对函数()f x 求导,然后将1x =代入导函数中,可求出(1)2f '=-,从而得到()f x 的解析式. 【详解】由题意,()22(1)f x x f ''=+,则(1)22(1)f f ''=+,解得(1)2f '=-,故2()4f x x x =-.故答案为A. 【点睛】本题考查了函数解析式的求法,考查了函数的导数的求法,属于基础题.二、填空题13.①④⑤【分析】理解新定义的意义借助导数的几何意义逐一进行判断推理即可得到答案【详解】对于①所以是曲线在点处的切线画图可知曲线在点附近位于直线的两侧①正确;对于②因为所以不是曲线:在点处的切线②错误;解析:①④⑤ 【分析】理解新定义的意义,借助导数的几何意义逐一进行判断推理,即可得到答案. 【详解】对于①,203,|0x y x y =''==,所以:0l y =是曲线3:C y x =在点(0,0)P 处的切线,画图可知曲线3:C y x =在点(0,0)P 附近位于直线l 的两侧,①正确;对于②,因为22(2),|0x y x y =-''=+=,所以:2l x =-不是曲线C :2(2)y x =+在点()2,0P -处的切线,②错误;对于③,e x y '=,00|1x y e ='==,在(0,1)P 的切线为1y x =+,画图可知曲线C 在点(0,1)P 附近位于直线l 的同侧,③错误;对于④,0cos ,|1x y x y =''==,在点()0,0P 处的切线为:l y x =,画图可知曲线C :sin y x =在点()0,0P 附近位于直线l 的两侧,④正确;对于⑤,21cos y x '=,021|1cos 0x y ='==,在点()0,0P 处的切线为:l y x =,图可知曲线C :tan y x =在点()0,0P 附近位于直线l 的两侧,⑤正确.【点睛】本题以新定义的形式对曲线在某点处的切线的几何意义进行全方位的考查,解题的关键是已知切线方程求出切点,并对初等函数的图像熟悉,属于中档题.14.【解析】【分析】对函数求导求得得到a 的方程求解即可【详解】切线与直线平行斜率为又所以切线斜率所以的斜率为即解得故答案为【点睛】本题考查根据切线的斜率求参数熟记基本初等函数的求导公式准确计算是关键是基 解析:1-【解析】 【分析】 对函数1cosx y sinx +=求导,求得πf 2⎛⎫⎪⎝⎭',得到a 的方程求解即可. 【详解】切线与直线x ay 10-+=平行,斜率为1a, 又21cosxy sin x--=',所以切线斜率πk f'12⎛⎫==- ⎪⎝⎭,所以x ay 10-+=的斜率为1-, 即11a=-,解得a 1=-. 故答案为1-. 【点睛】本题考查根据切线的斜率求参数,熟记基本初等函数的求导公式,准确计算是关键,是基础题.15.【解析】【分析】先求出当x <0时函数f (x )有一个零点然后得到当x≥﹣1时有两个不同的零点然后转化为两个函数的图象的交点个数问题利用数形结合进行求解即可【详解】解:当x <﹣1时由f (x )=0得x2﹣解析:11,1e ⎡⎫---⎪⎢⎣⎭【解析】 【分析】先求出当x <0时,函数f (x )有一个零点,然后得到当x ≥﹣1时,有两个不同的零点,然后转化为两个函数的图象的交点个数问题,利用数形结合进行求解即可. 【详解】解:当x <﹣1时,由f (x )=0得x 2﹣2ax =0,得a 222x xx ==,∵x <﹣1,∴a 122x =-<且此时函数f (x )只有一个零点, 要使f (x )有3个不同零点,则等价为当x ≥﹣1时,f (x )=0有且只有2个不同的零点, 由f (x )=e x ﹣|x ﹣a |=0得e x =|x ﹣a |,作出函数g (x )=e x 和h (x )=|x ﹣a |在x ≥﹣1的图象如图,当x ≥a 时,h (x )=x ﹣a ,当h (x )与g (x )相切时,g ′(x )=e x ,由g ′(x )=e x =1得x =0,此时g (0)=1,即切点坐标为A (0,1), 此时h (0)=0﹣a =1,得a =﹣1, 当x =﹣1时,g (﹣1)1e =,当直线h (x )=x ﹣a 经过点B (﹣1,1e)时,﹣1﹣a 1e=, 则a =﹣11e-,要使e x =|x ﹣a |在x ≥﹣1时,有两个不同的交点, 则直线h (x )=x ﹣a 应该在过A 和B 的直线之间, 则﹣11e-≤a <﹣1, 即实数a 的取值范围是[﹣11e-,﹣1), 故答案为[﹣11e-,﹣1) 【点睛】本题主要考查函数零点个数的应用,根据数形结合结合函数与方程之间的关系转化为两个函数图象交点个数问题是解决本题的关键.综合性较强,有一定的难度.16.【解析】【分析】先对函数求导由题意函数图象上存在两点的切线都与轴平行即是在上有两不等实根再由导数的方法求解即可【详解】因为所以由函数图象上存在两点的切线都与轴平行所以在上有两不等实根即在上有两不等实 解析:21(,0)e-【解析】 【分析】先对函数求导,由题意函数图象上存在两点M ,N 的切线都与x 轴平行,即是()´0fx =在[)1,+∞上有两不等实根,再由导数的方法求解即可.【详解】因为()x xf x ax e=-,所以()´1xxfx a e -=-,由函数图象上存在两点M ,N 的切线都与x 轴平行,所以()´10x x fx a e -=-=在[)1,+∞上有两不等实根,即1xxa e -=在[)1,+∞上有两不等实根;即直线y a =与曲线()1g x xxe -=在[)1,+∞上有两个不同交点. 因()´2gx xxe -+=,由()´g x 0>得2x >,由()´g x 0<得12x ≤<; 所以函数()1g x xxe -=在[)1,2上单调递减,在()2,∞+上单调递增, 所以()g x 有最小值()21g 2e =-;又()g 10=,当1x >时,()1g x 0xxe -=<, 所以为使直线y a =与曲线()1g x x x e -=在[)1,+∞上有两个不同交点,只需210a e -<<. 故答案为21,0e ⎛⎫- ⎪⎝⎭【点睛】本题主要考查导数在函数中的应用,将问题转化为导函数有两实根的问题,再转化为两函数有两交点的问题,结合函数单调性和值域即可求解,属于常考题型.17.【分析】由题意函数的导数为得到再由直线的点斜式方程即可求解切线的方程【详解】由题意函数的导数为所以即函数在点处的切线的斜率为由直线的点斜式方程可知切线的方程为即【点睛】本题主要考查了利用导数求解曲线 解析:10x y --=【分析】由题意,函数()f x 的导数为()f x ',得到()11k f '==,再由直线的点斜式方程,即可求解切线的方程. 【详解】由题意,函数()2ln f x x x =的导数为()2ln f x x x x '=+,所以()11f '=,即函数()2ln f x x x =在点(1,0)处的切线的斜率为1k =,由直线的点斜式方程可知,切线的方程为1y x =-,即10x y --=. 【点睛】本题主要考查了利用导数求解曲线在某点处的切线的方程,其中解答中根据导数四则运算的法则,正确求解函数的导数,得出曲线在某点处的切线的斜率,再利用点斜式求解切线的方程是解答的关键,着重考查了推理与运算能力,属于基础题.18.【分析】求出函数的导数二次导函数通过函数的拐点求出b 化简函数h (x )x 为一个角的一个三角函数的形式然后求解最大值【详解】g (x )=3x2﹣2ax+bg (x )=6x ﹣2a 则a =3又g (1)=﹣3得b =解析:178【分析】求出函数的导数,二次导函数,通过函数的“拐点”,求出b ,化简函数h (x )21132asinx bcos =+x 为一个角的一个三角函数的形式,然后求解最大值. 【详解】g '(x )=3x 2﹣2ax +b ,g ''(x )=6x ﹣2a , 则a =3,又g (1)=﹣3,得b =4,所以h (x )=sin x +2cos 2x =sin x -22sin x +2,令sinx=t,则t []1,1∈-, 即求y=22t -+t+2 ,t []1,1∈-时的最大值, 当14t =时,y 有最大值178. 故答案为178. 【点睛】本题考查函数的导数的运算,三角函数的化简及二次函数的最值问题,考查计算能力,属于简单的综合题.19.①③【分析】根据绝对值定义分类讨论函数单调性即可判断①;结合函数图象以及利用导数求切线斜率可判断②;根据函数图象得即可确定进而可判断③【详解】当时单调递增;当时单调递减所以函数的单调递减区间为;即①解析:①③ 【分析】根据绝对值定义分类讨论函数()f x 单调性,即可判断①;结合函数图象以及利用导数求切线斜率可判断②;根据函数图象得1230,1x x x +==,即可确定b ,进而可判断③. 【详解】当0x ≥时()xx f x e e ==单调递增;当0x <时1()()x xx f x e ee-===单调递减,所以函数()f x 的单调递减区间为(,0)-∞;即①正确;由图可知y kx =分别与,(0)x y e x =≥以及,(0)x y e x -=<相切时,()()()F x f x g x =-有且只有一个零点,设y kx =与,(0)xy e x =≥切点为00(,)xx e ,因为0000,1,x xx y e e =k e kx x k e '=∴=∴==;同理可得y kx =与,(0)xy e x -=<相切时,k e =-,因此②错误;由图可知1230,1x x x +==,则b k =,所以③正确; 故答案为:①③ 【点睛】本题考查函数单调性、函数图象与零点、导数几何意义,考查数形结合思想方法以及基本分析求解能力,属中档题.20.4【分析】利用切点和斜率列方程组化简求得的关系式进而利用基本不等式求得的最小值【详解】依题意令解得所以所以所以所以当且仅当时等号成立所以的最小值为故答案为:【点睛】本小题主要考查导数与切线有关的计算解析:4 【分析】利用切点和斜率列方程组,化简求得,a b 的关系式,进而利用基本不等式求得11a b+的最小值. 【详解】依题意令11y x b '==+,解得01x b =-,所以()00001ln ln10y x a b a y x b =-=--⎧⎨=+==⎩,所以10b a --=,所以1a b +=,所以()1111a b a b a b ⎛⎫+=++ ⎪⎝⎭2224b a b a a b a b=++≥+⋅=,当且仅当12a b ==时等号成立,所以11a b+的最小值为4. 故答案为:4 【点睛】本小题主要考查导数与切线有关的计算问题,考查利用基本不等式求最小值,属于中档题.三、解答题21.(1)1b =;(2)(1ln 2,)-+∞. 