布洛赫函数的性质

布洛赫函数的性质
布洛赫函数的性质

6.730 固态应用物理

课件18: 布洛赫函数的性质

大纲

动量和晶体动量

k.p哈密顿量

布洛赫态的电子速度

布洛赫定理

‘当我开始考虑它时,我感觉主要的问题是解释金属中电子怎样通过所有的离子运动….

直接用傅立叶分析,我惊喜的发现波不同于唯一通过周期调制的自由电子的平面波’

F. BLOCH

由于波函数是周期势的本征态…

或者

布洛赫定理的证明

步骤1: 平移算子对易于哈密顿量…

因此它们共用相同的本征态

.

平移和周期哈密顿量对易…

因此,

步骤2:

沿着不同矢量方向平移…

因此平移算符的本征值是指数关系的

布洛赫函数的规一化布洛赫振幅的常规选择…

布洛赫振幅的6.730选择…

规一化布洛赫振幅…

这里布洛赫振幅是规一化的…

物理动量不等于晶体动量

因此我们怎样计算电子实际空间的速度和轨道?

动量和晶体动量

从两部删去指数项

对于布洛赫振幅动量算符的作用

,是一个有用的恒等式

引导我们了解布洛赫振幅哈密顿量的作用….

动量和晶体动量

K.P哈密顿量

i (in our case .q.p)

如果我们知道k时的能量,对于小的q,我们可以利用这个来计算k+q时的能

量…

K.P哈密顿量能量的泰勒级数展开…

q的一阶匹配项…

布洛赫本征态电子速度

周期势场的电子波包

色散介质的波包…

只要波函数与下面的势场有相同的短周期性,电子能够恒速运动

2D晶体的能面

在2-D晶体中,圆形能量的轮廓导致平行于

2D晶体的能面

通常,对于更高的能量, 不平行于

Si 带结构

Si 带结构

Si带结构

Si 带结构

Ehrenfest ’s 定理

:

认为存在一些外力干扰晶格内电子运动…

如果我们考虑晶格平移算符运动方程,可以推倒出一个有用的方程式

既然晶格平移算符和哈密顿量相互对易…

半经典运动方程

布洛赫定理

§布洛赫定理 今天我们这一节课要讲的内容是布洛赫定理。 经过前面的学习,我们知道,晶体是由大量电子和原子核组成的多粒子系统,但晶体的许多电子过程仅与外层的价电子有关,而内层电子和原子核组成的原子实在一些近似条件下是保持稳定的,因此,为了了解晶体的性质必须首先了解晶体中电子的运动状态,而晶体中电子的运动状态可由薛定谔方程 ()()H E ψψ=r r (1) 的解来描述。式中H 是电子的哈密顿算符,()ψr 是电子的波函数,E 是能量本征值。这 里H 可以表示为电子的动能与电子所受到的等效势场之和 () 2 22H V m =- ?+r r (2) 其中第一部分表示电子的动能,第二部分表示电子所受到的等效势场。对于理想晶体,原子排列成晶格,晶格具有周期性,因而等效势场()V r 也具有周期性, ()()n V V =+r r R (3) 这里()n 112233,1,2,3m m m m ααα=++==R a a a a 为晶格周期矢量,它是原胞的三个基失1a ,2a 和3a 的线性组合。这个式子表明将位置矢量从r 移到n +r R 处,等效势场具有相同 的值。从这里可以看出,晶体中的电子就是在一个具有晶格周期性的等效势场中运动,那么,一个在周期场中运动的电子,它的波函数应该具有什么样的特征呢?布洛赫定理就回答了这么一个问题。 布洛赫定理指出,当势场具有晶格周期性时,晶体中电子的波函数具有这样的特征 ()() n n i e ψψ?+=k R r R r (4) 其中k 为一矢量,我们称之为波失。从这个式子我们可以看到,位置矢量为n +r R 处的波函数与位置矢量为r 处的波函数只相差一个位相因子n i e ?k R ,因为位相因子不影响波函数的 模的大小,所以,在不同原胞的对应点上找到电子的几率是相同的,这也说明晶体中的电子是公有化的,它不再束缚于某一单个的原子,而是在整个晶体中运动。 根据布洛赫定理,我们还可以把晶体中电子的波函数写成 ()()i e u ψ?=k r r r (5) 其中()u r 具有与晶格相同的周期性,即 ()()n u u =+r r R . 我们把(5)式表达的波函数称之为布洛赫波函数,或者说布洛赫波,它描述的电子叫布洛赫电子。我们看到,布洛赫波是平面波与周期函数的乘积,其中i e ?k r 表明它是一个平面波, ()u r 为平面波的振幅,它不是一个常数,而与位置有关,并且具有晶格周期性。换句话说, 在周期场中运动的电子的波函数不再是平面波,而是调幅平面波。 下面我们来证明布洛赫定理。 由于晶体具有平称对称性,因此我们引入平移算符αT ,当αT 作用于任意函数()f r 上时将使函数的自变量发生一个平移,从r 平移到α+r a , ()()f f αα=+T r r a , 显然如果αT 作用两次,就有

