人教版八年级上学期3月份月考数学试题

一、选择题

1.已知等边三角形的边长为a ,则它边上的高、面积分别是( )

A .2,24a a

B .2

3,4a a

C .2

33,

a a D .2

33,

4a a 2.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( )

A .49

B .25

C .12

D .10

3.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( ) A .222b a c =-

B .;

C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=

D .::5:12:13a b c =

4.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75?的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为( ) A .北偏西15?

B .南偏西75°

C .南偏东15?或北偏西15?

D .南偏西15?或北偏东15?

5.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C '处,B C '交AD 于点E ,则线段DE 的长为( )

A .3

B .

15

4

C .5

D .

152

6.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB=3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( )

A .1和2之间

B .2和3之间

C .3和4之间

D .4和5之间

7.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )

A .3

B .5

C .4.2

D .4

8.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( ) A .7.5平方千米 B .15平方千米

C .75平方千米

D .750平方千米

9.有下列的判断:

①△ABC 中,如果a 2+b 2≠c 2,那么△ABC 不是直角三角形 ②△ABC 中,如果a 2-b 2=c 2,那么△ABC 是直角三角形 ③如果△ABC 是直角三角形,那么a 2+b 2=c 2 以下说法正确的是( ) A .①② B .②③

C .①③

D .②

10.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为

( ) A .5

B 7

C .57

D .3或4

二、填空题

11.如图,点E 在DBC △边DB 上,点A 在DBC △内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC ,给出下列结论,其中正确的是_____(填序号)

①BD =CE ;②∠DCB =∠ABD =45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2).

12.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.

13.在△ABC 中,AB =6,AC =5,BC 边上的高AD =4,则△ABC 的周长为__________. 14.如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =6,AD =BC =10,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为______.

15.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.

16.如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,若AD =4,DC =3,求BE 的长.

17.如图的实线部分是由Rt ABC ?经过两次折叠得到的.首先将Rt ABC ?沿高CH 折叠,使点B 落在斜边上的点B '处,再沿CM 折叠,使点A 落在CB '的延长线上的点A '处.若图中

90ACB ∠=?,15cm BC =,20cm AC =,则MB '的长为______.

18.如图所示,圆柱体底面圆的半径是

2

π

,高为1,若一只小虫从A 点出发沿着圆柱体的外侧面爬行到C 点,则小虫爬行的最短路程是______

19.在△ABC 中,∠A=30°,∠B=90°,AC=8,点 D 在边 AB , 且 BD=3,点 P 是△ABC 边上的一个动点,若 AP=2PD 时,则 PD 的长是____________.

20.已知:如图,等腰Rt OAB ?的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ?,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ?,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ?,

44OA B ?,…,则66OA B ?的周长是______.

三、解答题

21.如图,△ABC 和EDC ?都是等边三角形,7,3,2AD BD CD ===求:(1)AE

长;(2)∠BDC 的度数:(3)AC 的长.

22.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重

合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=?,则ADB =∠______. (2)求证:BED CDF △≌△.

(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.

23.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、

BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.

(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=?,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转

90?);

(3)在(2)的问题中,15ACM ∠=?,1AM =,求BM 的长.

24.已知ABC ?中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ?的关于点B 的二分割线.例如:如图1,Rt ABC ?中,90A ?∠=,20C ?∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ?∠=,显然直线BD 是ABC ?的关于点B 的二分割线.

(1)在图2的ABC ?中,20C ?∠=,110ABC ?∠=.请在图2中画出ABC ?关于点B 的二分割线,且DBC ∠角度是 ;

(2)已知20C ?∠=,在图3中画出不同于图1,图2的ABC ?,所画ABC ?同时满

足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;

(3)已知C α∠=,ABC ?同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).

25.(1)如图1,在Rt ABC ?中,90ACB ∠=?,60A ∠=?,CD 平分ACB ∠. 求证:CA AD BC +=.

小明为解决上面的问题作了如下思考:

作ADC ?关于直线CD 的对称图形A DC '?,∵CD 平分ACB ∠,∴A '点落在CB 上,且

CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可. 请根据小明的思考,写出该问题完整的证明过程.

(2)参照(1)中小明的思考方法,解答下列问题:

如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.

26.如图,己知Rt ABC ?,90ACB ∠=?,30BAC ∠=?,斜边4AB =,ED 为AB 垂直平分线,且23DE =DB ,DA .

(1)直接写出BC=__________,AC=__________;

(2)求证:ABD

?是等边三角形;

(3)如图,连接CD,作BF CD

⊥,垂足为点F,直接写出BF的长;

(4)P是直线AC上的一点,且

1

3

CP AC

=,连接PE,直接写出PE的长.