【分析】(1)由题意知(1)(1)f g ''=,可得实数b 的值;(2)对函数求导,分0a ≤,12a =,102a <<和12a >几种情况讨论函数的单调性,求出最值,列不等式解出实数a 的取值范围. 【详解】(1)1()f x b x'=-,()2(1)g x a x '=-, 由题意知(1)(1)f g ''=,即10b -=,得1b =.(2)由题得2()1ln (1)h x x x a x =----,定义域为(0,)+∞.1(1)(21)()12(1)x ax h x a x x x--'=---=-. ①当0a ≤时,210ax x-<. 当01x <<时,()0h x '<,()h x 在(0,1)上单调递减;当1x >时,()0h x '>,()h x 在(1,)+∞上单调递增.所以当(0,](12)x k k ∈<<时,min ()(1)0()h x h h k ==<,()h x 的值域是[0,)+∞,不符合题意.②当0a >时,12(1)2()a x x a h x x⎛⎫-- ⎪⎝⎭'=-(ⅰ)当112a=,即12a =时,()h x 在(0,)+∞上单调递减,符合题意.(ⅱ)当112a>,即102a <<时,()h x ,()h x '的变化情况如下:只需满足(2)(1)0h h <=,且22a<,解得11ln 22a -<<. (ⅲ)当112a <,即12a >时,()h x ,()h x '的变化情况如下:若满足题意,只需满足1(2)2h h a ⎛⎫> ⎪⎝⎭,即21111ln 11ln 2222a a a a a ⎛⎫---->-- ⎪⎝⎭. 即只需满足1ln 4104a a+-> 设11()ln 41,42F a a a a ⎛⎫=+-> ⎪⎝⎭, 241()04a F a a -'=>,所以()F a 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,所以当12a >时,11()ln 2022F a F ⎛⎫>=-> ⎪⎝⎭,所以12a >满足题意. 综上,实数a 的取值范围是(1ln 2,)-+∞. 【点睛】方法点睛:本题考查导函数图象在函数单调性和最值中的应用,考查导数的几何意义,其中利用导函数判断单调性的步骤为: 1. 先求出原函数的定义域; 2. 对原函数求导;3. 令导数大于零;解出自变量的范围;该范围即为该函数的增区间;同理令导数小于零,得到减区间;4. 若定义域在增区间内,则函数单增;若定义域在减区间内则函数单减,若以上都不满足,则函数不单调.22.(1)y e a =+ (2)a e ≥- 【分析】(1)先求出(1)f 与'(1)f ,再利用点斜式即可得到答案.(2)函数()0f x ≥在[1,)+∞上恒成立,等价于函数()y f x =的最小值大于或等于0,在求()y f x =的最小值时需分0a ≥,0a <两种情况讨论即可. 【详解】解:(Ⅰ)当1x =时,(1)+f e a =,因为'22(1)1(+)(1)()()=x x e x x e ax x f x a x x x ---=+, 所以'(1)0f =.所以曲线()y f x =在点(1,(1))f 处的切线方程为y e a =+.(2)函数()0f x ≥在[1,)+∞上恒成立,等价于函数()y f x =的最小值大于或等于0.'22(1)1(+)(1)()()=x x e x x e ax x f x a x x x---=+, 因为1≥x 所以10x -≥, 20x >. ①当0a ≥时,显然+0x e ax >,'22(1)1(+)(1)()()=0x x e x x e ax x f x a x x x---=+≥ 函数()y f x =在[1,)+∞上单调递增,所以当1x =时,有最小值(1)+f e a =, 显然+0e a ≥,所以0a ≥符合条件.②当0a <时,令()+x h x e ax =,'()+x h x e a =解得=ln()x a -, 若ln()1a -≤即0e a -≤<时,'(1)+0h e a =≥ 当1≥x 时,'()+0xh x e a =≥函数()y h x =在[1,)+∞上单调递增,所以当1x =时,有最小值(1)+0h e a =≥, 当1≥x 时,显然+0x e ax ≥.函数()y f x =在[1,)+∞上单调递增,所以当1x =时,有最小值(1)+f e a =, 依题意有+0e a ≥,所以0e a -≤<符合条件.若ln()1a ->即a e <-时,显然(1)+0f e a =<,不符合. 综上,若函数()0f x ≥在[1,)+∞上恒成立,则a e ≥-. 【点睛】本题考查导数的几何意义以及不等式恒成立问题,在处理恒成立问题时,通常构造函数,转化为最值来处理. 23.(1)2(2)2ea = 【分析】(1)根据公切线斜率相等解()()f x g x '='即可得解,结合共切点函数值关系取舍; (2)根据题意解()()00f x g x ='',且()()00f x g x =即可得解. 【详解】(1)()21f x x '=+,()2341g x x x '=-+由()()f x g x '='得234121x x x -+=+,所以2360x x -=解得2x =或0x =又()23f =,()()232g f ==,()03f =-,()()010g f =≠ 所以()f x 与()g x 的“公共切点”为2. (2)()2f x ax '=,()1g x x'=0x >, 又函数()21f x ax =-与()ln g x x =存在“公共切点”, 所以存在0x R ∈,满足()()00f x g x ='',且()()00f x g x = 由()()00f x g x =''得0012ax x =且0a >,解得0x =,所以f g =即()11ln 222a -==-,解得2e a =. 【点睛】此题考查导数的几何意义,根据切线斜率与导数的关系,建立等量关系求解共切点和含参数问题.24.(1)2215y x +=;(2)[)8,+∞.【分析】(1)由已知设抛物线方程为:22x py =,求出抛物线方程,从而可求出抛物线的焦点,进而求出椭圆的标准方程.(2)设211,,8x A x ⎛⎫ ⎪⎝⎭222,8x B x ⎛⎫⎪⎝⎭,求出A ,B 两点切线的斜率,根据121k k =-可得 1212116x x k k ⋅==-,由A ,B 两点直线的斜率从而可求出212x x m +=,再由弦长公式即可求解.【详解】(1)由题意可知,设抛物线方程为:22x py =点在抛物线C 上, 所以抛物线C 的方程为28x y =, 所以椭圆的上焦点为(0,2),所以椭圆的标准方程为2215y x +=;(2)设211,,8x A x ⎛⎫ ⎪⎝⎭222,8x B x ⎛⎫ ⎪⎝⎭,在A 点处的切线的斜率114x k =,在B 点处的切线的斜率224x k =, 又1212116x x k k ⋅==-,所以 22212188ABx x k x x -=-218x x +=,4m=212x x m +=,而12|||AB x =-===所以g()m =又20m ≥,所以()8g m ≥. 【点睛】本题考查了椭圆的标准方程、弦长公式,考查了学生的计算能力,属于中档题. 25.(Ⅰ)2a =(Ⅱ)3 【分析】(Ⅰ)由题意得()12ln 21ln 224af '=-+=-,解之即得a 的值;(Ⅱ)不等式或化为()1ln 1x x a x +<-,设()()1ln 1x x h x x +=-,再利用导数研究函数h(x)的图像和性质得解.【详解】 解:(Ⅰ)()()221ln 1x xa x f x x x --'=+-, 由题意得()12ln 21ln 224af '=-+=-,则2a =. (Ⅱ)不等式或化为()1ln 1x x a x +<-.设()()1ln 1x x h x x +=-,()()2ln 21x x h x x --'=-. 设()ln 2g x x x =--,当1x >时,()1110x g x x x-'=-=>, 则()g x 在()1,+∞单调递增.又()31ln30g =-<,()42ln 40g =->,则()g x 在()3,4存在唯一零点0x 满足()000ln 20g x x x =--=.则当()01,x x ∈时,()h x 单调递减,当()0,x x ∈+∞时,()h x 单调递增,则()()()00001ln 1x x h x h x x +≥=-. 又因为00ln 20x x --=,则()()0000011x x h x x x -==-,因为()03,4x ∈,则()()03,4a h x <∈,则整数a 的最大值为3.【点睛】本题主要考查导数的几何意义,考查利用导数研究不等式的恒成立问题,考查函数的最值、单调性、零点问题的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于难题.26.(1)1y x =-(2)20a e -<< 【分析】(1)将0a =代入()()ln f x x a x =+,再对函数()f x 求导,求出切线斜率,进而即可得出结果;(2)对函数()f x 求导,通过讨论a 的范围,分别研究函数的单调性,进而可得出结果. 【详解】解:(1)当0a =时,()ln f x x x =,()'ln 1f x x =+.()'11f =,()10f =, 所以()f x 在1x =处的切线方程为1y x =-. (2)()f x 有极小值⇔函数()'f x 有左负右正的变号零点. ()()1'ln ln 1af x x x a x x x=++=++ 令()()'g x f x =,则()221'a x ag x x x x -=-=令()'0g x =,解得x a =.x ,g (x ),()'g x 的变化情况如下表:①若ln 20a +≥,即2a e -≥,则0g x ≥,所以'f x 不存在变号零点,不合题意. ②若ln 20a +<,即2a e -<时,()ln 20g a a =+<,()110g a =+>. 所以()0,1x a ∃∈,使得()00g x =;且当()0,x a x ∈时,()0g x <,当()0,1x x ∈时,()0g x >. 所以当(),1x a ∈时,x ,()'f x ,f (x )的变化情况如下表:<<.所以0a e【点睛】本题第一问主要考查导数的几何意义,根据导数的几何意义求出切线的斜率,进而可求出切线方程;第二问主要考查导数在函数中的应用,利用导数的方法研究函数的单调性,即可求出结果;属于常考题型.。
(压轴题)高中数学选修1-1第三章《变化率与导数》测试卷(含答案解析)