凹凸函数的性质

凹凸函数的性质 李联忠1 文丽琼2 1 营山中学 四川营山 637700 2营山骆市中学 四川营山 638150 摘要:若函数f(x)为凹函数,则n f f f n f x x x x x x n n ) ()()()( 212 1 +++≤ +++ 若 函数f(x)为 凸函 数 , 则 n f f f n f x x x x x x n n ) ()()()( 212 1 +++≥ +++ 从而使一些重要不等式的证明更简明。 中图分类号: 文献标识号: 文章编号: 高二数学不等式,教材上只要求学生掌握两个数的均值不等式,教材上的阅读材料中,证明了三个数的均值不等式,从而推广到多个数的情形。学有余力的学生,会去证多个数的情形。仿照书上去证,几乎不可能。下面介绍凹凸函数的性质,并用来证明之,较简便易行。 凹函数定义 若函数f(x)上每一点的切线都在函数图像的下方,则函数f(x)叫做凹函数。如图(一) 凸函数定义 若函数f(x)上每一点的切线都在函数图像的上方,则函数f(x)叫做凸函数。如图(二) 性质定理 若函数f(x)是凹函数,则 n f f f n f x x x x x x n n ) ()()()( 212 1 +++≤ +++ 若函数f(x)是凸函数,则 n f f f n f x x x x x x n n ) ()()()(2121 +++≥ +++ 证明:若函数f(x)是凹函数,如下图

点P ( )( ,2 1 2 1 n f n x x x x x x n n ++++++ )在f(x)上 设过P 点的切线方程为:y=ax+b 则 b n a n f x x x x x x n n ++++? =+++ 2 1 21 )( (1) ∵f(x) 是凹函数,切线在函数图像下方 ∴b a f x x +≥11)(;b a f x x +≥22)(;…;b a f x x n n +≥)( ∴ b n a n f f f x x x x x x n n ++++? ≥+++ 2 1 21) ()()( (2) 由(1),(2)得 n f f f n f x x x x x x n n ) ()()()( 212 1 +++≤ +++ 若函数f(x)为凸函数,如下图 点P ( )( ,2 1 2 1 n f n x x x x x x n n ++++++ )在f(x)上 设过P 点的切线方程为:y=ax+b 则 b n a n f x x x x x x n n ++++? =+++ 2 1 21 )( (1) ∵f(x) 是凸函数,切线在函数图像上方 ∴b a f x x +≤11)(;b a f x x +≤22)(;…;b a f x x n n +≤)(

三角函数正余弦函数的图像及性质复习汇总

一、正弦函数和余弦函数的图象: 正弦函数sin y x =和余弦函数cos y x =图象的作图方法:五点法:先取横坐标分别为0,3,,,222ππ ππ 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 二、正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R 。 (2)值域: 1、都是[]1,1-, 2、sin y x =,当()22 x k k Z π π=+ ∈时,y 取最大值1;当()322 x k k Z π π=+ ∈时,y 取最小值-1; 3、cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。 例:(1)若函数sin(3)6 y a b x π=-+的最大值为23,最小值为21 -,则=a __,=b _

(答:,12 a b ==或1b =-); ⑵ 函数y=-2sinx+10取最小值时,自变量x 的集合是_________________________。 (3)周期性: ①sin y x =、cos y x =的最小正周期都是2π; ②()sin()f x A x ω?=+和()cos()f x A x ω?=+的最小正周期都是2|| T πω=。 例:(1)若3 sin )(x x f π=,则(1)(2)(3)(2003)f f f f ++++=___(答:0) ; ⑵.下列函数中,最小正周期为π的是( ) A.cos 4y x = B.sin 2y x = C.sin 2x y = D.cos 4x y = (4)奇偶性与对称性: 1、正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线()2 x k k Z π π=+ ∈; 2、余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z ππ? ?+∈ ???,对称轴是直线()x k k Z π=∈ (正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴的交点)。 例:(1)函数522y sin x π?? =- ??? 的奇偶性是______(答:偶函数); (2)已知函数31f (x )ax b sin x (a,b =++为常数),且57f ()=,则5f ()-=______(答:-5); (5)单调性: ()sin 2,222y x k k k Z ππππ??=-+∈????在上单调递增,在()32,222k k k Z ππππ? ?++∈????单调递减; cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。特别提醒,别忘了k Z ∈! ⑴函数y=sin2x 的单调减区间是( )

