酶促反应动力学(有方程推导过程) (1)0607

化学反应动力学第三、四章习题

1 《化学反应动力学》 第 三、四章习题 1、试推导A + B → P ,当其为二级反应r = k [A][B]时,其积分速率方程为: ln{1 + Δ0(P 0 - P ∞)/ [A]0(P t – P ∞)} = ln [B]0 / [A]0 +Δ0k t 式中,P 为用物理仪器测定的体系的某种物理性质(如吸光系数),该性质与浓度有线性关系,Δ0 = [B]0 - [A]0 2、反应Np 3+ + Fe 3+ → Np 4+ + Fe 2+。今用分光光度法进行动力学研究,样品池厚5 cm ,固定波长723 nm ,T = 298 K ,用HClO4调节反应溶液,使其[H +] = 0.400 mol/dm 3,离子强度I = 2.00 mol/dm 3,当反应物的初始浓度为[Np 3+]0 = 1.58 x 10--4 mol/dm 3,[Fe 3+]0= 2.24 x 10--4 mol/dm 3时,测定反应体系在反应不同时刻的吸收系数。数据如下: t / s 0 2.5 3.0 4.0 5.0 7.0 10.0 15.0 20.0 ∞ 吸收系数 0.100 0.228 0.242 0.261 0.277 0.300 0.316 0.332 0.341 0.351 设r = k [Np 3+][ Fe 3+],请用上题所得公式求速率常数k 值。 3、推导对峙反应 的弛豫过程动力学方程为: })]][]([[ex p{0t C B k k e e r f ++-=δδ。要求写出详细的推导过程,指出满足上式的条件。式中δ 为弛豫变量。 4、用超声法研究异构化反应,测定化合物转动异构化反应的弛豫时间为10-6秒,假如平衡时占优势的异构体的比例为80%,试测定占优势异构化反应的速率常数。 5、What is the temperature dependence of a slow solution reaction? What is the temperature dependence of the rate constant for the diffusion-controlled reaction A + + B - → AB? 6、The diffusivity of I 2 in CCl 4 is 1.5 x 10-5 cm 2 s -1 at 320 K. At the same temperature the rate coefficient for combination of atomic iodine in CCl 4 was recorded as 7 x 1012 cm 3 mol -1 s -1 with a flash method. If the reaction is diffusion controlled, and the diffusivity of the atom is the same as for the diatomic molecule, do the data give an acceptable model? The equilibrium nuclear separation of I 2 is 2.66 x 10-8 cm. A B + C k r

化学反应动力学第二章习题答案

化学反应动力学 第二章习题 1、The first-order gas reaction SO 2Cl 2 → SO 2 + Cl 2 has k = 2.20 ? 10-5 s -1 at 593K, (1) What percent of a sample of SO 2Cl 2 would be decomposed by heating at 593K for 1 hour? (2) How long will it take for half the SO 2Cl 2 to decompose? 解:一级反应动力学方程为: t k e Cl SO Cl SO ?-?=ο][][2222 ? t k e Cl SO Cl SO ?-=ο ][] [2222 (1) 反应达1小时时:60 601020.222225][][???--=e Cl SO Cl SO ο =0.924=92.4% 已分解的百分数为:100%-92.4%=7.6% (2) 当 21][][2222=οCl SO Cl SO 时,7.315062 1 ln 1=-=k t s 5 21102.2693 .0-?= t = 31500 s = 8.75 hour 2、T-butyl bromide is converted into t-butyl alcohol in a solvent containing 90 percent acetone and 10 percent water. The reaction is given by (CH 3)3CBr + H 2O → (CH 3)3COH + HBr The following table gives the data for the concentration of t-utyl bromide versus time: T(min) 0 9 18 24 40 54 72 105 (CH 3)CBr (mol/L) 0.1056 0.0961 0.0856 0.0767 0.0645 0.0536 0.0432 0.0270 (1) What is the order of the reaction? (2) What is the rate constant of the reaction? (3) What is the half-life of the reaction? 解: (1) 设反应级数为 n ,则 n A k dt A d ][] [=- ? kt A A n n =---1 1][1][1ο 若 n=1,则 ] [][ln 1A A t k ο = t = 9 01047.00961.01056.0ln 91==k , t = 18 01167.00856.01056 .0ln 181==k t = 24 01332.00767.01056.0ln 241== k , t = 40 01232.00645 .01056.0ln 401==k t = 54 01256.0=k , t = 72 01241.0=k , t = 105 01299.0=k