一、选择题1.已知()f x '是函数()f x 的导函数,对任意x ∈R ,都有()()()21xf x f x e x '=+-,且()01f =,则不等式()3xf x e <的解集为( )A .()2,1--B .()2,1-C .()1,1-D .()1,2-2.已知函数()()()()()()12345f x x x x x x =-----,则曲线()y f x =在点()3,0处的切线方程为( ) A .412y x =+ B .412y x =-+ C .412y x =--D .412y x =-3.设函数()4cos f x x x =--的导函数为()g x ,则()g x 图象大致是( )A .B .C .D .4.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度()25731v t t t=-++(t 的单位:s ,v 的单位:/m s )行驶至停止.在此期间汽车继续行驶的距离(单位:m )是( ) A .125ln5+ B .11825ln3+ C .425ln5+D .450ln 2+5.直线:l y kx b =+是曲线()()ln 1f x x =+和曲线()()2ln g x e x =的公切线,则b =( ) A .2B .12C .ln2e D .()ln 2e6.若曲线2ln (0)y a x x a =+>的切线的倾斜角的取值范围是,32ππ⎡⎫⎪⎢⎣⎭,则a =( ) A .124 B .38C .34D .327.已知P 与Q 分别为函数260x y -+=与函数2ln 2y x =+ 的图象上一点,则线段||PQ 的最小值为( )A .65B C D .68.已知函数()f x 满足()11f =-,()12f '=,则函数()x y f x e ⋅=在1x =处的瞬时变化率为( ) A .1B .2C .eD .2e9.已知函数()ln af x x x =+,直线3y x =-+与曲线()y f x =相切,则a =( ) A .1B .2C .3D .410.已知函数sin a x y x =在点M (π,0)处的切线方程为xb y π-+=,则( ) A .a =-1,b =1B .a =-1,b =-1C .a =1,b =1D .a =1,b =-111.三次函数()323212f x ax x x =-++的图象在点()()1,1f 处的切线与x 轴平行,则()f x 在区间()1,3上的最小值是( )A .83B .116C .113D .5312.若直线2y x =是曲线()y f x =的一条切线,则()f x 的解析式不可能为( ) A .()22xf x e =-B .()2sin f x x =C .()13f x x x=+D .()32f x x x =--二、填空题13.直线l 过坐标原点且与线x y e =相切,则l 的方程为___________. 14.在平面直角坐标系xOy 中,P 是曲线9y x x=+(0x >)上的一个动点,则点P 到直线0x y +=的距离的最小值是________.15.若()()321111322f x f x x x '=-++,则曲线() y f x =在点()(1,)1f 处的切线方程是______________________.16.已知过点(,0)A a 作曲线:x C y x e =⋅的切线有且仅有两条,则实数a 的取值范围是______.17.曲线()12f x x x=-在点()()1,1f 处的切线与圆222x y R +=相切,则R =______. 18.已知函数()y f x =对任意的x ∈R 都有2(1)2()1f x f x x --=-,则曲线()y f x =在(1,(1))f --处的切线方程为__________.19.若直线y x b =+是曲线x y e =的一条切线,则实数b 的值是_____.20.函数2()ln f x x x =在点()1,0处的切线方程为___.三、解答题21.已知函数()()x f x x k e =-,若1k =,求()f x 在1x =处的切线方程. 22.已知函数()ln 1f x ax x =+-.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程. (2)讨论()f x 的单调性.(3)若()0f x =有两个不相等的实根,求a 的取值范围.23.已知函数ln ()xf x x=,()g x ax =,a R ∈. (1)求曲线()y f x =在点(1,0)处的切线方程;(2)若不等式()()f x g x <对(0,)x ∈+∞恒成立,求a 的取值范围; (3)若直线y a =-与曲线()()y f x g x =-相切,求a 的值. 24.已知函数在处取得极值.(1)求函数在点处的切线方程;(2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围. 25.已知函数2()()xf x e x ax a =+-,其中a 是常数.(Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)若存在实数k ,使得关于x 的方程()f x k =在[0,)+∞上有两个不相等的实数根,求k 的取值范围.26.设函数()()20f x ax bx c a =++≠,曲线()y f x =通过点()0,23+a ,且在点()()1,1f --处的切线垂直于y 轴.(1)用a 分别表示b 和c ;(2)当bc 取得最小值时,求函数()()-=-xg x f x e的单调区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】本题首先可以令()()xf xg x e=,然后根据()()()21xf x f x e x '=+-得出()21g x x '=-,再然后设2g x x x c ,通过()01f =求出1c =,最后将()3x f x e <转化为3g x,通过计算即可得出结果.【详解】 令()()xf xg x e=,则()()()x f x f x g x e '-'=, 因为()()()21xf x f x e x '=+-,所以()21g x x '=-,设2g xx x c ,因为()01f =,所以0001f g c e ,()21g x x x =-+,因为()3xf x e <,所以()3xf x e<, 即213g x x x ,()()210x x -+<,解得12x -<<,故选:D. 【点睛】本题考查利用导函数求函数解析式以及不等式的解法,考查导函数与函数之间的转化,考查一元二次不等式的解法,考查计算能力,考查转化与化归思想,是中档题.2.D解析:D 【分析】对多项式函数求导,结合导数的几何意义,可得选项. 【详解】设函数()(1)(2)(4)(5)g x x x x x =----,则'''()(3)()(3)()()(3)()f x x g x x g x g x x g x '=-+-=+-,所以'(3)(3)(31)(32)(34)(35)4f g ==----=,则曲线()y f x =在点(3,0)处的切线方程为()43412y x x =-=-. 故选:D. 【点睛】本题考查利用导数的几何意义求切线方程,属于中档题.3.D解析:D 【分析】求出导函数()g x ,然后研究()g x 的性质,用排除法确定正确选项. 【详解】因为()4cos f x x x =--,所以()3'sin 4f x x x =-,所以()3sin 4g x x x =-,所以函数()g x 是奇函数,其图象关于原点成中心对称,而函数()g x 为偶函数,其图象关于y 轴对称,所以选项B ,C 错误;又因为其图象过原点O ,所以选项A 错误. 故选:D. 【点睛】本题考查导数的运算,考查由函数解析式选择函数图象,解题时可根据解析式确定函数的性质,利用排除法得出正确选项.4.C解析:C 【详解】 试题分析:令得,故44203()725ln(1)425ln 52t s v t dt t t ⎡⎤==-++=+⎢⎥⎣⎦⎰,故选C考点:定积分的几何意义5.C解析:C 【分析】由()f x k '=可求得直线l 与曲线()()ln 1f x x =+的切点的坐标,由()g x k '=可求得直线l 与曲线()()2ln g x e x =的切点坐标,再将两个切点坐标代入直线l 的方程,可得出关于k 、b 的方程组,进而可求得实数b 的值. 【详解】设直线l 与曲线()()ln 1f x x =+相切于点()11,A x y ,直线l 与曲线()()2ln g x e x =相切于点()22,B x y ,()()ln 1f x x =+,则()11f x x '=+,由()1111f x k x '==+,可得11k x k-=, 则()()111ln 1ln y f x x k ==+=-,即点1,ln k A k k -⎛⎫-⎪⎝⎭, 将点A 的坐标代入直线l 的方程可得1ln kk k b k--=⋅+,可得ln 1b k k =--,① ()()2ln 2ln g x e x x ==+,则()1g x x'=,由()221g x k x '==,可得21x k =,()222ln y g x k ==-,即点1,2ln B k k ⎛⎫- ⎪⎝⎭,将点B 的坐标代入直线l 的方程可得12ln 1k k b b k-=⋅+=+,1ln b k ∴=-,②联立①②可得2k =,1ln 2ln 2e b =-=. 故选:C. 【点睛】本题考查利用两曲线的公切线求参数,要结合切点以及切线的斜率列方程组求解,考查计算能力,属于中等题.6.B解析:B 【分析】先求得2a y x x '=+≥=,根据曲线切线的倾斜角的取值范围是,32ππ⎡⎫⎪⎢⎣⎭,得到k ≥.【详解】由题意,函数2ln (0)y a x x a =+>,可得2a y x x '=+≥=当且仅当2a x x=时,即x =时,等号成立,又由曲线2ln (0)y a x x a =+>的切线的倾斜角的取值范围是,32ππ⎡⎫⎪⎢⎣⎭,可得切线的斜率的取值范围是k ≥=,解得38a =. 故选:B. 【点睛】本题主要考查了利用导数的几何意义求解参数问题,其中解答中熟练利用导数的几何意义求得切线的斜率,结合斜率与倾斜角的关系求解是解答的关键,着重考查推理与运算能力.7.C解析:C 【分析】求出函数2ln 2y x =+的图象上与直线260x y -+=平行的切线方程,由两平行线间距离公式可得结论. 