布洛赫定理证明

对于理想晶体,原子规则排列成晶格,晶格具有周期性,由此等效势场)(r V 也具有周期性,晶体中的共有化电子所满足的波动方程在坐标表象中为: )()()(2)(2r E r r V m i ψψ=????????+?-,)()(n R r V r V += 这里n R 为正格子空间是格矢量,考虑的是定态薛定谔方程。 布洛赫定理指出:当势场具有周期性时,波函数具有如下形 式:)()(r e R r n R k i n ψψ?=+,)()(r u e r r k i ?=ψ,)()(r u R r u n =+ 即波函数是按晶格周期函数调幅的平面波。具有该形式是函数又称为布洛赫函数。 布洛赫定理的证明 如果用)(?n R T 代表使位矢r 平移到n R r +的平移操作算符(n R 为格矢),则单电子的在周期性势场中的势能具有: )()()(?n n R r V r V R T += 在周期场中运动的单电子满足的定态薛定谔方程为: )()()(2)(?22r E r r V m r H ψψψ=??? ?????+?-= 其中:)(2?22r V m H +?-=为体系哈密顿量。 对于任意函数)(r f 在平移算符的作用下有: )()(2)](?)[(?22n n R r n R r f R r V m r f H R T n +??? ?????++?-=+ )()(??)(?)()(222r f R T H R r f H R r f r V m n n n =+=+????????+?-= 由此可知体系哈密顿量和平移算符是对易的,即

0)(???)(?=-n n R T H H R T 根据量子力学知识可知:哈密顿量和平移算符有共同的本征态,可选择哈密顿量的本征态)(r ψ为共同本征态。 采用波恩-卡曼周期性边界条件有: )()()(?)(?)(?)()(?)()(111111111r r a T a T a T r a N T a N r r N ψλψψψψ===+= )()()(?)(?)(?)()(?)()(22 2222222r r a T a T a T r a N T a N r r N ψλψψψψ===+= )()()(?)(?)(?)()(?)()(333333333r r a T a T a T r a N T a N r r N ψλψψψψ===+= 这里321,,λλλ分别为)(?),(?),(?321a T a T a T 在本征态)(r ψ的本征值;321,,a a a 分别为正格子空间的基矢。 由上式可以得到:j j N l i j e πλ2=,j l 取j N 2,1,0的整数,3,2,1=j ,引入倒矢量:33 3222111b N l b N l b N l k ++=,则有:j a k i j e ?=λ 于是: )()(?)(?)(?)()(?)(3 32211r a n T a n T a n T r R T R r n n ψψψ==+ )()()(321332211321r e r a n a n a n k i n n n ψψλλλ++?== =)(r e n R k i ψ? 这里k 为简约波矢,可将其限制在简约布里渊区内取值,其在倒格子空间的取值点是均匀分布的,其在每一个布里渊区取值的个数等于晶格元胞数,在倒空间的密度为3)2(πV 。 如果取:)()(r u e r r k i ?=ψ,代入上式有: )()()()(r u e R r u e n n R r k i n R r k i +?+?=+ 则:)()(r u R r u n =+

凸函数的性质与应用

学院数学与信息科学学院 专业数学与应用数学 年级2009级 姓名zym 论文题目凸函数的性质与应用 指导教师555职称副教授成绩 2011 年06月10日

目录 摘要 (2) 关键词 (2) Abstract (2) Keywords (2) 前言 (2) 1 凸函数的定义 (2) 2 凸函数的性质 (4) 2.1f为I上凸函数的充要条件 (4) 2.2 f为区间I上的可导函数的相关等价论断 (4) 3凸函数的应用 (6) 参考文献 (7)

函数的性质与应用 学生姓名: *** 学号: 20095031390 数学与信息科学学院 数学与应用数学 指导教师: *** 职称: 副教授 摘 要:本文从凸函数的定义出发,总结了凸函数的性质与应用 关键词:凸函数;性质;应用 The properties and application of convex function Abstract: From the definition of convex function, summarizes the convex function of the properties and application. Key word: the definition of convex function; properties; application 前言 我们已经熟悉函数()2f x x =和()f x =的图象,它们不同的特点是:曲线 2y x =上任意两点间的弧段总在这两点连线的下方;而曲线y 则相反,任意两点间的弧段总在这两点连线的下方.我们把具有前一种特性的曲线称为凸的,相应的函数称为凸函数;后一种曲线称为凹的,相应的函数称为凹函数.下面通过一些例子来讨论凸函数的性质及应用,利用凸函数判断不等式的大小. 1 凸函数的定义 定义 1 设f 为定义在区间I 上的函数,若对I 上任意两点1x ,2x 和任意实数 ()0,1λ∈总有 ()()()()()121211f x x f x f x λλλλ+-≤+-, ()1 则称f 为I 上的凸函数.反之,如果总有 ()()()()()121211f x x f x f x λλλλ+-≥+-, ()2 则称f 为I 上的凹函数. 如果若()1、()2中不等式改为严格不等式,则相应的函数称为严格凸函数和严格

正弦函数余弦函数的性质

正弦函数余弦函数的性质 教学目标 1.掌握y=sin x(x∈R),y=cos x(x∈R)的周期性、奇偶性、单调性和最值.(重点) 2.会用正弦函数、余弦函数的性质解决一些简单的三角函数问题.(难点) 3.了解周期函数、周期、最小正周期的含义.(易混点) [基础·初探] 教材整理1函数的周期性 阅读教材P34~P35“例2”以上部分,完成下列问题. 1.函数的周期性 (1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期. (2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 2.两种特殊的周期函数 (1)正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. (2)余弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. 函数y=2cos x+5的最小正周期是________.

