多项式矩阵理论
第一部分 多项式矩阵理论

第一部分:多项式矩阵理论
引言
互 质 性 1
MIMOs多变量线性系统传递函数矩阵可表达为 如下“分式”形式: N ( s)
G ( s ) ( g ij ( c ) ) pq
D( s )
其中N(s)和D(s)的最大公因子为单模阵,即N和D互质。 互质性是对两个多项式矩阵间的不可简约属性的表征。 互质性可分为右互质性和左互质性。 右互质多项式矩阵D(s)和N(s)列数相同。 左互质多项式矩阵DL(s)和NL(s)行数相同。
右互质。
D(s) 矩阵 对所有s列满秩 N ( s)
右互质的秩判据:
右互质贝左特等式:
存在多项式矩阵X(s)和Y(s), 使得:
X(s)D(s)+Y(s)N(s)=I(单位阵),反之亦然。
列既约性的定义:
给定方非奇异多项式矩阵M(s)
既 约 性 2
ci M(s)为其相应的列次数,i=1,2,…p。
称M(s)为列既约的,当且仅当:
其行列式的次数等于其所有列次数的和,即
deg det M ( s ) ci M ( s)
i 1
p
第一部分:多项式矩阵理论
列次表达式:对于多项式矩阵M(s), 其列次数记为:
单位矩阵I 初等矩阵E
初等变换
矩阵A的行初等变换相当于左乘相应的初等矩阵E 矩阵A的列初等变换相当于右乘相应的初等矩阵E
第一部分:多项式矩阵理论
单模矩阵定义:
称方阵Q(s)为单模阵,当且仅当其行列式detQ(s)=c 为独立于s的非零常数。 例1:非奇异的常数矩阵 s 1 s 2 例2: Q( s )
s kc 1 Sc ( s ) p p
多项式矩阵理论

如何求gcd 以gcrd为例.
Why:
04级研究生《线性系统理论》教案
Gcd 的性质 以gcrd为例 gcrd不唯一. 若R(s)是D(s)和N(s)的gcrd,W(s)是单模矩阵, 则W(s)R(s)也是D(s)和N(s)的gcrd. Why:
(2)D(s),N(s)的所有gcrd在非奇异性和单模性上相同,即 若R1(s)是D(s),N(s)的一个gcrd R2(s)也是D(s),N(s)的一个gcrd 则R1(s)非奇异R2(s)非奇异 R1(s)单模R2(s)单模 (3) (4)gcrd R(s)可表示为R(s)=X(s)D(s)+Y(s)N(s) (5)gcrd的多项式元的次数可以高于D(s),N(s)元多项式的次数.
04级研究生《线性系统理论》教案
非既约矩阵的既约化
1
通过左乘或右乘单模矩阵,即行(列)初等变换实现既约化。
2
实质:降低行或列的次数
3
含义:在初等运算下,degdetM(s)不变。
4
实现既约化以后,次数不能被降低了。
5
6.12 Smith形
史密斯形的特征
04级研究生《线性系统理论》教案
特征: Smith形的求法 见书。 对Smith形的一些讨论 对给定的多项式矩阵Q(s),其Smith形唯一。 (变换U(s),V(s)不唯一)
次数
6.10 列次数和行次数
03
01
02
04级研究生《线性系统理论》教案
如
多项式矩阵的列(行)次表示式
列次表示式 上例中的M(s)可表示为 一般地,
1
2
行次表示式
6.11 既约性
一. 既约性的定义 此处是对非奇异多项式矩阵定义的,方阵(可推广至非方)。 M(s)列既约: M(s)行既约: 注: 列既约和行既约之间无必然的联系; M(s)为对角阵时,列既约等价于行既约。 二. 既约性判据 如果已求出detM(s),则可利用定义判断; 利用列(行)次表示式
多项式矩阵理论

7.11 既约性 7.12 史密斯形 7.13 波波夫形 7.14 矩阵束和克罗内克尔形 7.15 小结
7.11 既约形
1.列既约性和行既约性 2.既约性判据
3.非既约性的既约化
既约性
1 行既约(行化简)多项式矩阵 满足下列关系式的非奇异 m 阶多项式方阵 M(s) 是行既约多项式矩阵。
证:由于rankA S 0,所以A s 中一定存在非零元素。通过行或 列的对调,我们总可以假设a11 ( s ) 0. 由引理得,可经过有限次初 等变换得到一个与A S 等价的B s 满足b11(s)为首一非零多项式, b (s) 且b11(s)能整除B s 的所有元素。将B S 第一项分别乘以- i1 加 b11 ( s ) b1 j ( s ) 到第i行,i 2, 3 m, 再将B S 的第一列分别乘以加到j列, b11 ( s ) j 2, 3 n.
