高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习
高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习

第一部分:复习运用的知识

(一)椭圆几何性质

椭圆第一定义:平面内与两定点21F F 、距离和等于常数

()a 2(大于2

1F F )的点的轨迹叫做椭圆.

两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距

()c 2. 椭圆的几何性质:以

()012

2

22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122

22≤≤b

y a x ,即

b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用

于求最值、轨迹检验等问题.

2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--

4. 长轴、短轴:

21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.

5. 离心率

(1)椭圆焦距与长轴的比a

c

e =,()10,0<<∴>>e c a Θ (2)22F OB Rt ?,

2

22

22

22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且

22cos B OF ∠的值是椭圆的离心率.

(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=

越小,

椭圆越扁;当e 接近于0时,c 越接近于0,从而2

2c a b -=越大,椭圆越接近圆。

6.通径(过椭圆的焦点且垂直于长轴的弦),a

b 2

2.

7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,

21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:

c F F a PF PF 2,22121==+.

(二)运用的知识点及公式

1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在

的向量120v v =r r

g

2、韦达定理:若一元二次方程2

0(0)ax bx c a ++=≠有两个不同的根12,x x ,则

1212,b c x x x x a a

+=-=。

3、中点坐标公式:1212

,y 22

x x y y x ++==,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。 4、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,

则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,

AB =

或者

AB =

(三)转方向:

方向一:向斜率转化,变为函数最值及最优解问题,或者变为不等式问题 方向二:向距离转化

第二部分:椭圆常考题型解题方法典例 一、椭圆定义相关题目

例1、已知方程

1352

2-=-+-k

y k x 表示椭圆,求k 的取值范围. 解:由??

?

??-≠-<-<-,35,03,05k k k k 得53<

∴满足条件的k 的取值范围是53<

,且4≠k .

说明:本题易出现如下错解:由?

??<-<-,03,

05k k 得53<

出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆. 例2、已知1cos sin 2

2

=-ααy x )0(πα≤≤表示焦点在

y 轴上的椭圆,求α的取值范围.

解:方程可化为1cos 1sin 12

2=+α

αy x . 因为焦点在

y 轴上,所以0sin 1

cos 1>>-

α

α. 因此0sin >α且1tan -<α从而)4

3

,2(ππα∈.

说明:(1)由椭圆的标准方程知

0sin 1>α,0cos 1

>-α,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,α

sin 12

=b .

(3)求α的取值范围时,应注意题目中的条件πα<≤0.

例3、 以椭圆

13

122

2=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.

分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须用点直线对称就可解决.

解:如图所示,焦点为()031,-F ,()032,F .F 的坐标为(-9,6),直线2FF 的方程为

032=-+y x .

解方程组?

?

?=+-=-+090

32y x y x 得交点M 的坐标为(-5,4).

所求椭圆的长轴:562221==+=

FF MF MF a ,

∴53=a ,又3=c , ∴()

3635322

222

=-=-=c a b

因此,所求椭圆的方程为

136

452

2=+y x . 二、椭圆与直线的位置关系及弦长相关题目 例4、 已知椭圆142

2

=+y x 及直线

m x y +=.

(1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为

5

10

2,求直线的方程. 解:(1)把直线方程

m x y +=代入椭圆方程1422=+y x 得

()142

2=++m x x ,

即01252

2

=-++m mx x .

()()

020*********

≥+-=-??-=?m m m ,解得2

5

25≤

≤-

m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,

由(1)得5

221m

x x -=+,51221-=m x x .

根据弦长公式得 :5102514521122

2

=-?

-??

?

??-?+m m . 解得0=m .方程为x y =.

说明:对比直线与椭圆和直线与圆的位置关系问题及有关弦长问题的解题方法?.

这里解决直线与椭圆的交点问题,一般考虑判别式?;解决弦长问题,一般应用弦长公式. 例5、 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3

π

的直线交椭圆于A ,B 两点,求弦AB 的长. 解:(法1)利用直线与椭圆相交的弦长公式求解.