解:函数y =2cos x +5的最小正周期为T =2π. 【答案】 2π 教材整理2 正、余弦函数的奇偶性 阅读教材P 37“思考”以下至P 37第14行以上内容,完成下列问题. 1.对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. 2.对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称. 判断函数f (x )=sin ? ?? ?? 2x + 3π2的奇偶性. 解:因为f (x )=sin ? ???? 2x +3π2=-cos 2x . 且f (-x )=-cos(-2x )=-cos 2x =f (x ),所以f (x )为偶函数. 教材整理3 正、余弦函数的图象和性质 阅读教材P 37~P 38“例3”以上内容,完成下列问题.

对数性凸函数和几何凸函数的一些性质解读

对数性凸函数和几何凸函数的一些性质 张晶晶 (楚雄师范学院数学系2004级1班,) 指导老师郎开禄 摘要: 在本文中,获得了对数性凸函数的五个性质和几何凸函数的六个性质。 关键词: 凸函数; 对数性凸函数; 几何凸函数;基本性质 The research on some properties of logarithmatical convex function and geometric convex function Abstract: In this paper, the author gives five properties of logarithmatical convex function and six properties of geometric convex function by studying the fundamental properties. Key Words: Convex Function; Logarithmatical Convex Function; Geometric Covex Function;Fundamental Property 导师评语: 在文[1] ( [1]. 刘芳园,田宏根. 对数性凸函数的一些性质[J].《新疆师范大学学报》, 2006, 25(3): 22-25.)及文[2]( [2] .王传坚.对数性凸函数的性质及应用[D].楚雄师范学院03级优秀毕业 论文)等中,引入对数性凸函数的概念,获得了对数性凸函数的若干基本性质,并讨论了对数性凸函数的 基本性质的一些应用.文[3]( [3] .吴善和.几何凸函数与琴生型不等式[J].《数学的实践与认识》,2004,34(2),155-163)讨论了几何凸函数与琴生型不等式的关系. 受文[1]- [3]的启发,在文[1]- [3]的的基础上, 张晶晶同学的毕业论文<<对数性凸函数和几何凸函数的一些性质>>进一步研究对数性凸函数和几何凸函数的性质,获得了对数性凸函数的五个性质 (论文中的定理7至定理11),获得了几何凸函数的六个性质 (论文中的定理13至定理17及推论). 张晶晶同学的毕业论文<<对数性凸函数和几何凸函数的一些性质>>选题具有理论与实际意义,通过深入研究, 在文[1]- [3]的基础上,该论文获得了对数性凸函数的五个性质,获得了几何凸函数的六个性质.该论文完成有相当的技巧性和难度,其结果在理论与实际上都有重要意义.论文语言流畅,打印行文规范,是一篇创新型的毕业论文.该同学在作论文过程中,悟性好,爱钻研,能吃苦,独立性强. 对数性凸函数和几何凸函数的一些性质 前言 凸函数是一类重要的函数,它有许多很好的性质,并有广泛的应用,特别是在不等式的证明中发挥着无可代替的作用,受文[1]、[2]、[3]的影响,本文得到了对数性凸函数和几何凸函数的几个性质。 1.对数性凸函数的基本性质

正余弦函数的图像与性质(周期性)

第一课时 题目:正弦函数、余弦函数的图象 授课时间:3月25日,星期一 课型:新授课 教学目标: 理解借助单位圆中的三角函数线(正弦线)画出y sin x =的图象,进而画出 y cos x =的图象;会用“五点法”画y sin x =和y cos x =在一个周期内的简图。 教学重点和难点: 重点:利用三角函数线画正弦函数[]x 0,2 蝡的图象,用“五点法”画y sin x =和 y cos x =在一个周期内的简图。 难点:正弦函数与余弦函数图象间的关系、图象变换。 学情分析: 学生在之前已经学了一次函数、二次函数、指数函数、对数函数和幂函数,已掌握了一些基础函数的图像和性质,并了解一些函数图像的画法。而且刚分班学生的学习动力很足,但学生分析、理解能力较差,对具体形象的事物比较感兴趣,但对学习抽象理论知识存在畏难情绪,缺乏学习主动性,因此在教学中要注意引导学生积极思考和多动手画图练习。 教学方法: 通过多媒体展示正弦函数的形成,是学生更直观形象的了解正弦函数的形成,加深印象增加兴趣。并配合适当讲授法。在五点法画图中要学生动手实践,加深印象和理解。 教具、学具的准备:多媒体、直尺、圆规 教学过程: (一)知识链接 1、正弦线的概念 2、诱导公式(六) (二)情景设置 在初中和必修一的函数学习中,我们知道函数的图像为我们解决相关的函数问题提供了重要的方法和工具,那么三角函数的图像是怎样的呢? 这节课让我们来共同探讨正、余弦函数的图像问题。 【设计意图】从原有知识出发,类比联想,引入问题情景,学生主动参与,积极思考 (三)课题导入 提问1、如何作正弦函数的图象? ①列表描点法: 步骤:列表、描点、连线 大家试着画出正弦函数sin y x =[]0,2x π∈的图像