A2(s ) P(s ) A1(s ) T(s )
(7 7)
【问题】为什么可以通过初等变换把多项式矩阵 化为Smith形且具有相关性质?
引理:设多项式矩阵 As =(aij (s))mn 的元素 a11 (s) 0,且A(s)中 至少有一个元素不能被它整除,则必存在一个与A(s) 等价的多项式矩阵B(S),其首行首列位置的素b (s) 0 , 且次数比 a11 (s) 的次数低,并且b11 ( s)整除B(s)的所有元 素。
k
i 1
ci
3 deg det A(s) 3;
k
i 1
ri
4 deg det A( s) 3
即A(s)列既约的,但不是行既约的。 同理可得,B(s)既不是行既约的,也不是列既约的
多项式矩阵

多项式矩阵多项式矩阵是一种在线性代数中使用的特殊矩阵,可以表示多项式函数。
它们与普通矩阵非常相似,但它们的元素是多项式而不是实数。
它们可以用于多项式函数的求解,最小二乘法等数学操作。
多项式矩阵定义多项式矩阵可以定义为由多项式组成的方阵,其形状为m x n,其中m和n是行数和列数。
多项式矩阵的每个元素都是一个多项式,即一个带系数的多次式。
这些多项式可以是单变量多项式,也可以是多变量多项式,但最常用的是单变量多项式。
多项式矩阵的形式多项式矩阵可以以多种形式表示,其中最常见的是乘性标量乘积形式,即在一维空间中表示多项式矩阵。
例如,可以用下面的方程来表示2 3多项式矩阵:A = [a11a12a13a21a22a23]其中a11、a12、a13、a21、a22、a23是这个矩阵的元素。
多项式矩阵的运算多项式矩阵有一些特殊的运算符,如加法、乘法和幂指数。
它可以按照一般矩阵的乘法运算,将两个多项式矩阵相乘并得到一个新的多项式矩阵。
此外,多项式矩阵也可以按照一般矩阵的乘法运算,将一个多项式矩阵与一个标量乘积相乘,并得到一个新的多项式矩阵。
多项式矩阵的应用多项式矩阵可用于解决多项式函数的最小二乘法。
最小二乘法是一种最优线性回归技术,用于求解多项式函数的拟合参数。
使用多项式矩阵,可以轻松地求出多项式函数的函数系数。
多项式矩阵还可以用于解决矩阵函数的最优化问题,它可以用来求解一般矩阵函数的最小值。
例如,可以使用多项式矩阵来求解极小值问题,使用它可以更容易地求解极小值问题。
多项式矩阵在线性代数和数学分析领域中是一个重要的概念,可以用于解决各种数学模型,应用非常广泛。
它们可以用于多项式函数的求解,最小二乘法等数学操作,并且可以用于解决其他多项式函数或极小值问题。
多项式矩矩阵

多项式矩矩阵多项式矩阵(Polynomial Matrix)是一种特殊的矩阵形式,它的每个元素都是一个多项式。
多项式矩阵在数学和工程领域中有广泛的应用,特别是在信号处理、控制系统和密码学等领域。
我们来了解一下多项式的定义。
多项式是由常数和变量的乘积相加而得到的表达式,例如2x² + 3x + 1就是一个二次多项式。
而多项式矩阵则是将多项式作为矩阵的元素,构成的一个矩阵形式。
多项式矩阵的表示形式为:P = [P₁(x) P₂(x) ... Pₙ(x)]其中P₁(x)、P₂(x)、...、Pₙ(x)是多项式。
这个矩阵的元素可以是标量,也可以是多项式。
多项式矩阵的加法和乘法运算与普通矩阵类似,只是将加法和乘法运算定义在多项式集合上。
多项式矩阵的加法运算是对应元素相加,乘法运算是将每个元素与另一个矩阵的对应元素相乘后再相加。
多项式矩阵的加法可以表示为:[P] + [Q] = [P₁(x) + Q₁(x) P₂(x) + Q₂(x) ... Pₙ(x) + Qₙ(x)]多项式矩阵的乘法可以表示为:[P] · [Q] = [P₁(x)Q₁(x) + P₂(x)Q₃(x) + ... + Pₙ(x)Qₙ(x)]多项式矩阵的乘法运算满足结合律和分配律,但不满足交换律,即[P] · [Q] ≠ [Q] · [P]。