【详解】由2ln 2y x =+得2y x'=,令22y x '==得1x =,2ln122y =+=,函数2ln 2y x =+的图象在点(1,2)处的切线方程为22(1)y x -=-,即20x y -=,直线20x y -=与直线260x y -+=间的距离为d ==∴线段||PQ的最小值为5. 故选:C . 【点睛】本题考查直线与函数图象上点间距离的最小值,解题关键是掌握转化与化归思想,转化为求函数图象的切线,求两平行线间的距离.8.C解析:C 【分析】求得函数的导数)(()x x y f x e f x e ⋅+''⋅=,代入1x =,结合题设条件,代入即可求解. 【详解】由函数()x y f x e ⋅=,可得)(()xx y f x e f x e ⋅+''⋅=,所以函数在1x =的导数为111|(1)(1)x y f e f e =⋅+'⋅'=,又由()11f =-,()12f '=,所以11|2x e y e e =⨯-⨯'==, 即函数()xy f x e ⋅=在1x =处的瞬时变化率为e . 故选:C. 【点睛】本题主要考查了导数的四则运算,以及瞬时变化率的概念与计算,其中解答中熟记瞬时变化率的概念,以及熟练应用导数的运算法则求解是解答的关键,着重考查了运算与求解能力.9.B解析:B 【分析】设切点为()00,x y ,利用导数的几何意义与()00,x y 在()ln af x x x=+与3y x =-+上联立求解即可. 【详解】设切点为()00,x y ,则()21'af x x x=-,又直线3y x =-+与曲线()y f x =相切故20000000113ln a x x y x a y x x ⎧-=-⎪⎪⎪=-+⎨⎪⎪=+⎪⎩,消去0y 有0000003ln 3ln a a x x x x x x -+=+⇒=-+-,代入第一个式子有 ()0000013ln 2ln 20x x x x x --+-=-⇒+-=.易得01x =.代入20011ax x -=-有2a =. 故选:B【点睛】本题主要考查了导数的几何意义的运用,需要根据在某点处导函数的值等于在该点处切线的斜率以及切点在切线方程与函数式上联立求解即可.属于中等题型.10.C解析:C 【分析】先对函数求导,求得()af ππ'=-,(0)0f =,再由点斜式求得切线方程.【详解】 由题意可知2cos sin ax x a xy x -'=,故在点(π0)M ,处的切线方程为 1(π)ππa y x x -=-=-b +,11a b =⎧⎨=⎩,则,故选C . 【点睛】本题考查导数的几何意义,求切线的方程即函数()f x 在()()00,x f x 处的切线方程为()()()000y f x f x x x '-=-. 11.D解析:D 【分析】由()10f '=求出实数a 的值,然后利用导数能求出函数()y f x =在区间()1,3上的最小值. 【详解】()323212f x ax x x =-++,()2332f x ax x '∴=-+,由题意得()1310f a '=-=,解得13a =,()32132132f x x x x ∴=-++,()232f x x x '=-+,令()=0f x ',得1x =或2x =.当12x <<时,()0f x '<;当23x <<时,()0f x '>. 所以,函数()y f x =在区间()1,3上的最小值为()283522221323f =-⨯+⨯+=. 故选:D. 【点睛】本题考查利用切线与直线平行求参数,同时也考查了利用导数求函数的最值,考查运算求解能力,属于中等题.12.C解析:C 【分析】由导数为2,求出斜率为2的切线的切点坐标,此切点在直线2y x =上,2y x =就是切线,不在,就不是切线. 【详解】若()22x f x e =-,则由()'22xf x e ==,得0x =,(0)0f =,点()0,0在直线2y x=上,则直线2y x =与曲线22xy e =-相切;若()2sin f x x =,则由()'2cos 2f x x ==,得()2x k k =π∈Z ,()20f k π=,则直线2y x =与曲线2sin y x =相切; 若()13f x x x=+,则由()2'132f x x -==,得1x =±,(1)4,(1)4f f =-=-,点()1,4,()1,4--都不在直线2y x =上,所以直线2y x =与曲线13y x x=+不相切; 若()32f x x x =--,则由()2'312f x x =-=,得1x =±,其中(1)2f -=-,()1,2--在直线2y x =上,所以直线2y x =与曲线32y x x =--相切. 故选:C. 【点睛】本题考查导数的几何意义,考查逻辑推理与数学运算的核心素养.二、填空题13.【分析】设切点为坐标为由导数几何意义求出切线方程由切线过原点得从而得切线方程【详解】设切点为由得时又所以切线方程为而切线过原点所以解得代入后得切线方程为故答案为:【点睛】关键点点睛:本题考查导数的几 解析:y ex =【分析】设切点为坐标为00(,)P x y ,由导数几何意义求出切线方程,由切线过原点得0x ,从而得切线方程. 【详解】设切点为00(,)P x y ,由x y e =得e xy '=,0x x =时,0x y e '=,又0x y e =,所以切线方程为00()-=-x x y e e x x ,而切线过原点,所以000()x x ee x -=⨯-,解得01x =.代入后得切线方程为y ex =.故答案为:y ex =. 【点睛】关键点点睛:本题考查导数的几何意义,在求函数图象的切线时要注意是求在某点处的切线不是求过某点的切线,如果求()y f x =在点00(,())x f x 处的切线,则只要求得()'f x 后可得切线方程000()()()y f x f x x x '-=-,若是求()y f x =过00(,)P x y 的切线方程,则设切点为11(,)Q x y ,由切点求出切线方程111()()()y f x f x x x '-=-,代入00(,)x y ,求出1x 后得切线方程.14.6【分析】将原问题转化为切点与直线之间的距离然后利用导函数确定切点坐标可得最小距离【详解】解:当直线平移到与曲线相切位置时切点即为点到直线的距离最小由得(负值舍去)即切点则切点Q 到直线的距离为故答案解析:6 【分析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离 【详解】解:当直线0x y +=平移到与曲线9y x x=+相切位置时, 切点Q 即为点P 到直线0x y +=的距离最小. 由2911y x '=-=-,得x =y =,即切点22Q ⎛⎝⎭, 则切点Q 到直线0x y +=6=,故答案为:6. 【点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题,是中档题.解题的关键在于直线0x y +=平移到与曲线9y x x=+相切位置时,切点Q 即为点P 到直线0x y +=的距离最小.15.【分析】求得函数的导数令求得得出函数的解析式再求得结合直线的点斜式方程即可求解【详解】由题意函数可得令可得解得所以可得所以曲线在点处的切线方程是即故答案为:【点睛】本题主要考查了利用导数的几何意义求 解析:3310x y -+=【分析】求得函数的导数()()211f x f x x ''=-+,令1x =,求得()11f '=,得出函数的解析式,再求得()413f =,结合直线的点斜式方程,即可求解. 【详解】由题意,函数()()321111322f x f x x x '=-++,可得()()211f x f x x ''=-+, 令1x =,可得()()21111f f =-'+',解得()11f '=,所以()32111322f x x x x =-++,可得()413f =, 所以曲线()y f x =在点()(1,)1f 处的切线方程是413y x -=-,即3310x y -+=. 故答案为:3310x y -+=. 【点睛】本题主要考查了利用导数的几何意义求解曲线在某点处的切线方程,其中解答中熟记导数的几何意义,以及导数的运算公式是解答的关键,着重考查推理与运算能力.16.【分析】设切点为求导得斜率然后利用点斜式得切线方程将点A 代入使得方程关于有两解即可【详解】设切点为则切线斜率为:切线方程为:将点代入切线方程得:又所以整理得有两个解所以解得或故答案为【点睛】本题主要 解析:()(),40,-∞-⋃+∞【分析】设切点为()00,x y ,求导得斜率,然后利用点斜式得切线方程,将点A 代入,使得方程关于0x 有两解即可. 【详解】设切点为()00,x y ,则切线斜率为:()00k 1xx e =+⋅.切线方程为:()()0000y 1x y x ex x -=+⋅-,将点(),0A a 代入切线方程得:()()00001x y x e a x -=+⋅-,又000xy x e=⋅.所以()()00001x x x e a x x e +⋅-=-⋅,整理得2000x ax a -+=有两个解.所以240a a =->,解得4a <-或0a >.故答案为()(),40,-∞-⋃+∞. 【点睛】本题主要考查了导数的几何意义:求切线,求切线时要注意设过点作切线还是在点处的切线,前者需要设出切点,后者给出的点即为切点,属于易错题型.17.【解析】【分析】求切线的斜率和切点由点斜式方程得切线方程再由圆心到切线的距离等于半径计算可得所求值【详解】的导数为可得切线的斜率为切点为即有在处的切线方程为即为由切线与圆相切可得可得故答案为:【点睛【解析】 【分析】求切线的斜率和切点,由点斜式方程得切线方程,再由圆心到切线的距离等于半径,计算可得所求值. 【详解】()12f x x x=-的导数为()21'2f x x =+,可得切线的斜率为3k =,切点为()1,1, 即有在1x =处的切线方程为()131y x -=-, 即为320x y --=,由切线与圆222x y R +=相切,可得d R ==,可得R =.. 【点睛】本题考查导数的运用:求切线的斜率,考查直线和圆相切的条件:d r =,考查方程思想和运算能力,属于基础题.18.【解析】【分析】本题首先可以通过解出函数的函数解析式然后求出的值以及函数在点处的导数最后即可得出结果【详解】由可得曲线在处的切线:即故切线方程为【点睛】本题主要考查导数的相关性质曲线在某一点处的导数 解析:8350x y -+=【解析】 【分析】本题首先可以通过()()2121f x f x x --=-解出函数()y f x =的函数解析式,然后求出()1f -的值以及函数()y f x =在点()()11f ,--处的导数,最后即可得出结果。