凸函数的性质

凸函数的性质 【摘自[前苏]克拉斯诺西尔斯基等著《凸函数与奥尔里奇空间》(中译本)】 通常称函数)(x f 在区间),(b a 内是“下(上)凸函数”,若对于),(b a 内任意两点1x 和 2x )(21x x ≠与任意)1,0(∈t ,都满足“琴生(Jesen)不等式” 1212() [(1)]()(1)()f tx t x tf x t f x >+-<+- (※) 或 () 11221122()()()f t x t x t f x t f x >+<+ (※※) [其中1t 和2t 为正数且121=+t t ] 它的特别情形(取2 1 = t )是 ()()()121222f x f x x x f >++?? < ??? ()21x x ≠ (※※※) 在§2-7中曾把它作为下(上)凸函数的定义.。我们将证明,对于连续函数来说,不等式(※※※)与琴生不等式(※)是等价的。正因为这样,我们在教科书中就用简单的不等式(※※※)定义了下(上)凸函数(因为我们研究的函数都是连续函数)。下凸函数简称为凸函数,上凸函数简称为凹函数。请读者注意.....,这些称呼同国内某些教科书中的称呼是不一致的.....................。但是,我们的上述称呼与新近出版的许多教科书或发表的论文中的称呼是一致的。 因为函数的“上凸”与“下凸”是对偶的,所以,下面只讨论下凸函数的性质。相信读者一定能够把下面得出的结论,类比到上凸函数上。 (一)琴生不等式的几何意义 我们先解释一下琴生不等式的几何意义。如图一, 设231x x x <<,则21 21 3112323x x x x x x x x x x x --+--=(根据解析几何中的定比分点公式(*))。 根据琴生不等式(※※), )(3x f )()(2121311232x f x x x x x f x x x x --+--< [注意1 213212321,x x x x t x x x x t --=--=] 图一

三角函数正余弦函数的图像及性质复习汇总

课题三角函数的图像及性质 1.借助单位圆中的三角函数线推导出诱导公式( π2/±α , π的±正α弦、余弦、正切) 教学目标 2.利用单位圆中的三角函数线作出y sin x,x R的图象,明确图象的形状; 3.根据关系cosx sin(x ) ,作出y cosx,x R的图象; 2 4.用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题; 重点、难点 1、正确地用三角函数线表示任意角的三角函数值 2、作余弦函数的图象。 教学内容 、正弦函数和余弦函数的图象: -1 正弦函数y sin x 和余弦函数y cos x图象的作图方法:五点法:先取横坐标分别为0,, ,3 ,2 22 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 二、正弦函数y sin x(x R) 、余弦函数y cosx(x R) 的性质: ( 1)定义域:都是R。 (2)值域: 1、都是1,1 , 2、y sinx ,当x 2k k 2 3、y cosx ,当x 2k k Z 例: ( 1)若函数y a bsin(3 x Z 时,y 取最大值1 ;当x 时,y 取最大值1,当x 2k ) 的最大值为3,最小值为 62 3 2k 3 k Z 时,y 取最小值-1; 2 k Z 时,y 取最小值- 1 。 1,则 a __, b _ 2 3 y -2 1 y=cosx -3 -5 -32 -4 -7 -2 -3 22