这是因为多项式乘法不满足交换律。
多项式矩阵还可以进行转置运算,转置运算是将矩阵的行和列互换得到的新矩阵。
多项式矩阵的转置运算可以表示为:[P]ᵀ = [P₁(x)ᵀ P₂(x)ᵀ ... Pₙ(x)ᵀ]其中P₁(x)ᵀ、P₂(x)ᵀ、...、Pₙ(x)ᵀ分别表示P₁(x)、P₂(x)、...、Pₙ(x)的转置。
多项式矩阵的求逆运算是指对于一个可逆的多项式矩阵[P],存在一个多项式矩阵[Q],使得[P] · [Q] = [Q] · [P] = [I],其中[I]是单位矩阵。
线性代数期末题库矩阵的特征多项式与最小多项式

线性代数期末题库矩阵的特征多项式与最小多项式矩阵的特征多项式和最小多项式是线性代数中重要的概念,它们在矩阵理论和应用中起到了关键的作用。
本文将深入探讨特征多项式和最小多项式的定义、性质以及它们之间的关系。
一、特征多项式在矩阵理论中,给定一个n阶矩阵A,特征多项式是通过将矩阵A 与单位矩阵I进行相减,然后求得行列式的方式得出的。
特征多项式的定义如下:特征多项式:f(λ) = |A - λI|,其中λ是一个未知数。
特征多项式的求解过程如下:1. 计算矩阵 A - λI;2. 求得行列式 |A - λI|;3. 将行列式表示成特征多项式f(λ) 的形式。
特征多项式的定义简单明了,它是一个关于λ的多项式函数。
特征多项式中的每个根都被称为特征值,这些特征值对应了矩阵A的特征向量。
特征多项式的性质:1. 特征多项式的次数等于矩阵的阶数;2. 特征多项式的根(特征值)是矩阵的特征向量的特征值;3. 特征多项式的系数是与矩阵A有关的。
二、最小多项式在矩阵理论中,最小多项式是指能够使得多项式取零的最低次数的多项式。
最小多项式的定义如下:最小多项式:m(λ) 是满足 m(A) = 0 的最低次数的多项式。
最小多项式的求解过程如下:1. 确定最小多项式的次数;2. 找到一个关于λ的多项式P(λ) ,使得 P(A) = 0;3. 通过找到P(λ) 的最低次数即为最小多项式。
最小多项式的性质:1. 最小多项式的次数小于等于矩阵的阶数;2. 最小多项式的根是矩阵的特征值。
特征多项式与最小多项式的关系:特征多项式和最小多项式有着密切的联系。
事实上,最小多项式可以通过特征多项式的因子分解得到。
具体而言,特征多项式的最高次幂的因子就是最小多项式。
特征多项式等于最小多项式乘以一系列的一次多项式。
总结:特征多项式和最小多项式是线性代数中重要的概念,它们能够描述矩阵的特征值、特征向量和特征空间等重要信息。
通过研究特征多项式和最小多项式,我们可以更好地理解和应用矩阵理论。
2.多项式矩阵

1
d 2 ( ) d r ( ) 0
0
称它为A(λ)的Smith标准型,其中r≥1,di(λ)(i=1,2,…,r)是首项 系数为1的多项式,且 di(λ)|di+1(λ)(i=1,2,…,r-1)。其中,主对角 线上的非零元素d1(λ),…dr(λ) 称为λ-矩阵A(λ)的不变因子。 例:用初等变换化多项式矩阵为Smith标准型
①矩阵的两行(列)互换; ②矩阵的某一行(列)乘以非零的常数k; ③矩阵的某一行(列)乘以多项式 f ( ) 后加到另一行(列)。
4.多项式矩阵的秩
如果多项式矩阵A(λ)有一个r阶子式不为零,而所有的r+1 阶子式全为零,则称A(λ)的秩为r,零矩阵的秩规定为零。
5.多项式矩阵的逆矩阵 设A(λ)是n阶λ-矩阵,如果存在n阶λ-矩阵B(λ),使A(λ) B(λ)= B(λ)A(λ)=I,则称A(λ)可逆,并称B(λ)是 A(λ)的逆矩阵,且逆矩阵唯一。
2
2
0
2 3 2 0
2
2 2 0 0
2
0 1 3 3 3 1 2
0
0
0 3
最后所得的矩阵为A(λ)的Smith标准型,
d1(λ)=1,d2(λ)=λ,d3(λ)=λ3+λ为A(λ)的不变因子。
2.Jordan标准型