(常考题)北师大版高中数学选修1-1第三章《变化率与导数》测试卷(有答案解析)(1)

一、选择题1.设函数的图象在点(t,f(t))处切线的斜率为k ,则函数k=g(t)的部分图象为( ) A . B .C .D .2.曲线e cos ax y x 在0x =处的切线与直线20x y +=垂直,则a =( ) A .2- B .1- C .1 D .23.函数()y f x =的图象在点()()1,1f 处的切线方程是210x y -+=,若()()g x xf x =,则()'1g =( )A .3B .2C .1D .324.若点P 在函数3()3f x x x =-+的图象上,且函数3()3f x x x =-+的图象在点P 处的切线平行于直线21y x =+,则点P 的坐标为( )A .(1,3)B .(1,3)-C .(1,3)和(1,3)-D .(1)3-, 5.已知函数()()ln 211f x x f x '=+--,则函数()f x 的图象在点()()1,1f 处的切线方程为( )A .320x y --=B .350x y --=C .20x y ++=D .10x y ++= 6.函数()|cos |f x x =(0)x ≥的图象与过原点的直线恰有四个交点,设四个交点中横坐标最大值为θ,则()21sin 2θθθ+( ) A .-2B .2C .12-D .12 7.设曲线12x y x +=-在点()1,2-处的切线与直线0ax by c 垂直,则a b =( ) A .13 B .13- C .3 D .-38.已知()f x '是函数()f x 的导函数,且对任意的实数x 都有()()()23x f x e x f x '=++,()01f =,则不等式()5x f x e <的解集为( )A .()4,1-B .(1,4)-C .(,4)(1,)-∞-+∞D .(,1)(4,)-∞-+∞9.已知函数21()ln f x x x x ⎛⎫=-⎪⎝⎭,则曲线()f x 在1x =-处切线方程为() A .230x y -+=B .210x y +-=C .210x y -+=D .20x y ++= 10.曲线3215()433f x x x =--在点()3,(3)f 处的切线的倾斜角为( ). A .-135° B .135° C .45° D .45-11.已知函数2()1f x x =-,()ln g x x =,下列说法中正确的是( )A .(),()f x g x 在点(1,0)处有相同的切线B .对于任意0x >,()()f x g x ≥恒成立C .(),()f x g x 的图象有且只有一个交点D .(),()f x g x 的图象有且只有两个交点12.已知()21cos 4f x x x =+,f x 为f (x )的导函数,则()y f x ='的图象大致是( )A .B .C .D .二、填空题13.已知函数()3ln f x x x =-与3()g x x ax =-,若函数()f x 图象上存在点P ,且点P 关于x 轴对称点Q 在函数()g x 图象上,则实数a 的取值范围为__.14.已知f (x )=lnx ,g (x )12=x 2+mx 72+(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与函数f (x )的图象的切点为(1,f (1)),则m 的值为_____. 15.已知函数()()2f x f '1e x 1x =+-,其()f 'x 是()f x 的导函数,则曲线y f (x)=在点(1,f (1))处的切线方程为____________________16.若曲线C 与直线l 满足:①l 与C 在某点P 处相切;②曲线C 在P 附近位于直线l 的异侧,则称曲线C 与直线l “切过”.下列曲线和直线中,“切过”的有________.(填写相应的编号)①3y x =与0y = ②2(2)y x =+与2x =- ③x y e =与1y x =+④sin y x =与y x = ⑤tan y x =与y x =17.过点()0,1且与曲线11x y x +=-在点()3,2处的切线垂直的直线的方程为______. 18.已知函数()([1,))x x f x ax x e=-∈+∞,其图象上存在两点M ,N ,在这两点处的切线都与x 轴平行,则实数a 的取值范围是____.19.已知函数()y f x =对任意的x ∈R 都有2(1)2()1f x f x x --=-,则曲线()y f x =在(1,(1))f --处的切线方程为__________.20.直线12y x b =+是曲线的一条切线,则实数b =___________.三、解答题21.已知函数()2()1x f x e ax =+,其中12a >. (1)若2a =,求曲线()y f x =在点(1,(1))f 处切线的斜率; (2)记函数()()x g x f x xe =+的极大值为M ,若1M >,求实数a 的取值范围.22.已知函数()()()211ln 2f x ax a x x a R =-++∈. (1)若0a =,求曲线()f x 在点()()1,1f 处的切线方程;(2)当0a >时,讨论函数()()211ln 2f x ax a x x =-++的单调区间. 23.已知函数f (x )=In(1+x )-x +22k x (k ≥0). (Ⅰ)当k =2时,求曲线y =f (x )在点(1,f (1))处的切线方程;(Ⅱ)求f (x )的单调区间.24.已知函数()x f x e =,x ∈R .(Ⅰ)求()f x 的反函数的图象上点(1,0)处的切线方程;(Ⅱ)证明:曲线()y f x =与曲线2112y x x =++有唯一公共点. 25.已知函数()ln 1x a f x x x=-- (I )若()f x 在2x =处的切线的斜率为1ln2-,求a 的值; (Ⅱ)1x ∀>,不等式()11f x x >--恒成立,求整数a 的最大值. 26.已知函数()2e 2x f x ax x x =--.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,若曲线()y f x =在直线y x =-的上方,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【详解】 ∵,∴,∴, 可知应该为奇函数,且当02t π<<时,故选B .考点:利用导数研究函数的单调性.2.D解析:D【解析】因为cos (sin )ax axy ae x e x =+-',所以由导数的几何意义可得切线的斜率0cos0k ae a ==,由题设可得1122a a -=-⇒=,应选答案D . 3.D解析:D【解析】分析:先求出()'g x 和(1)g ',再求(1)(1)f f '和即得()'1g .详解:由题得()()(),(1)(1)(1),g x f x xf x g f f =+∴'=+'''因为函数()y f x =的图象在点()()1,1f 处的切线方程是210x y -+=,所以1(1),(1)1,2f f =='所以13(1)(1)(1)1.22g f f =+'='=+ 故答案为D.点睛:(1)本题主要考查求导和导数的几何意义,意在考查学生对该知识的掌握水平.(2) 函数()y f x =在点0x 处的导数0()f x '是曲线()y f x =在00(,())P x f x 处的切线的斜率,相应的切线方程是000()()y y f x x x '-=- 4.B解析:B【分析】对()f x 求导,由于在点P 处的切线平行于直线21y x =+,故2312m -=,求解m ,又点(1,3)在直线21y x =+,排除即得解.【详解】设P 点坐标为(,)P m n ,则33n m m =-+2()31x f x '=-由于在点P 处的切线平行于直线21y x =+故2312m -=,1m ∴=±,代入33n m m =-+,故点P 坐标为(1,3)和(1,3)-又点(1,3)在直线21y x =+,此时切线与21y x =+重合,排除故点P 坐标为(1,3)-故选:B【点睛】本题考查了导数在曲线切线中的应用,考查了学生概念理解,数学运算,综合分析的能力,属于中档题.5.A解析:A【分析】对函数求导,可得f x 的表达式,令1x =-,可得()1f '-的值,进而可求得()1f 、()1f '的值,即可得到切点及切线斜率,进而可求得切线方程.【详解】由题意,()()121f x f x''=+-,则()()1121f f ''-=-+-,解得()11f '-=, 所以()ln 21f x x x =+-,()12f x x '=+, 则()1ln1211f =+-=,()1123f '=+=,故切点为()1,1,切线斜率为3,所以切线方程为()131y x -=-,即320x y --=. 故选:A.【点睛】本题考查导数的几何意义,考查切线方程的求法,考查学生的计算求解能力,属于基础题. 6.A解析:A【分析】依题意,过原点的直线与函数()|cos |f x x =(0)x ≥在区间3,22ππ⎛⎫ ⎪⎝⎭内的图像相切,利用导数知识可求得切线方程,利用直线过原点,可求得1tan θθ=-,代入所求关系式即可得到答案.【详解】 函数()|cos |f x x =(0)x ≥的图象与过原点的直线恰有四个交点,∴直线与函数|cos |y x =(0)x ≥在区间3,22ππ⎛⎫ ⎪⎝⎭内的图象相切, 在区间3,22ππ⎛⎫ ⎪⎝⎭上,y 的解析式为cos y x =, 故由题意切点坐标为(,cos )θθ,∴切线斜率sin sin ,x k y x θθ===-=-'∴由点斜式得切线方程为:cos sin (),y x θθθ-=--sin sin cos y x θθθθ∴=-++,直线过原点,sin cos 0θθθ∴+=,得1tan θθ=-, ()21sin 2θθθ+∴211sin 2tan =1tan θθθ⎛⎫+ ⎪⎝⎭-1tan sin 2tan θθθ⎛⎫=-+ ⎪⎝⎭ sin cos 2sin cos cos sin θθθθθθ⎛⎫=-+⋅ ⎪⎝⎭()222sin cos 2θθ=-+=-.故选:A.【点睛】本题考查了导数的几何意义、点斜式方程、二倍角公式以及同角三角函数的基本关系,需熟记公式,属于基础题.7.B解析:B【分析】 求得曲线12x y x +=-在点()1,2-处的切线的斜率,根据切线与直线0ax by c 垂直列方程,由此求得a b的值. 【详解】 依题意()()()'2221322x x y x x --+-==--,'1|3x y ==-,由于曲线12x y x +=-在点()1,2-处的切线与直线0ax by c垂直,所以()131,3a a b b ⎛⎫-⋅-=-=- ⎪⎝⎭. 