1 答: a 1 2,b 1或b 1); ⑵ 函数 y=-2sinx+10 取最小值时,自变量 x 的集合是 3)周期性 : (正(余)弦型函数的对称轴为过最高点或最低点且垂直于 x 轴的直线,对称中心为图象与 x 轴的交 点)。 5)单调性 : 别忘了 k Z ! ⑴函数 y=sin2x 的单调减区间是( ① y sin x 、 y cos x 的最小正周期都是 2 ; ② f ( x) A sin( x )和 f (x) Acos( 2 x ) 的最小正周期都是 T 2 sin 3x ,则 f (1) f (2) ⑵.下列函数中,最小正周期为 例: (1)若 f (x) f (3) L 的是( A. y cos 4x B. y sin 2x C.y f (2003) = 答: 0); x sin 2 D.y x cos 4 ( 4)奇偶性与对称性 : 1、正弦函数 y sin x ( x R ) 是奇函 数, 对称中心是 k ,0 k Z ,对称轴是直线 x k k Z ; 2 2、余弦函数 y cosx (x R ) 是偶函数, 对称中心是 k 2 ,0 k Z ,对称轴是直线 x k k Z 5 例:(1) 函数 y sin 5 2 2x 的奇偶性是 答:偶函数); 2)已知函数 f ( x ) a x bsin 3 x 1( a,b 为常数), 且 f (5 ) 7, 则 f ( 5) 答:- 5); y sin x 在 2k , 2k 2 k Z 上单调递增,在 2k , 2k 2 3 k Z 单调递减; 2 y cosx 在 2k ,2 k Z 上单调递减,在 2k ,2k k Z 上单调递增。 特别提醒 ,

凸函数的性质及其应用

摘要 高等数学的重点研究对象凸函数是数学学科中的一个最基本的概念。凸函数的许多良好性质在数学中都有着非常重要的作用。凸函数在数学,对策论,运筹学,经济学以及最优控制论等学科都有非常广泛的应用,现在已经成为了这些学科的重要理论基础和强有力的工具。 同时,凸函数也有一些局限性,因为在实际的运用中大量的函数并不是凸函数的形式,这给凸函数的运用造成了不便。为了突破其局限性并加强凸函数在实际中的运用,于是在60年代中期便产生了凸分析。 本文主要是研究凸函数在数学和经济学方面的应用,在数学方面,文主要探究了不等式的证明,看看它与传统方法比较哪个更为简洁;在经济学方面,主要介绍了凸函数的一些新的发展,即最优问题,该问题在投资决策中起到了非常重要的作用;最后简单的介绍了一下经济学中的有关Arrow-pratt风险厌恶度量的知识。 关键词:凸函数;不等式;经济学;最优化问题

Abstract Convex function, the main study object of higher mathematics, is one of the most fundamental concepts in mathematics. Many good properties of convex function have a very important role in mathematics. Convex function has a very wide range of applications in mathematics, game theory, operations research, economics and optimal control theory, and now has become the most important theoretical basis and the most powerful tool of these disciplines. Convex function has some limitations at the same time, because large numbers of functions are not convex functions in the practical application, which has caused inconvenience to the use of convex functions. In order to break its limitations and strengthen the use of convex function in practice, convex analysis was produced in the mid 60's. The paper is mainly study the applications of convex function in mathematics and economics. In mathematics, the paper mainly discusses the poof of inequality to see which is more simple compared with the traditional method. In the aspect of economics, the paper mainly introduces some new developments of convex functions, namely, optimal problems, which play an important role in the investment decision. Finally, the paper introduces the related knowledge of the Arrow-pratt risk aversion measure in economics simply. Key words:Convex function;Inequality;Economics;Optimization problem

正、余弦函数的图象和性质

xx -xx 学年度下学期 高中学生学科素质训练 高一数学同步测试(6)—正、余弦函数的图象和性质 一、选择题(每小题5分,共60分,请将正确答案填在题后的括号内) 1.函数)4 sin(π +=x y 在闭区间( )上为增函数. ( ) A .]4 ,43[ππ- B .]0,[π- C .]4 3 ,4[ππ- D .]2 ,2[π π- 2.函数)4 2sin(log 2 1π + =x y 的单调减区间为 ( ) A .)(],4(Z k k k ∈- ππ π B .)(]8,8(Z k k k ∈+- π πππ C .)(] 8 ,83(Z k k k ∈+-π πππ D .)(]8 3 ,8(Z k k k ∈++ππππ 3.设a 为常数,且π20,1≤≤>x a ,则函数1sin 2cos )(2 -+=x a x x f 的最大值为 ( ) A .12+a B .12-a C .12--a D .2 a 4.函数)2 5 2sin(π+=x y 的图象的一条对称轴方程是 ( ) A .2 π - =x B .4 π - =x C .8π=x D .π4 5=x 5.方程x x lg sin =的实根有 ( ) A .1个 B .2个 C .3个 D .无数个 6.下列函数中,以π为周期的偶函数是 ( ) A .|sin |x y = B .||sin x y = C .)32sin(π + =x y D .)2 sin(π +=x y 7.已知)20(cos π≤≤=x x y 的图象和直线y=1围成一个封闭的平面图形,该图形的面积 是 ( ) A .4π B .2π C .8 D .4 8.下列四个函数中为周期函数的是 ( )