形如
i Ji 1
i
1
1 i m m i i
D k ( ) d 1 ( ) d 2 ( ) d k ( ), k 1, 2, r
矩阵论最小多项式

矩阵论最小多项式矩阵论最小多项式是矩阵理论中的一个重要概念,它可以用于计算矩阵的特征值和特征向量,对于研究矩阵的性质和应用有很大的帮助。
下面我们来一步一步地探究什么是矩阵论最小多项式。
第一步,了解矩阵的特征值和特征向量在介绍矩阵论最小多项式之前,首先需要了解矩阵的特征值和特征向量的概念。
矩阵的特征值是一个数,是该矩阵的一个特性,可以通过求解矩阵的特征多项式得到。
而矩阵的特征向量则是指矩阵与特征向量相乘等于特征值乘以特征向量的一个向量。
矩阵的特征值和特征向量对于研究矩阵的性质和应用非常重要。
第二步,引入矩阵多项式矩阵多项式是指多项式中的系数为矩阵,它是矩阵理论中一个重要的概念。
例如,一个$2*2$矩阵$A$的多项式可以表示为:$$f(x)=a_0I+a_1A+a_2A^2+a_3A^3+...+a_nA^n$$其中,$I$是单位矩阵,$a_0,a_1,a_2,...,a_n$为实数或复数。
第三步,引入矩阵的代数幂矩阵$A$的代数幂$A^k$表示将矩阵$A$相乘$k$次所得到的矩阵,其中$k$为自然数。
第四步,定义矩阵的最小多项式对于一个$n*n$矩阵$A$,它的最小多项式是一个次数最低的多项式$f(x)$,使得$f(A)=0$。
具体来说,就是将矩阵$A$代入多项式$f(x)$中,得到的结果为零矩阵。
最小多项式是一个矩阵独有的概念,可以用来求解矩阵的特征值和特征向量。
需要注意的是,最小多项式与矩阵的特征多项式是不同的概念。
第五步,求解矩阵的最小多项式求解矩阵的最小多项式是矩阵理论中的一个重要问题,可以采用以下两种方法进行求解:1.使用线性代数的基本定理求解,可以通过矩阵的特征值和特征向量进行求解;2.使用寻找伴随算子的方法,可以将矩阵的最小多项式转化为对应的伴随矩阵的特征多项式。
最后总结,矩阵论最小多项式是矩阵理论中的一个重要概念,它可以用于计算矩阵的特征值和特征向量。
通过了解矩阵的特征值和特征向量、引入矩阵多项式、引入矩阵的代数幂和定义矩阵的最小多项式等步骤,可以更好地理解和运用矩阵论最小多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1 多项式及其互质性
1 多项式及其性质
以复数 s 为自变量的实系数多项式 d(s)
d (s) dnsn dn1sn1 d1s d0 , s C, di R, i 0,1,2,n
❖ d(s) 的次数
:n = deg d(s);
❖ d(s)为n 次多项式 :最高次幂系数dn ≠ 0;
可化简有理函数:倘若g(s) = n(s)/d(s)中, n(s)和d(s)不互质。
6.2 多项式矩阵及其属性
1 多项式矩阵
多项式矩阵:以多项式为元素的矩阵。
以aij(s)为元素的m×n多项式矩阵A(s)记为
a11(s) a1n (s)
A(s)
am1(s) amn (s)
【例6-3】一个2×3的多项式矩阵
最大公因式:如果 r(s) 是 d(s) 和 n(s) 的公因式,而且可被 d(s) 和 n(s) 的每个 公因式整除,则称 r(s) 是 d(s) 和 n(s) 的最大公因式。
注:若r(s) 最大公因式,c为常数,则cr(s)也是最大公因式,若限定r(s) 为首一多项式,则最大公因式具有唯一性。
互质多项式:如果 d(s) 和 n(s) 的最大公因式是(与 s 无关的)非零常数,则称 d(s) 和 n(s) 为互质多项式,简称 d(s) 和 n(s) 互质。
第六章
多项式矩阵理论 (数学基础部分)
引言(经典控制理论、现代控制理论、多项式矩阵理论的应用)
50年代以前,以控制理论和电路理论为两大支柱的线性系统理论已经发展成为相当成熟的 “经典线性系统理论”。