动力学方程

1问题一:什么是非等温试验? 通常有等温法(也称静态法)和非等温法(也称动态法), 等温法是较早研究化学动力学时普遍采用的方法,该法的缺点在于比较费时,并且研究物质分解时,往往在升到一定的试验温度之前物质己发生初步分解,使得结果不很可靠。在非等温法中,试样温度随时间按线性变化,它在不同温度下的质量由热天平连续记录下来。非等温法是从反应开始到结束的整个温度范围内研究反应动力学,测得的一条热重曲线与不同温度下测得的多条等温失重曲线提供的数据等同,相比于等温法,非等温法只需一个微量的试验样品,消除了样品间的误差以及等温法将样品升至一定温度过程中出现的误差,并节省了试验时间。在目前的热重分析中常采用非等温法来进行动力学的研究。 问题二:文献中常用热解动力学表达式 d (a)/dt=kf(a) ——(1) a为t时刻的分解率(材料的失重百分率)又称转化率。a=(m0-m)/(m0-m∞) k=A exp(-E/RT)——(2)β=dT/dt ——(3) 采用coats-Readferm积分法推到 Ln[g(a)/T2]=ln(AR/βE)-E/RT f(a)=(1-a)2 f(a)为分饵的固体反应物与反应速率的函数关系。设Y= Ln[g(a)/T2] X=1/T 做X,Y直线曲线,求出斜率即可得到活化能E,同时得到结局求出指前因子A。 确定g(a)的值就能得到活化能E,常用g(a)的形式很多,有的是模型,有的是反应级数,总之尝试多种方法,找到最合适的,得到更精确的线性关系。 问题三: 1单条升温速率曲线的Coats-Redfern法,跟上述方程表达式一样,可得, ln[-ln( 1 -a)/T 2] = ln[AR/βE( 1-2RT/ E) ]-E/RT( n = 1) ,(4) ln[-( 1 -a)1 -n/T2( 1 -n ) ] = ln [AR/βE (1-2RT/ E) ]-E/RT( n≠1) . (5) 因为,一般活化能 E 的数值远大于温度T,所以(1?2RT/E)≈1,则式(4)和式(5)右端第1项几乎是常数。因此,可分别取n等于0.5, 0.6, 0.7, 0.8, 1.0, 1.2和1.5,结合热重实验的数据得到式(4)和式(5)的左端数值,并对1/T作图,得到这些直线的线性相关系数和标准误差数据,通过对比确定出线性较好的直线,由其斜率得到活化能E。 2,多条升温速率曲线的Flynn-Wall-Ozawa 法 Flynn-Wall-Ozawa(FWO)法通过多条升温速率曲线确定动力学参数,是等转化率法、积分法的一种。 根据式(1)(2)(3)进行移项积分得到, Logβ=log[AE/RG(a)]-2.315-0.4567E/RT 由不同升温速率βi的TG 实验数据,在同一反应深度a下,找到相应的温度Ti,则lgβi 与Ti可以拟合得到一条直线,由其斜率可以得到活化能E,并且可以得到活化能随反应深度a的变化关系。(例如excel蒙古栎的四种升温速率)

第七章 化学反应动力学

第七章化学反应动力学 一.基本要求 1.掌握化学动力学中的一些基本概念,如速率的定义、反应级数、速率系数、基元反应、质量作用定律与反应机理等。 2.掌握具有简单级数反应的共同特点,特别就是一级反应与a = b的二级反应的特点。学会利用实验数据判断反应的级数,能熟练地利用速率方程计算速率系数与半衰期等。 3.了解温度对反应速率的影响,掌握Arrhenius经验式的4种表达形式,学会运用Arrhenius经验式计算反应的活化能。 4.掌握典型的对峙、平行、连续与链反应等复杂反应的特点,学会用合理的近似方法(速控步法、稳态近似与平衡假设),从反应机理推导速率方程。学会从表观速率系数获得表观活化能与基元反应活化能之间的关系。 5.了解碰撞理论与过渡态理论的基本内容,会利用两个理论来计算一些简单反应的速率系数,掌握活化能与阈能之间的关系。了解碰撞理论与过渡态理论的优缺点。 6.了解催化反应中的一些基本概念,了解酶催化反应的特点与催化剂之所以能改变反应速率的本质。 7.了解光化学反应的基本定律、光化学平衡与热化学平衡的区别,了解光敏剂、量子产率与化学发光等光化反应的一些基本概念。 二.把握学习要点的建议 化学动力学的基本原理与热力学不同,它没有以定律的形式出现,而就是表现为一种经验规律,反应的速率方程要靠实验来测定。又由于测定的实验条件限制,同一个反应用不同的方法测定,可能会得到不同的速率方程,所以使得反应速率方程有许多不同的形式,使动力学的处理变得比较复杂。反应级数就是用幂函数型的动力学方程的指数与来表示的。由于动力学方程既有幂函数型,又有非幂函数型,所以对于幂函数型的动力学方程,反应级数可能有整数(包括正数、负数与零)、分数(包括正分数与负分数)或小数之分。对于非幂函数型的动力学方程,就无法用简单的数字来表现其级数。对于初学者,要求能掌握具有简单级数的反应,主要就是一级反应、a = b的二级反应与零级反应的动力学处理方法及其特点。