自由电子与布洛赫电子的区别

自由电子与布洛赫电子的区别 (哈尔滨工业大学 材料科学与工程系1419002班) 摘要:在1928年,布洛赫波的概念由菲利克斯·布洛赫在1928年研究晶态固体物理特性时首次提出的,但其数学基础在历史上却曾由乔治·威廉·希尔(George William Hill ,1877年),加斯东·弗洛凯(Gaston Floquet ,1883年)和亚历山大·李雅普诺夫(Alexander Lyapunov ,1892年)等独立地提出。随后表产生了布洛赫电子的概念。本文主要探讨自由电子与布洛赫电子的区别。 关键词:自由电子;布洛赫电子;区别 1 基本概念 1.1 自由电子 自由电子(free electron)按照电子的运动范围定义指不被约束在某一个特定原子内部的电子,在化学中是指在分子中与某个特定原子或共价键无关的电子。当这种电子在受到外电场或外磁场的作用时,能够在物质(晶体点阵)中或真空中运动。因此自由电子也叫做离域电子。 由金属的电子云模型理论可以确定,金属晶体中存在自由电子。自由电子的多少会影响晶体的导电性和导热性,自由电子愈多,电传导的能力愈强,而大部分的金属晶体都有较多的自由电子,所以金属都具有良好的导热性和导电性。 1.2 布洛赫定理 晶体中电子的波函数是按晶格周期调幅的平面波,即电子的波函数具有如下形式 其中k 为电子的波矢,Rn 是晶格矢 上述理论称为布洛赫(Bloch)定理。 布洛赫定理的另一种表述为,存在以波矢 使得 对属于布拉维格子的所有格矢 成立。 1.3 布洛赫电子 用布洛赫函数描述的电子称为布洛赫电子。 )(e )(r u r k r k i k ?=ψ)()(r u R r u k n k =+k n R 3 32211a n a n a n R n ++=)(e )(r R r n R k i n ψψ?=+

布洛赫波

布洛赫波 在固体物理学中,布洛赫波(Bloch wave)是周期性势场(如晶体)中粒子(一般为电子)的波函数,又名布洛赫态(Bloch state)。布洛赫波因其提出者美籍瑞士裔物理学家菲利克斯·布洛赫(Felix Bloch)而得名。布洛赫波由一个平 面波和一个周期函数(布洛赫波包)相乘得到。其中与势场具有相同周期性。布洛赫波的具体形式为: 式中k为波矢。上式表达的波函数称为布洛赫函数。当势场具有晶格周期性时,其中的粒子所满足的波动方程的解ψ存在性质: 这一结论称为布洛赫定理(Bloch's theorem),其中为晶格周期矢量。可以 看出,具有上式性质的波函数可以写成布洛赫函数的形式。 硅晶格中的布洛赫波 平面波波矢(又称“布洛赫波矢”,它与约化普朗克常数的乘积即为粒子的晶体动量)表征不同原胞间电子波函数的位相变化,其大小只在一个倒易点阵矢量之内才与波函数满足一一对应关系,所以通常只考虑第一布里渊区内的波矢。对一个给定的波矢和势场分布,电子运动的薛定谔方程具有一系列解,称为电子的能带,常用波函数的下标n以区别。这些能带的能量在的各个单值区分界处存在有限大小的空隙,称为能隙。在第一布里渊区中所有能量本征态的集合构成

了电子的能带结构。在单电子近似的框架内,周期性势场中电子运动的宏观性质都可以根据能带结构及相应的波函数计算出。 上述结果的一个推论为:在确定的完整晶体结构中,布洛赫波矢是一个守恒量(以倒易点阵矢量为模),即电子波的群速度为守恒量。换言之,在完整晶体中,电子运动可以不被格点散射地传播(所以该模型又称为近自由电子近似),晶态导体的电阻仅仅来自那些破坏了势场周期性的晶体缺陷。 从薛定谔方程出发可以证明,哈密顿算符(Hamiltonian)与平移算符(translation)的作用次序满足交换律,所以周期势场中粒子的本征波函数总是可以写成布洛赫函数的形式。更广义地说,本征函数满足的算符作用对称关系是群论中表示理论的一个特例。 布洛赫波的概念由菲利克斯·布洛赫在1928年研究晶态固体的导电性时首次提出的,但其数学基础在历史上却曾由乔治·威廉·希尔(George William Hill,1877年),加斯东·弗洛凯(Gaston Floquet,1883年)和亚历山大·李雅普诺夫(Alexander Lyapunov,1892年)等独立地提出。因此,类似性质的概念在各个领域有着不同的名称:常微分方程理论中称为弗洛凯理论(也有人称“李雅普诺夫-弗洛凯定理”);一维周期性波动方程则有时被称为希尔方程(Hill's equation)。 参考资料 黄昆原著,韩汝琦改编,《固体物理学》,高等教育出版社,北京,1988,ISBN 7-04-001025-9 Charles Kittel, Introduction to Solid State Physics (Wiley: New York, 1996). Neil W. Ashcroft and N. David Mermin, Solid State Physics (Harcourt: Orlando, 1976). Felix Bloch, "über die Quantenmechanik der Elektronen in Kristallgittern," Z. Physik 52, 555-600 (1928). George William Hill, "On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon," Acta. Math. 8, 1-36 (1886).(本文初版于1877年,后曾被私下传阅)。 Gaston Floquet, "Sur les équations différentielles linéaires à coefficients périodiques," Ann. école Norm. Sup. 12, 47-88 (1883). Alexander Mikhailovich Lyapunov, The General Problem of the Stability of Motion (London: Taylor and Francis, 1992).(李雅普洛夫的博士论文,1892年完稿,稳定性理论的奠基之作)