经典线性系统理论的主要特征: 研究对象 → 线性定常单变量系统; 数学工具 → 复变函数(特别是傅里叶变换和拉普拉斯变换); 研究方法 → 频率响应法; 理论优点 → 输入、输出和反馈信号的物理概念清晰、易于测量; 理论缺点 → ⑴ 只能反映系统的外部特性和行为,是一种外部描述法; ⑵ 设计自由度小、指标模糊,需要反复试凑才能完成任务。
情况2: deg n(s) ≥ deg d(s), 则采用长除法直接用d(s)去除 n(s) 得到商 式和余式,商式便是 q(s),余式便是 r(s)。这里 q(s) 的最低次幂 ≥ 0。
【例6-1】 n(s) 2s3 3s 1, d (s) s2 s 2, 2s 2 q(s)
s2 s 2 2s3 0s2 3s 1 2s3 2s2 4s
A1(s) adjA(s) 多项式矩阵 /多项式 有理分式矩阵 det A(s)
4 线性相关和线性无关
给定元属于有理分式域R(s)的m个n维列或行多项式向量
{q1(s), q2(s), … qm(s)} 其中, m ≤ n。
(6-16)
线式性 成定立相:义关,6-6当[线且性仅相当关存和在线一性组无不关全]为称零多的项多式项向式量{α组1({sq),1(αs2)(,s)q,2…(s),,α…m(,sq)}m使(s)下}为
❖ 首一多项式
:最高次幂系数 dn = 1 。
多项式的性质:设多项式d(s),n(s)∈R[s], d(s) ≠ 0, n(s) ≠ 0
(6 1)
(1) d (s)n(s) 0; (2) deg[ d (s)n(s)] deg d (s) deg n(s); (3) 当且仅当 deg d (s) deg n(s) 0, deg[ d (s)n(s)] 0; (4) 若d (s) n(s) 0,deg[ d (s) n(s)] max[deg d (s), deg n(s)]; (5) 若d (s)、n(s)均为首一多项式, d (s)n(s)必为首一多项式。
本章主要内容
多项式矩阵理论是线性系统复频域理论的主要数学基础,这里主要学习与多 项式、多项式矩有关的数学知识:
1. 多项式及其互质性 2. 多项式矩阵极其属性 3. 多项式矩阵的初等变换、多项式矩阵的行(列)次 4. 行(列)既约多项式矩阵、多项式矩阵互质性 5. 多项式矩阵的Smith规范型、线性矩阵束sE-A和 Kronecker规范型
定理6-3 设有两个多项式 d(s) 和 n(s) 的,d(s)≠0,当且仅当满足下面条 件之一,d(s) 和 n(s) 是互质多项式。
(1)
d (s) n(s)
1,
s C
(6 8)
或
d (s0 )
n(s0)Fra bibliotek1,s0 : d (s0 ) 0, s0 C
(2) 存在两个多项式x(s)、y(s)使得
科学家:在频域中通过传递函数矩阵探求与时域中状态空间法并行的有益结果。
1963年,V.Belevitch: 将多项式矩阵的互质性与Kalman提出的可控性、可观测性联系起来。
1970年, H. Rosenbrock: 系统地研究了多项式矩阵表达式与状态空间表达式之间的关系; 并提出了解耦零点的概念。
(6 3)
如果q(s) - q1(s) ≠ 0,则(6-3)式左边阶次大于或等于deg d(s),而(6-3)式右 边阶次应小于deg d(s),产生矛盾。所以
q(s) = q1(s), r(s) = r1(s)
推论6-2 (余式定理)若n(s)∈R(s), α∈C, 则n(s)被d(s)=(s- α)除余式为常数n(α)。
定理6-1 (欧几里德除法定理)设 d(s), n(s)∈R[s] 且d(s)≠0, 则存在唯一的
q(s), r(s)∈R[s],使得
n(s) q(s) d(s) r(s)
deg r(s) deg d (s)
(6 2)