故选:B【点睛】 本小题主要考查利用导数求切线的斜率,考查两条直线垂直的条件,属于基础题. 8.A解析:A【分析】 首先构造函数()()x f x G x e=,利用导函数求出()G x 的解析式,即可求解不等式.令()()x f x G x e =,则()()()23x f x f x G x x e'-'==+, 可设2()3G x x x c =++,(0)(0)1G f ==,1c ∴=所以2()()31x f x G x x x e==++ 解不等式()5x f x e <,即()5x f x e <,所以2315x x ++< 解得41x -<<,所以不等式的解集为()4,1-故选A【点睛】本题考查利用导函数解不等式,解题的关键是根据问题构造一个新的函数,此题综合性比较强.9.A解析:A【分析】先求出0x <时,()f x 的解析式,求出其导数,由导数的几何意义即可求出方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.已知函数()()xx af x e a R e=+∈,若()f x 为奇函数,则曲线()y f x =在0x =处的切线方程为( ) A .2y x =- B .y x =-C .2y x =D .y x =2.已知过点P 作曲线y =x 3的切线有且仅有两条,则点P 的坐标可能是( )A .(0,1)B .(0,0)C .(1,1)D .(-2,-1)3.已知函数()2ln f x x x =+,则函数()f x 在1x =处的切线方程是( ) A .320x y --= B .320x y +-= C .320x y -+= D .320x y ++=4.已知函数34(x)sin 1xf x x e =+++,其导函数为'()f x ,则(2020)'(2020)(2020)'(2020)f f f f ++---的值为( )A .4040B .4C .2D .05.函数()y f x =的图象在点()()1,1f 处的切线方程是210x y -+=,若()()g x xf x =,则()'1g =( )A .3B .2C .1D .326.已知函数()f x 为奇函数,当0x <时,()()3ln f x x a x =+-,且曲线()y f x =在点()()1,1f 处的切线的斜率是1,则实数a =( )A .1B .1-C .2D .2-7.已知函数()2xmf x xe mx =-+在(0,)+∞上有两个零点,则m 的取值范围是( ) A .()0,eB .()0,2eC .(,)e +∞D .(2,)e +∞8.若过点(1,)P n 可作两条不同直线与曲线()2212y x x x -+=≤≤相切,则n ( ) A .既有最大值又有最小值 B .有最大值无最小值 C .有最小值无最大值D .既无最大值也无最小值9.设函数的定义域为D ,若满足条件:存在[],a b D ⊆,使()f x 在[],a b 上的值域为,22a b ⎡⎤⎢⎥⎣⎦,则称()f x 为“倍缩函数”.若函数()2xt f x e =+为“倍缩函数”,则实数t 的取值范围是( ) A .(],1ln 2-∞--B .(),1ln2-∞--C .[)1ln 2,++∞D .()1ln 2,++∞10.某种新产品的社会需求量y 是时间t 的函数,记作:y =f (t ).若f (0)=y 0,社会需求量y 的市场饱和水平估计为500万件,经研究可得,f (t )的导函数f '(t )满足:f '(t )=kf (t )(500﹣f (t ))(k 为正的常数),则函数f (t )的图象可能为( )③ ④① ②A .①②B .①③C .②④D .①②③11.若52345012345(23)x a a x a x a x a x a x -=+++++,则0123452345a a a a a a +++++为() A .-233B .10C .20D .23312.已知函数()f x 的导函数为()()()2,232ln f x f x x xf x ''=-+,则()2f '=( ) A .92B .94C .174D .178二、填空题13.曲线2x y ae +=的切线方程为260x y -+=,则实数a 的值为_______. 14.已知函数()()1,1ln ,1x x f x x x ⎧+<=⎨≥⎩,若方程()=f x ekx 恰有两个实数解,其中e 是自然对数的底数,则实数k 的取值范围为________. 15.在1x =附近,取0.3x ∆=,在四个函数①y x =;②2y x ;③3y x =;④1y x=中,平均变化率最大的是__________.16.已知函数()f x 的导函数为(x)f ',若32()(1)2f x x f x '=+-,则(1)f '的值为___.17.设曲线1cosx y sinx +=在点π,12⎛⎫⎪⎝⎭处的切线与直线x ay 10-+=平行,则实数a =______.18.过点()0,1且与曲线11x y x +=-在点()3,2处的切线垂直的直线的方程为______. 19.已知函数()11,03ln ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩若函数()0f x ax -=恰有3个零点,则实数a 的取值范围为________.20.已知直线l 与曲线()sin f x x =切于点(,sin )A αα,且直线l 与曲线()sin f x x =交于点(,sin )B ββ ,若-αβπ=,则tan α的值为________.三、解答题21.设函数1()ln x xbe f x ae x x-=+.(1)求导函数()'f x ;(2)若曲线()y f x =在点(1,(1))f 处的切线方程为(1)2y e x =-+,求a ,b 的值. 22.已知函数f (x )=x 3﹣3x 2+a (a ∈R ).(1)若f (x )的图象在(1,f (1))处的切线经过点(0,2),求a 的值;(2)若对任意x 1∈[0,2],都存在x 2∈[2,3]使得f (x 1)+f (x 2)≤2,求实数a 的范围. 23.已知曲线32:32C y x x x =-+,直线:l y kx =,且直线l 与曲线C 相切于点()()000,0x y x ≠,求直线l 的方程及切点的坐标.24.函数在点处的切线方程为,若在区间上,恒成立,求的取值范围.25.已知函数()sin xxf x e =(1)求函数()f x 在点()()0,0M f 处的切线方程;(2)若()0f x k -≤在[]0,x π∈时恒成立,求k 的取值范围. 26.已知函数()2e 2xf x ax x x =--.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,若曲线()y f x =在直线y x =-的上方,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】由函数()f x 为奇函数,解得1a =-,得到1()xx f x e e=-,求得(0)f ',得到切线的斜率,进而可求解切线的方程. 【详解】由题意,因为函数()()xxa f x e a R e=+∈为奇函数,则()0000a f e e =+=,解得1a =-,即1()xx f x e e =-,则1()x x f x e e +'=,所以01(0)2f e e'=+=,即2k =, 且当0x =时,001(0)0f e e=-=,即切点的坐标为(0,0), 所以切线的方程为2y x =,故选C. 【点睛】本题主要考查了利用导数求解在某点处的切线方程,其中熟记导数的几何意义求解切线的斜率,再利用直线的点斜式求解切线的方程是解答的关键,着重考查了推理与运算能力,属于基础题.2.C解析:C 【分析】求出函数的导数,设切点为3(,)m m ,求得切线的斜率,以及切线的方程,运用代入法,将选项代入切线的方程,解方程即可得到结论. 【详解】3y x =的导数为23y x '=,设切点为3(,)m m ,可得切线的斜率为23m ,切线的方程为323y m m x m -=-(),若(0,0)P ,则3230)(m m m -=-,解得0m =,只有一解;若(01)P ,,则32130)(m m m -=-,可得312m =-,只有一解; 若(1,1)P ,则32131m m m -=-(),可得322310m m -+=, 即为2(1)20(1)m m -+=,解得1m =或12-,有两解; 若(2,1)P --,则32132)m m m --=-(-, 可得322610m m +-=,由322()261()612f m m m f m m m '=-=++,,当20m -<<时,()f m 递减;当0m >或2m <-时,()f m 递增. 可得(0)1f =-为极小值,(2)7f -=为极大值, 则322610m m +-=有3个不等实数解. 故选:C . 【点睛】本题考查导数的运用:求切线的方程,考查导数的几何意义,正确求导和设出切点是解题的关键,注意运用排除法,属于中档题.3.A解析:A 【分析】求出导数,求得切线的斜率,切点坐标,由斜截式方程,即可得到切线的方程. 【详解】()2ln f x x x =+, 1()2(0)f x x x x'∴=+>(1)3f '∴=,又(1)1f =,∴函数()f x 在1x =处的切线方程13(1)y x -=-,即320x y --=. 故选:A 【点睛】本题主要考查导数的几何意义,求切线的方程,正确求导是解题的关键,属于基础题.4.B解析:B 【分析】计算得到()()4f x f x +-=,()()''0f x f x --=,代入数据得到答案. 【详解】函数34(x)sin 1x f x x e =++⇒+()()44411x x x e f x f x e e +-=+=++, ()()224'3cos 1xxe f x x x e=-+++,()()''0f x f x --=,(2020)'(2020)(2020)'(2020)=4f f f f ++---,故答案选B . 【点睛】本题考查了函数的奇偶性,计算出()()4f x f x +-=是解题的关键.5.D解析:D 【解析】分析:先求出()'g x 和(1)g ',再求(1)(1)f f '和即得()'1g . 