27.定义:在△ABC中,若BC=a,AC=b,AB=c,若a,b,c满足ac+a2=b2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:

(1)命题“直角三角形都是类勾股三角形”是命题(填“真”或“假”);

(2)如图1,若等腰三角形ABC是“类勾股三角形”,其中AB=BC,AC>AB,请求∠A的度数;

(3)如图2,在△ABC中,∠B=2∠A,且∠C>∠A.

①当∠A=32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由;

②请证明△ABC为“类勾股三角形”.

28.已知n组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…

(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;

(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.

29.已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且

∠EAP=60°.

(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是.

(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.

30.(知识背景)

据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.

(应用举例)

观察3,4,5;5,12,13;7,24,25;…

可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且

勾为3时,股

1

4(91)

2

=-,弦

1

5(91)

2

=+;

勾为5时,股

1

12(251)

2

=-,弦

1

13(251)

2

=+;

请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24=弦25=

(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= . (解决问题)

观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空: (3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则

b = ,

c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式.

(4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.C 解析:C 【分析】

作出等边三角形一边上的高,利用直角三角形中,30°角所对的直角边等于斜边的一半,得出BD ,利用勾股定理即可求出AD ,再利用三角形面积公式即可解决问题. 【详解】

解:如图作AD ⊥BC 于点D . ∵△ABC 为等边三角形, ∴∠B =60°,∠B AD =30° ∴1122

BD AB a =

= 由勾股定理得,2222213

()22

AD AB BD a a a =

-=-=

∴边长为a 的等边三角形的面积为12×a ×3a =3a 2

, 故选:C .

【点睛】

本题考点涉及等边三角形的性质、含30°角的直角三角形、勾股定理以及三角形面积公式,熟练掌握相关性质定理是解题关键.

2.C

解析:C 【解析】

试题解析:如图,∵大正方形的面积是25,

∴c 2=25, ∴a 2+b 2=c 2=25,

∵直角三角形的面积是(25-1)÷4=6, 又∵直角三角形的面积是1

2

ab=6, ∴ab=12. 故选C.

3.C

解析:C 【分析】

此题考查的是直角三角形的判定方法,大约有以下几种: ①勾股定理的逆定理,即三角形三边符合勾股定理;

②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数; 根据上面两种情况进行判断即可. 【详解】

解:A 、由222b a c =-得a 2=b 2+c 2,符合勾股定理的逆定理,能够判定△ABC 为直角三角形,不符合题意;

B 、由

C A B ∠=∠-∠得∠C +∠B=∠A ,此时∠A 是直角,能够判定△ABC 是直角三角形,不符合题意;

C 、∠A :∠B :∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC 不是直角三角形,故此选项符合题意;

D 、a :b :c=5:12:13,此时c 2=b 2+ a 2,符合勾股定理的逆定理,△ABC 是直角三角形,不符合题意; 故选:C . 【点睛】

此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.

4.C

解析:C 【分析】

先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的

航行方向与甲船的航行方向垂直,进一步即可得出答案. 【详解】

解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;

∵222241857632490030+=+==, ∴乙船的航行方向与甲船的航行方向垂直, ∵甲船的航行方向是北偏东75°,

∴乙船的航行方向是南偏东15°或北偏西15°. 故选:C . 【点睛】

本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.

5.B

解析:B 【分析】

首先根据题意得到BE=DE ,然后根据勾股定理得到关于线段AB 、AE 、BE 的方程,解方程即可解决问题. 【详解】

解:设ED=x ,则AE=6-x , ∵四边形ABCD 为矩形, ∴AD ∥BC , ∴∠EDB=∠DBC ; 由题意得:∠EBD=∠DBC , ∴∠EDB=∠EBD , ∴EB=ED=x ; 由勾股定理得: BE 2=AB 2+AE 2, 即x 2=9+(6-x )2, 解得:x=154

, ∴ED=

154. 故选:B . 【点睛】

本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.

6.C

解析:C

【分析】

利用勾股定理求出AB 的长,再根据无理数的估算即可求得答案. 【详解】

由作法过程可知,OA=2,AB=3, ∵∠OAB=90°,

∴OB=22222313OA AB +=+=, ∴P 点所表示的数就是13, ∵

91316<<,

∴3134<<,

即点P 所表示的数介于3和4之间, 故选C. 【点睛】

本题考查了勾股定理和无理数的估算,熟练掌握勾股定理的内容以及无理数估算的方法是解题的关键.

7.C

解析:C 【分析】

根据题意可设折断处离地面的高度OA 是x 尺,折断处离竹梢AB 是(10-x )尺,结合勾股定理即可得出折断处离地面的高度. 【详解】

设折断处离地面的高度OA 是x 尺,则折断处离竹梢AB 是(10-x )尺, 由勾股定理可得:222=OA OB AB + 即:()2

224=10x x +-, 解得:x =4.2

故折断处离地面的高度OA 是4.2尺.