证明:情况1: deg n(s) < deg d(s), 则 q(s)=0, r(s)=n(s)
证明:
degr(s) deg(s ) 1, r(s)为常数r
lim n(s) lim[q(s)(s ) r] r
s
s
所以,余式为n(α)。证毕。
(6 4)
多项式的因式和互质性 (设d(s),n(s),r(s)为多项式) 因式:如果多项式n(s)可被多项式r(s)整除,则称r(s)为n(s)的一个因式。 公因式: r(s) 既是 d(s)的因式又是 n(s) 的因式,则r(s) 是d(s)和 n(s) 的公因式。 平凡公因式:非零常数。 注:非零常数总是每对d(s)和n(s)的公因式。 非平凡公因式:阶次大于或等于1的多项式。
如果上式 Sylvester 矩阵是非奇异的,则方程组有唯一的平凡解,相应 地(6-12) 有一个平凡解,即
a(s) = 0, b(s) = 0。 即定理(6-3)中条件(3)成立,d(s) 和 n(s) 互质。
由此归纳出下述定理。 定理6-4 多项式 d(s) 和 n(s) 互质的充要条件是它们的Sylvester矩阵非奇 异。
多项式互质问题变为有无非平凡解问题。如果非平凡解存在,怎样求得 具有最小阶次的非平凡解。
行搜索法是求解非平凡解的有效方法[见“仝茂达” P.293-296]。
2 有理函数
有理函数:
两个多项式之比,即 g(s) = n(s)/d(s)。
既约有理函数: 倘若g(s) = n(s)/d(s)中, n(s)和d(s)互质。
【例6-4】 两个2×2的多项式矩阵如下:
s 1
s3
s 1
s3
A1(s) s2 3s 2 s2 5s 4 ; A2 (s) s2 3s 2 s2 5s 6
容易求出它们的行列式为
det A1(s) (s 1)(s2 5s 4) (s 3)(s2 3s 2) 2s 2 det A2 (s) (s 1)(s2 5s 6) (s 3)(s2 3s 2) 0
d1
dm2
0
S
n0
0 n1
0 n2
d0
nm1
0 n0 n1 nm2
.
.
.
.
. . .
.
.
.
.
.
0 0 0
dm d m 1
d1 nm nm1 . . . 0
dn1 dn2
dnm
0 0 nm . 0 .. . .. . .. . 0 . n0
dn d n 1
50年代以后,宇航事业、过程控制和计量经济学等的发展,被研究对象从简单的单变量系 统发展成规模庞大、结构复杂的多边量系统,人们为了建立精确的模型还要考虑到系统具有的 非线性和时变特性。Bellman 和 Kalman 等学者借助于状态概念建立了“现代控制理论”。
现代控制理论的主要特征: 研究对象 → 复杂的多变量系统; 数学工具 → 线性代数; 研究方法 → 状态空间法; 理论优点 → 揭示系统的内部、外部特性和行为,设计自由度大、目标明确; 理论缺点 → ⑴ 建立复杂系统的状态空间表达式(动态方程)非常困难; ⑵ 状态变量的物理概念比较隐晦、且并不总具备可测量特性。
(6 9)
x(s)d(s) y(s)n(s) 1 (3) 不存在多项式a(s)、b(s)使得
(6 10)
n(s) b(s) d(s) a(s) 或等价为
(6 11)
b(s)d (s) a(s)n(s) b(s)
a(s)
d (s) n( s)
0
(6 12)
且
deg a(s) deg d (s)
2s2 7s 1 2s2 2s 4
9s 5 r(s)
n(s) (2s 2)d (s) (9s 5)
下面证唯一性。设除了商式q(s) 和余式 r(s)外,还有商式q1(s)和余式r1(s),则
n(s) q(s)d(s) r(s) q1(s)d(s) r1(s)
或
[q(s) q1(s)]d(s) r1(s) r(s)
A(s)
s
2
s
1 3s
2
7s2 2s 1 4
5s3 2s2 s
6s 7