详解:由题得()()(),(1)(1)(1),g x f x xf x g f f =+∴'=+'''因为函数()y f x =的图象在点()()1,1f 处的切线方程是210x y -+=, 所以1(1),(1)1,2f f =='所以13(1)(1)(1)1.22g f f =+'='=+ 故答案为D.点睛:(1)本题主要考查求导和导数的几何意义,意在考查学生对该知识的掌握水平.(2) 函数()y f x =在点0x 处的导数0()f x '是曲线()y f x =在00(,())P x f x 处的切线的斜率,相应的切线方程是000()()y y f x x x '-=-6.C解析:C 【分析】利用奇偶性可求得0x >时()f x 的解析式,根据切线斜率为()1f '可构造方程求得结果. 【详解】当0x >时,0x -<,()3ln f x x a x ∴-=-+,()f x 为奇函数,()()()3ln 0f x f x x a x x ∴=--=->, ()23af x x x'∴=-,()131f a '∴=-=,解得:2a =. 故选:C . 【点睛】本题考查导数几何意义的应用,涉及到利用函数奇偶性求解函数解析式的问题7.D解析:D 【分析】原问题等价于函数()x h x xe =与函数1()()2g x m x =-有两个不同的交点,求出两函数相切时的切线斜率,再结合函数特征,求出m 的取值范围即可. 【详解】解:函数()2xmf x xe mx =-+在(0,)+∞上有两个零点,等价于()x h x xe =与1()()2g x m x =-有两个不同的交点,()g x 恒过点1(,0)2,设()g x 与()h x 相切时切点为(,)a a ae ,因为'()(1)x h x e x =+,所以切线斜率为(1)a e a +,则切线方程为(1)()a a y ae a e x a -=+-,当切线经过点1(,0)2时,解得1a =或12a =-(舍),此时切线斜率为2e ,由函数图像特征可知:函数()2xmf x xe mx =-+在(0,)+∞上有两个零点,则实数m 的取值范围是(2,)e +∞. 故选:D. 【点睛】本题考查导数的综合应用,由函数零点求参数的取值范围,难度中等.8.C解析:C 【分析】数形结合分析临界条件再判断即可. 【详解】对()2212y x x x -+=≤≤求导有'22y x =+()12x -≤≤,当2x =时'6y =,此时切线方程为()()22226264y x y x -+⨯=-⇒=-,此时642n =-=.此时刚好能够作出两条切线,为临界条件,画出图像有:又当1x =时 3y =为另一临界条件,故[)2,3n ∈.故n 有最小值无最大值. 故选:C 【点睛】本题主要考查了导数的几何意义的运用,需要数形结合分析临界条件进行求解.属于中档题.9.B解析:B 【分析】判处出()2xt f x e =+单调递增,可得2222a b t a e t b e ⎧+=⎪⎪⎨⎪+=⎪⎩,进而可得a ,b 为方程2x x t e -=的两个实根,进一步转化为函数1xy e =与22x t y -=有两个交点,求出斜率为12的切线方程为111ln 222y x ⎛⎫-=- ⎪⎝⎭,切线在y 轴上的截距为1ln 22+,只需1ln 222t +->即可. 【详解】因为函数()2xtf x e =+为“倍缩函数”, 所以存在[],a b D ⊆,使()f x 在[],a b 上的值域为,22a b ⎡⎤⎢⎥⎣⎦,由于()2xt f x e =+单调递增,所以2222a b t ae t be ⎧+=⎪⎪⎨⎪+=⎪⎩,即a ,b 为方程2xx te -=的两个实根, 进一步转化为函数1xy e =与22x ty -=有两个交点, 不妨先求出与函数1xy e =相切且斜率为12的直线方程. 对于数1x y e =,求导得1x y e '=,令12xe =,解得1ln 2x =,112y =, 所以斜率为12的切线方程为111ln 222y x ⎛⎫-=- ⎪⎝⎭,该直线在y 轴上的截距为1ln 22+, 要使函数1xy e =与22x t y -=有两个交点,则1ln 222t +->,所以1ln 2t <--,故选:B . 【点睛】本题是函数的新定义题目,考查了函数的单调性求值域、导数的几何意义求切线方程,属于中档题.10.B解析:B 【分析】令()0f t '=,则()0f t =或500,即当()0f t =或500时,曲线的切线斜率接近0,从而得到答案. 【详解】因为()()()()500f t kf t f t '=﹣, 令()0f t '=,则()0f t =或500,即当()0f t =或500时,曲线的切线斜率接近0, 由选项可知,只有①③符合题意, 故选:B. 【点睛】本题考查函数的实际应用,考查导数的几何意义,根据导数的值求函数图像切线的斜率,属于中档题.11.A解析:A 【解析】 【分析】对等式两边进行求导,当x =1时,求出a 1+2a 2+3a 3+4a 4+5a 5的值,再求出a 0的值,即可得出答案. 【详解】对等式两边进行求导,得:2×5(2x ﹣3)4=a 1+2a 2x +3a 3x 2+4a 4x 3+5a 5x 4, 令x =1,得10=a 1+2a 2+3a 3+4a 4+5a 5; 又a 0=(﹣3)5=﹣243,∴a 0+a 1+2a 2+3a 3+4a 4+5a 5=﹣243+10=﹣233. 故选A . 【点睛】本题考查了二项式定理与导数的综合应用问题,考查了赋值法求解二项展开式的系数和的方法,利用导数得出式子a 1+2a 2+3a 3+4a 4+5a 5是解题的关键.12.D解析:D 【分析】求导数,将2x =代入导函数解得()2f ' 【详解】()()()()21232ln '432f x x xf x f x x f x''=-+⇒=-+将2x =代入导函数()()()117'2832'228f f f '=-+⇒= 故答案选D 【点睛】本题考查了导数的计算,把握函数里面()2f '是一个常数是解题的关键.二、填空题13.2【分析】根据题意设直线与曲线的切点坐标为利用导数求出切线的方程与比较分析可得且解可得即可得切点的坐标将切点坐标代入曲线方程分析可得答案【详解】根据题意设曲线与的切点的坐标为其导数则切线的斜率又由切解析:2 【分析】根据题意,设直线与曲线的切点坐标为2m m ae +(,),利用导数求出切线的方程,与260x y -+=比较分析可得22m ae +=且226m -+=,解可得2m =-,即可得切点的坐标,将切点坐标代入曲线方程,分析可得答案. 【详解】根据题意,设曲线2x y ae +=与260x y -+=的切点的坐标为2m m ae +(,),其导数2x y ae+'=,则切线的斜率2m k ae += ,又由切线方程为260x y -+=,即26y x =+,则22m k ae +==, 则切线的方程为22m m y aeae x m ++-=-(),又由22m ae +=,则切线方程为22y x m -=-(),即222y x m =-+,则有226m -+=,解可得2m =- ,则切点的坐标为22-(,) ,则有(2)22a e -+=⨯ , 2a ∴=. 故答案为:2. 【点睛】本题考查利用导数计算曲线的切线方程,关键是求出切点的坐标.14.【分析】方程恰有两个实数解即曲线与直线有两个不同的交点利用导数求切线方程的斜率运用数形结合思想结合图象进行求解即可【详解】方程恰有两个实数解即曲线与直线有两个不同的交点设则设过原点的直线与相切的切点解析:1[e -,21]e【分析】方程()f x ekx =恰有两个实数解,即曲线()y f x =与直线y ekx =有两个不同的交点,利用导数求切线方程的斜率,运用数形结合思想结合图象进行求解即可. 【详解】方程()f x ekx =恰有两个实数解, 即曲线()y f x =与直线y ekx = 有两个不同的交点,设()ln g x x =,则1()g x x'=, 设过原点的直线与()ln g x x =相切的切点坐标为:(,)x y '',则切线方程为:1()y y x x x ''-=-', 又此切线过点(0,0),求得:1y '=,即ln 1x '=,即x e '=,即1()g x e''=, 由图可知:曲线()y f x =与直线y ekx =有两个不同的交点时有:11eke-, 即实数k 的取值范围为:1[e -,21]e, 故答案为:1[e -,21]e【点睛】本题考查了分段函数的性质、考查了利用导数求切线方程的斜率,考查了数形结合的思想,考查了数学运算能力.15.③【分析】先根据平均变化率的定义求得再分别计算各选项对应的平均变化率即可求解【详解】根据平均变化率的计算公式可得所以在附近取则平均变化率的公式为则要比较平均变化率的大小只需比较的大小下面逐项判定:①解析:③ 【分析】先根据平均变化率的定义,求得00()()f x x f x y x x+∆-∆=∆∆,再分别计算各选项对应的平均变化率,即可求解. 【详解】根据平均变化率的计算公式,可得00()()f x x f x y x x+∆-∆=∆∆, 所以在1x =附近取0.3x ∆=,则平均变化率的公式为(1.3)(1)0.3y f f x ∆-=∆, 则要比较平均变化率的大小,只需比较(1.3)(1)y f f ∆=-的大小,下面逐项判定:①中,函数y x =,则(1.3)(1)0.3y f f ∆=-=; ②中,函数2yx ,则(1.3)(1)0.69y f f ∆=-=;③中,函数3y x =,则(1.3)(1) 1.197y f f ∆=-=; ④中,函数1y x=中, 则(1.3)(1)0.23y f f ∆=-≈, 所以,平均变化率最大的是③. 【点睛】本题主要考查了平均变化率的应用,其中解答中熟记平均变化率的计算公式,正准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.16.【解析】【分析】求函数的导函数令即可求出的值【详解】因为令则所以【点睛】本题主要考查了函数的导数及导函数求值属于中档题 解析:3-【解析】 【分析】求函数的导函数,令1x =即可求出()1f '的值. 【详解】因为 2()32(1)f x x f x ''=+令1x =则(1)32(1)f f ''=+ 所以(1)3f '=- 【点睛】本题主要考查了函数的导数,及导函数求值,属于中档题.17.【解析】【分析】对函数求导求得得到a 的方程求解即可【详解】切线与直线平行斜率为又所以切线斜率所以的斜率为即解得故答案为【点睛】本题考查根据切线的斜率求参数熟记基本初等函数的求导公式准确计算是关键是基 解析:1-【解析】【分析】 对函数1cosx y sinx +=求导,求得πf 2⎛⎫⎪⎝⎭',得到a 的方程求解即可. 