故答案选:C . 【点睛】

本题主要考查直角三角形勾股定理的应用,解题的关键是熟练运用勾股定理.

8.A

解析:A 【解析】

分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案. 详解:∵52+122=132,

∴三条边长分别为5里,12里,13里,构成了直角三角形,

∴这块沙田面积为:1

2

×5×500×12×500=7500000(平方米)=7.5(平方千米).

故选A.

点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键.

9.D

解析:D

【分析】

欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.

【详解】

①c不一定是斜边,故错误;

②正确;

③若△ABC是直角三角形,c不是斜边,则a2+b2≠c2,故错误,

所以正确的只有②,

故选D.

【点睛】

本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.

10.C

解析:C

【分析】

根据勾股定理和分类讨论的方法可以求得第三边的长,从而可以解答本题.

【详解】

由题意可得,当3和45,

当斜边为4,

故选:C

【点睛】

本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和分类讨论的数学思想解答.

二、填空题

11.①③

【分析】

①由已知条件证明DAB≌EAC即可;

②由①可得∠ABD=∠ACE<45°,∠DCB>45°;

③由∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°可判断③;

④由BE2=BC2-EC2=2AB2-(CD2﹣DE2)=2AB2-CD2+2AD2=2(AD2+AB2)-CD2可判断

④. 【详解】

解:∵∠DAE =∠BAC =90°, ∴∠DAB =∠EAC , ∵AD =AE ,AB =AC ,

∴∠AED=∠ADE=∠ABC=∠ACB=45°, ∵在DAB 和EAC 中,

AD AE DAB EAC AB AC ??

???

===, ∴DAB ≌EAC ,

∴BD =CE ,∠ABD =∠ECA ,故①正确;

由①可得∠ABD=∠ACE<45°,∠DCB>45°故②错误;

∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°, ∴∠CEB =90°,即CE ⊥BD ,故③正确;

∴BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2. ∴BE 2=2(AD 2+AB 2)-CD 2,故④错误. 故答案为:①③. 【点睛】

本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.

12.1或

78

【分析】

分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解. 【详解】

解:分为3种情况: ①当PB PQ =时,

4=OA ,3OB =,

∴5BC AB ===,

C 点与A 点关于直线OB 对称, BAO BCO ∴∠=∠,

BPQ BAO ∠=∠, BPQ BCO ∴∠=∠,

APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠, APQ CBP ∴∠=∠,

在APQ 和CBP 中,

BAO BCP APQ B PQ B P C P ∠=∠??

∠=∠?=??

, ()APQ CBP AAS ∴△≌△,

∴5AP BC ==, 1OP AP OA ∴=-=;

②当BQ BP =时,

BPQ BQP ∠=∠,

BPQ BAO ∠=∠, BAO BQP ∴∠=∠,

根据三角形外角性质得:BQP BAO ∠>∠,

∴这种情况不存在;

③当QB QP =时, QBP BPQ BAO ∠=∠=∠,

PB PA ∴=,

设OP x =,则4PB PA x ==- 在Rt OBP △中,222PB OP OB =+,

222(4)3x x ∴-=+, 解得:7

8

x =

; ∴当PQB △为等腰三角形时,1OP =或

78

; 【点睛】

本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.

13.14+或8+【分析】

分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在直角三角形ABD 与直角三角形ACD 中,利用勾股定理求出BD 与DC 的长,由BD+DC 求出BC 的长,即可求出周长;如图2所示,此时△ABC 为钝角三角形,同理由BD -CD 求出BC 的长,即可求出周长. 【详解】

解:分两种情况考虑:

如图1所示,此时△ABC 为锐角三角形,

在Rt △ABD 中,根据勾股定理得:BD=22226425AB AD -=-=, 在Rt △ACD 中,根据勾股定理得:CD=2222543AC AD -=-=,

∴BC=253+,

∴△ABC 的周长为:652531425+++=+; 如图2所示,此时△ABC 为钝角三角形,

在Rt △ABD 中,根据勾股定理得:BD=22226425AB AD -=-=,

在Rt △ACD 中,根据勾股定理得:CD=2222543AC AD -=-=,

∴BC=253-,

∴△ABC 的周长为:65253825++-=+; 综合上述,△ABC 的周长为:1425+或825+; 故答案为:1425+或825+. 【点睛】

此题考查了勾股定理,利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键. 14.2或18 【分析】

分两种情况:点E 在AD 线段上,点E 为AD 延长线上的一点,进一步分析探讨得出答案即可. 【详解】

解:①如图

点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,

∴△A ′BE ≌△ABE, ∴∠B A′E=∠A=90o ,AB=A ′B

∠B A′C =90o ,∴E 、A',C 三点共线,

在△ECD 与△CB A′中,{CD A B

D BA C

DEC ECB

='∠=∠'∠=∠,

∴△ECD ≌△CB A′,

∴CE=BC=10,

在RT △CB A′中,A′C=22BC

BA -'=22106-=8,

∴AE= A′E=CE - A′C=10-8=2;