反应动力学方法

热分析动力学 一、 基本方程 对于常见的固相反应来说,其反应方程可以表示为 )(C )(B )(A g s s +→ (1) 其反应速度可以用两种不同形式的方程表示: 微分形式 )(d d ααf k t = (2) 和 积分形式 t k G =)(α (3) 式中:α――t 时物质A 已反应的分数; t ――时间; k ――反应速率常数; f (α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。 由于f (α)和G (α)分别为机理函数的微分形式和积分形式,它们之间的关系为: α αααd /)]([d 1) ('1)(G G f = = (4) k 与反应温度T (绝对温度)之间的关系可用著名的Arrhenius 方程表示: )/exp(RT E A k -= (5)

式中:A ――表观指前因子; E ――表观活化能; R ――通用气体常数。 方程(2)~(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关系式: t T T β0 += (6) 即: β/=t d dT 式中:T 0――DSC 曲线偏离基线的始点温度(K ); β――加热速率(K ·min -1)。 于是可以分别得到: 非均相体系在等温与非等温条件下的两个常用动力学方程式: )E/RT)f(A t d d αexp(/-=α (等温) (7) )/exp()(β d d RT E f A T -= αα (非等温) (8) 动力学研究的目的就在于求解出能描述某反应的上述方程中的“动力学三因子” E 、A 和f(α)

对于反应过程的DSC 曲线如图所示。在DSC 分析中,α值等于H t /H 0,这里H t 为物质A ′在某时刻的反应热,相当于DSC 曲线下的部分面积,H 0为反应完成后物质A ′的总放热量,相当于DSC 曲线下的总面积。 二、 微分法 2.1 Achar 、Brindley 和Sharp 法: 对方程)/exp()(β d d RT E f A T -= αα进行变换得方程: )/exp(d d )(βRT E A T f -=α α (9) 对该两边直接取对数有: RT E A T f - =ln d d )(βln α α (10) 由式(11)可以看出,方程两边成线性关系。 通过试探不同的反应机理函数、不同温度T 时的分解百分数,进行线性回归分析,就可以试解出相应的反应活化能E 、指前因子A 和机理函数f(α). 2.2 Kissinger 法

动力学方程拟合模型(DOC)

动力学方程拟合模型 动力学方程拟合模型主要分为幂函数型模型和双曲线型模型。 在幂函数型动力学方程中,温度和浓度被认为是独立地影响反应速率的,可以表示为: 在双曲线型动力方程中强调模型方程中的吸附常数不能靠单独测定吸附性质来确定,而必须和反应速率常数一起由反应动力学实验确定。这说明模型方程中的吸附平衡常数并不是真正的吸附平衡常数,模型假设的反应机理和实际反应机理也会有相当的距离。双曲线型动力学方程的一般表达形式为 上述两类动力学模型都具有很强的拟合实验数据的能力,都既可用于均相反应体系,也可用于非均相反应体系。对气固相催化反应过程,幂函数型动力学方程可由捷姆金的非均匀表面吸附理论导出,但更常见的是将它作为一种纯经验的关联方式去拟合反应动力学的实验数据。虽然,在这种情况中幂函数型动力学方程不能提供关于反应机理的任何信息,但因为这种方程形式简单、参数数目少,通常也能足够精确地拟合实验数据,所以在非均相反应过程开发和工业反应器设计中还是得到了广泛的应用。 1.幂函数拟合 刘晓青[1]等人研究了HNO3介质中TiAP萃取Th(Ⅳ)的动力学模式和萃取动力学反应速率方程。 对于本萃取体系,由反应速率方程的一般形式可知: 可用孤立变量法求得各反应物的分反应级数a、b与c,从而确立萃取动力学方程。

第一步:分级数的求算 1.求a 固定反应物中TiAP和HNO3的浓度, 当TiAP的浓度远远大于体系中Th的初始浓 度时,可以认为体系中TiAP浓度在整个萃 取过程中没有变化而为一定値,则速率方程 可以简化为 两边取对数后得: ln{-d[Th-]/dt}=aln[Th]+ln1,用ln{-d[Th-]/dt} 对ln[Th]作图得到一条直线(r=0.9973),其斜率即为a。结果如图1所示,从图中可知斜率为1.05,即此动力学速率方程中Th(Ⅳ)的分反应级数a=1.05。 2.求b和c 同求Th(Ⅳ)分反应级数类似,固定反应物中Th(Ⅳ)和HNO3的浓度,则速率方程可以简化为 固定反应物中Th(Ⅳ)和TiAP的浓度,则速率方程可以简化为 画图可得:

相关文档
最新文档