【详解】切线与直线x ay 10-+=平行,斜率为1a, 又21cosxy sin x--=', 所以切线斜率πk f'12⎛⎫==- ⎪⎝⎭,所以x ay 10-+=的斜率为1-, 即11a=-,解得a 1=-. 故答案为1-. 【点睛】本题考查根据切线的斜率求参数,熟记基本初等函数的求导公式,准确计算是关键,是基础题.18.【解析】【分析】求导函数确定切线的斜率可得所求直线的斜率再利用点斜式可得直线方程【详解】当时即曲线在点处的切线斜率为与曲线在点处的切线垂直的直线的斜率为2直线过点所求直线方程为即故答案为【点睛】本题 解析:210x y -+=【解析】 【分析】求导函数,确定切线的斜率,可得所求直线的斜率,再利用点斜式可得直线方程. 【详解】11x y x +=-, 22'(1)y x ∴=--,当3x =时,1'2y =-,即曲线11x y x +=-在点()3,2处的切线斜率为12-, ∴与曲线11x y x +=-在点()3,2处的切线垂直的直线的斜率为2, 直线过点()0,1,∴所求直线方程为12y x -=,即210x y -+=.故答案为210x y -+=. 【点睛】本题考查导数的几何意义,考查直线方程,解题的关键是理解导数的几何意义.19.【分析】画出的图像再分析与的交点个数即可【详解】画出函数的图像如图所示:先求与相切时的情况由图可得此时设切点为则解得此时斜率又当时与平行也为临界条件故故答案为:【点睛】本题主要考查了数形结合求解函数解析:11 , 3e⎡⎫⎪⎢⎣⎭【分析】画出()11,03ln,0x xf xx x⎧+≤⎪=⎨⎪>⎩的图像,再分析()f x与y ax=的交点个数即可.【详解】画出函数()f x的图像,如图所示:先求y ax=与lny x=相切时的情况,由图可得此时lny x=,1'yx=设切点为()00,lnx x,则001lnaxx ax⎧=⎪⎨⎪=⎩,解得0x e=,1ae=.此时xye=.斜率113e>.又当13a=时13y x=与11,03x x+≤平行也为临界条件.故11,3ae⎡⎫∈⎪⎢⎣⎭.故答案为:11,3e⎡⎫⎪⎢⎣⎭【点睛】本题主要考查了数形结合求解函数零点个数的问题,需要根据题意画出图像,再分析临界条件分析.属于中档题.20.【分析】由导数的几何意义求出切线方程代入点坐标由代入后可求得【详解】由题意∴直线的方程为又直线过∴由得∴整理得∴故答案为:【点睛】本题考查导数的几何意义考查同角间的三角函数关系与诱导公式解题时只要由解析:2π 【分析】 由导数的几何意义求出切线方程,代入B 点坐标,由βαπ=-代入后可求得tan α. 【详解】由题意()cos f x x '=,∴直线l 的方程为sin cos ()y x ααα-=-,又直线l 过(,sin )B ββ,∴sin sin cos ()βααβα-=-,由得βαπ=-,∴sin()sin cos ()απααπ--=-,整理得2sin cos απα=,∴tan 2πα=.故答案为:2π. 【点睛】本题考查导数的几何意义,考查同角间的三角函数关系与诱导公式.解题时只要由导数几何意义写出切线方程,代入已知条件即可求解.三、解答题21.(1)()f x '=112ln ---++x x x xae be x beae x x x;(2)1a =,2b =. 【分析】(1)根据导数的运算法则求导; (2)求出(1)f ',由(1)e f ,(1)2f =可求得,a b .【详解】(1)由1e ()e ln x xb f x a x x-=+,得()1()ln x xbe f x ae x x -'⎛⎫'=+ ⎪⎝⎭' 112ln x x x xae be x be ae x x x---=++. (2)由题意得,切点既在曲线()y f x =上,又在切线(1)2y e x =-+上,将1x =代入切线方程,得2y =, 将1x =代入函数()y f x =,得(1)f b =, 所以2b =.将1x =代入导函数()'f x 中 得(1)f ae e ==', 所以1a =. 【点睛】关键点点睛:本题考查导数的运算法则,考查导数的几何意义.函数()f x 在点00(,())x f x 处的切线方程是000()()()y f x f x x x '-=-,若求过点()00,x y 的切线方程,则切点坐标为11(,)x y ,写出切线方程111()()y y f x x x '---,代入00(,)x y 求出11,x y 即可得切线方程.22.(1)a =1;(2)a ≤3 【分析】(1)出导数,求出切线的斜率和切点,再由两点斜率公式,即可得到a ;(2)运用导数判断()f x 在[0,2],在[2,3]的单调性,求出最值,由题意得,()()12max min 2f x f x +≤得到不等式,解出即可. 【详解】(1)2()36f x x x '=-,(1)3f '∴=-,又(1)2f a =-,∴切点坐标(1,2)a -, 又∵切线经过点(0,2), ∴由两点的斜率公式,得431a -=-, 解得1a =;(2)2()363(2)f x x x x x '=-=-,当[0,2]x ∈时,()0,()f x f x '≤单调递减; 当[2,3]x ∈时,()0f x '≥,()f x 单调递增,1[0,2]x ∈,()1f x ∴的最大值为(0)f a =,又2[2,3]x ∈,()2f x ∴的最小值为(2)4f a =-,对任意1[0,2]x ∈,都存在2[2,3]x ∈使得()()122f x f x +≤,()()12max min 2f x f x +≤,即有42a a +-≤, 解得3a ≤. 【点睛】本题主要考查的是导数的运用:求切线方程和求单调区间,最值,考查恒成立和存在思想,注意转化为求最值,考查运算能力,属于中档题和易错题. 23.14y x =-,33,28⎛⎫- ⎪⎝⎭【分析】切点(x 0,y 0)既在曲线上,又在切线上,由导数可得切线的斜率,构造方程,求解即可. 【详解】∵直线过原点,∴()0000y k x x =≠. 由点()00,x y 在曲线C 上,得32000032y x x x =-+,∴2000032y x x x =-+. 又∵2362y x x =-+',∴在点()00,x y 处曲线C 的切线的斜率()2000362k f x x x =-'=+,∴22000032362x x x x -+=-+,整理得200230x x -=,解得()00302x x =≠. 这时,038y =-,14k =-. 因此,直线l 的方程为14y x =-,切点的坐标是33,28⎛⎫- ⎪⎝⎭. 【点睛】本题考查了导数的几何意义、求函数的导数;“已知”曲线的切点时,包含以下三方面信息:①切点在切线上,②切点在曲线上,③切点横坐标处的导数等于切线的斜率.24.【解析】 【分析】先求出切线方程为,设,则,再对分类讨论,利用导数分析解答得解. 【详解】 解:,在处切线的斜率为,所以切线方程为,即.设,则. 依题意,当时,恒成立.①当时,在区间上,,是增函数,所以;②当时,在区间上,,是减函数,所以.综上所述,的取值范围是.【点睛】本题主要考查导数的几何意义,考查利用导数研究不等式的恒成立问题,考查函数的单调性、最值的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.25.(1)y x =(2)4,π-⎫+∞⎪⎪⎣⎭【分析】(1)求得函数的导数cos sin ()xx xf x e'-=,得到'(0)1f =,(0)0f =,利用直线的点斜式方程,即可求解其切线的方程;(2)利用导数求得函数()sin xf x e x -=在0,4π⎡⎫⎪⎢⎣⎭单调递增,在4ππ⎛⎤⎥⎝⎦单调递减,求得函数4max ()2f x e π=,进而由max ()k f x >,即可求解k 的取值范围.【详解】(1)由题意,函数sin ()x x f x e =,则cos sin ()xx x f x e '-=,可得'(0)1f =,又(0)0f =,所以函数()f x 在点(0,(0))M f 处的切线方程为y x =.(2)因为[0,]x π∈,令cos sin ()0x x xf x e '-==,解得4x π=,当x [0,)4π∈时,'()0f x >,当4x ππ⎛⎤∈ ⎥⎝⎦时,'()0f x <, 所以函数()sin xf x e x -=在0,4π⎡⎫⎪⎢⎣⎭单调递增,在4ππ⎛⎤⎥⎝⎦单调递减,所以4max ()42f x f e ππ⎛⎫== ⎪⎝⎭,若()0f x k -≤,在[0,]x π∈恒成立,即max ()k f x >恒成立,所以42k e π-≥,所以k 的取值范围是4,π-⎫+∞⎪⎪⎣⎭. 【点睛】本题主要考查了利用导数的几何意义求解曲线在某点处的切线方程,以及利用导数求解函数的恒成立问题,其中解答中熟记导数的几何意义,以及准确利用导数求得函数的单调性与最值是解答的关键,着重考查了转化思想,以及推理与运算能力,属于基础题. 26.(1)y x =-;(2)[)1,+∞ 【分析】(1)根据题意,求出函数的导数,由导数的几何意义可得切线的斜率,求出切点的坐标,由直线的点斜式方程分析可得答案;(2)根据题意,原问题可以转化为1e xx a +>恒成立,设()1x x g x e+=,求出()g x 的导数,由函数的导数与函数单调性的关系分析可得其最大值,分析可得答案. 【详解】(1)当1a =时,()22xf x xe x x =--,其导数()()122xf x ex x =+--',()01f '=-.又因为()00f =,所以曲线y=f (x )在点(0,f (0))处的切线方程为y x =-; (2)根据题意,当0x >时,“曲线y=f (x )在直线y x =-的上方”等价于“2e 2x ax x x x -->-恒成立”, 又由x >0,则2e 2x ax x x x -->-10x ae x ⇒-->⇒1ex x a +>, 则原问题等价于1ex x a +>恒成立; 设()1x x g x e +=,则()xxg x e '=-, 又由0x >,则()0g x '<,则函数()g x 在区间()0,∞+上递减, 又由()0101g e ==,则有11x x e+<, 若1e xx a +>恒成立,必有1a ≥, 即a 的取值范围为[)1,+∞. 【点睛】本题考查利用导数分析函数的切线方程以及最值,考查恒成立问题,正确分离参数是关键,也是常用的一种手段.通过分离参数可转化为()a h x >或()a h x <恒成立,即()max a h x >或()min a h x <即可,利用导数知识结合单调性求出()max h x 或()min h x 即得解,属于中档题.。