②如图

点E 为AD 延长线上,由题意得: ∠A"BC+∠A"CB=∠DCE+∠A"CB=90o

∴∠A"BC=∠DCE,

在△A"BC 与△DCE 中,"={""A CDE

CD A B A BC DCE

∠∠=∠=∠

∴△A"BC ≌△DCE,DE= A"C,

在RT △ A"BC 中,A"C=22"BC BA -=22106-=8,

∴AE=AD+DE=AD+ A"C=10+8=18;

综上所知,AE=2或18. 故答案为:2或18. 【点睛】

此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.

15.

120

13 【解析】

∵AB=AC ,AD 是角平分线, ∴AD ⊥BC ,BD=CD , ∴B 点,C 点关于AD 对称,

如图,过C 作CF ⊥AB 于F ,交AD 于E ,

则CF=BE+FF 的最小值, 根据勾股定理得,AD=12, 利用等面积法得:AB ?CF=BC ?AD , ∴CF=

BC AD AB ?=101213?=120

13 故答案为

120

13

. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.

16.

78 【解析】

试题分析:根据矩形性质得AB=DC=6,BC=AD=8,AD ∥BC ,∠B=90°,再根据折叠性质得∠DAC=∠D′AC ,而∠DAC=∠ACB ,则∠D′AC=∠ACB ,所以AE=EC ,设BE=x ,则EC=4-x ,AE=4-x ,然后在Rt △ABE 中利用勾股定理可计算出BE 的长即可. 试题解析:∵四边形ABCD 为矩形, ∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°, ∵△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E , ∴∠DAC=∠D′AC, ∵AD∥BC,∴∠DAC=∠ACB, ∴∠D′AC=∠ACB,∴AE=EC, 设BE=x ,则EC=4﹣x ,AE=4﹣x , 在Rt△ABE 中,∵AB 2+BE 2=AE 2, ∴32+x 2=(4﹣x )2,解得x=78

, 即BE 的长为78

. 17.3 【分析】

根据题意利用折叠后图形全等,并利用等量替换和等腰三角形的性质进行综合分析求解. 【详解】

解:由题意可知','ACM A CM BCH B CH ??, ∵15cm BC =,20cm AC =,

∴'15,'20,BC B C cm AC A C cm ====''20155A B cm =-=, ∵90ACB ∠=?, ∴'A M

AB ⊥(等量替换),CH AB ⊥(三线合一),

∴25,AB cm =

利用勾股定理假设MB '的长为m ,'257AM AM m ==-,则有2

2

2

(257)5m m +-=, 解得3m =,

所以MB '的长为3. 【点睛】

本题考查几何的翻折问题,熟练掌握并综合利用等量替换和等腰三角形的性质以及勾股定理分析是解题的关键.

18.5

【分析】

先将图形展开,再根据两点之间线段最短可知. 【详解】

圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C 是边的中点,矩形的宽

即高等于圆柱的母线长.

∵AB=π?2

π

=2,CB=1. ∴AC=

22AB +BC = 222=5+1,

故答案为:5. 【点睛】

圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决. 19.3或3或15 【分析】

根据直角三角形的性质求出BC ,勾股定理求出AB ,根据直角三角形的性质列式计算即可. 【详解】 解:如图

∵∠B=90°,∠A=30°, ∴BC=

12AC=1

2

×8=4, 由勾股定理得,22228443AC BC -=-=

43333AD ∴==

当点P 在AC 上时,∠A=30°,AP=2PD , ∴∠ADP=90°,

则AD 2+PD 2=AP 2,即(2=(2PD )2-PD 2, 解得,PD=3,

当点P 在AB 上时,AP=2PD ,

当点P 在BC 上时,AP=2PD , 设PD=x ,则AP=2x ,

由勾股定理得,BP 2=PD 2-BD 2=x 2-3,

()(2

2

223x x ∴-=-

解得,

故答案为:3 【点睛】

本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.

20【分析】

依次求出在Rt △OAB 中,OA 1Rt △OA 1B 1中,OA 2OA 1)2

;依此

类推:在Rt △OA 5B 5中,OA 6=(2

)6

,由此可求出△OA 6B 6的周长. 【详解】

∵等腰Rt OAB ?的直角边OA 的长为1,

∴在Rt △OA 1B 1中OA 1=2OA =2,

在22Rt OA B ?中OA 2=2OA 1=(2)2, …

故在Rt △OA 6B 6中OA 6=

2OA 5=(2

)6

= OB 6

66A B OB 6

故△OA 6B 6+2×(2

)6+2×18=28+.

相关文档
最新文档