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用 数学计算机科学学院 摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果. 关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用 Nature of Convex Function and its Application in Proving Inequalities Chen Huifei, College of Mathematics and Computer Science Abstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,which

凸函数的性质及其应用

中文题目:凸函数的性质及其应用 英文题目:The Property and Applications of Convex Functions 完成人: 指导教师: 系(院)别:数学与信息科技学院 专业、班级:数学与应用数学0602班 完成时间:二〇一〇年六月 河北科技师范学院数信学院制

目录 中文摘要 (1) 1 引言 (1) 2 预备知识 (1) 2.1 凸函数的定义 (2) 2.2凸函数的运算性质 (2) 2.3 Jesen不等式 (2) 3 本文的主要结果 (3) 3.1 凸函数的连续性 (3) 3.2 凸函数的微分性质 (3) 3.3 凸函数的积分性质 (6) 3.4 Jesen不等式及凸函数性质的应用 (7) 结束语 (12) 参考文献 (12) 英文摘要 (13) 致谢 (13)

凸函数的性质及其应用 (河北科技师范学院数学与信息科技学院 数学与应用数学专业0602班) 指导教师: 摘 要: 凸函数是一类重要的函数,它在数学理论研究中涉及了许多数学命题的讨论证明和应用。本文将散见于多种文献中的材料加以汇总并系统化,从凸函数的定义出发,讨论了定义在某区间上的凸函数经四则运算生成新的函数的凸性以及连续凸函数的一些性质,对凸函数的连续性、可微性、可积性等分析性质加以系统论述。并且讨论了凸函数Jesen 不等式和凸函数性质在不等式证明中的应用。 关键词: 凸函数;不等式;证明 1 引言 凸分析是近年来凹凸函数发展起来的一门应用十分广泛的数学分支, 它在数学规划、控制论、 多元统计等领域都有广泛的应用,尤其是在最优化理论方面的应用更为突出【3】 。对函数凹凸性的研究,在数学分析的多个分支都有用处,特别是在函数图形的描绘和不等式的推导方面,凸函数有 着十分重要的作用【4】 。人们对凸分析的自身理论发展也进行了广泛深入的研究,凸函数的性质也有所发展。函数的凸性是函数在区间上变化的整体性态,把握区间上的整体性态,不仅可以更加科学、准确的描绘函数的图象,而且有助于对函数的定性分析。对函数凹凸性的研究,在数学分析的多个分支都有用处。在凸规划理论、尤其是非线性最优化中,函数的凸性分析是最基本的,又是 最重要的【7】 。 凸函数的定义,最早是由Jenser 给出。本世纪初建立了凸函数理论以来, 凸函数这一重要概念 已在许多数学分支中得到了广泛应用【8】 。凸函数涉及了许多数学命题的讨论证明和应用,例如在数学分析、函数论、泛函分析、最优化理论等当中。应用研究方面,凸函数作为一类特殊函数在 现代优化学、运筹学、管理学、和工程测绘学等多个学科有着重要的意义和很好的应用【10】 。由于凸函数具有较好的几何和代数性质, 在数学规划中有着广泛的应用背景, 一些常见的不等式都可以从函数的凸性中导出。数理经济学中, 对风险厌恶的度量, 也可以表现为对效用函数凸性的选 择,所以研究凸函数的性质就显得十分必要了【11】 。另外, 由于凸函数理论的广泛性, 因此对其理论的研究成果还有待进一步的深入和推广。 2 预备知识 2.1 凸函数的定义 定义1 【10】 设()f x 在区间I 内有定义,如果对任意的1x , 2x ∈I , (1x ≠2x ) ,总有 1212[(1)](1)()()f x x f x f x λλλλ-+<-+ , 则称函数()f x 是区间I 内的凸函数,并称()f x 在I 内的图形是向下凸的;如果对任意的1212,()x x I x x ∈≠,对(0,1)λ?∈,总有 12 12[(1)](1)()() f x x f x f x λλλλ-+>-+, 则称函数()f x 是区间I 内的凹函数,并称()f x 在I 内的图形是向上凸的。若式子中的不等式改为严格不等式, 则相应的函数称为严格凸(凹) 函数。 定义2 【 10】 设()f x 在区间I 上连续,如果对I 上任意两点1212,()x x x x ≠ ,恒有

相关文档
最新文档