13

48]4))[(1(1212212212=

-++=-+=x x x x k x x k AB . (法2)利用椭圆的定义及余弦定理求解.

由题意可知椭圆方程为

19

362

2=+y x , 设

m AF =1,n BF =1,则m AF -=122,n BF -=122.

在21F AF ?中,3

cos

22112

212

12

F F AF F F AF AF -+=,

即2

1

362336)

12(22

???-?+=-m m m ;

所以3

46

-=

m .

同理在21F BF ?中, 用余弦定理得3

46

+=

n ,

所以13

48=

+=n m AB . (法3)利用焦半径求解.

先根据直线与椭圆联立的方程0836372132

=?++x x 求出方程的两根1x ,2x ,它们分别是

A ,

B 的横坐标.

再根据焦半径11ex a AF +=,21ex a BF +=,

从而求出

11BF AF AB +=.

三、轨迹方程相关题目

例6、 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动

圆圆心P 的轨迹方程.

分析:关键是根据题意,列出点P满足的关系式.

解:如图所示,设动圆P和定圆B内切于点M.动点P到两定点,

即定点()03,

-

A和定圆圆心()03,

B距离之和恰好等于定圆半径,

即8

=

=

+

=

+BM

PB

PM

PB

PA.∴点P的轨迹是以A,B为两焦点,

半长轴为4,半短轴长为7

3

42

2=

-

=

b的椭圆的方程:1

7

16

2

2

=

+

y

x

例7、已知椭圆1

2

2

2

=

+y

x

(1)求过点?

?

?

?

?

2

1

2

1

P且被P平分的弦所在直线的方程;

(2)求斜率为2的平行弦的中点轨迹方程;

(3)过()12,

A引椭圆的割线,求截得的弦的中点的轨迹方程;

(4)椭圆上有两点P、Q,O为原点,且有直线OP、OQ斜率满足

2

1

-

=

?

OQ

OP

k

k,求线段PQ中点M的轨迹方程.

分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.

解:设弦两端点分别为()1

1

y

x

M,,()2

2

y

x

N,,线段MN的中点()y

x

R,,则

(1)将21=

x ,21=y 代入⑤,得2

12121-=--x x y y , (2)故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程222

2

=+y x 得04

1

662

=-

-y y

, 04

1

6436>?

?-=?符合题意,0342=-+y x 为所求. (2)将

22

12

1=--x x y y 代入⑤得所求轨迹方程为:04=+y x .

(椭圆内部分) (3)将

2

1

2121--=

--x y x x y y 代入⑤ 得所求轨迹方程为: 02222

2

=--+y x y x .(椭圆内部分)

(4)由①+②得:

()

22

2

2212

221=+++y y x x , ⑦, 将③④平方并整理得

2122

22124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨

将⑧⑨代入⑦得:

()

2244

242122

12=-+-y y y x x x , ⑩ 再将

21212

1

x x y y -=代入⑩式得:

221242212

212

=??

?

??-

-+-x x y x x x ,

即 12

12

2

=+y x . 例8、 知圆122=+y x ,从这个圆上任意一点P 向y 轴作垂线段,求线段中点M 的轨迹. 解:1422=+y x .

说明:此题是利用相关点法求轨迹方程的方法,具体做法:首先设动点的坐标为),(y x , 设已知轨迹上的点的坐标为),(00y x ,然后根据题目要求,使x ,y 与0x ,0y 建立等式关系,

从而由这些等式关系求出0x 和

0y 代入已知的轨迹方程,就可以求出关于x ,y 的方程,

化简后即我们所求的方程.这种方法是求轨迹方程的最基本的方法,必须掌握.

例9、 已知)2,4(P 是直线l 被椭圆

19

362

2=+y x 所截得的线段的中点,求直线l 的方程. 分析:“设而不求”法

解:方法一:设所求直线方程为)4(2-=-x k y .代入椭圆方程, 整理 036)24(4)24(8)14(2

2

2

=--+--+k x k k x k ①

设直线与椭圆的交点为),(11y x A ,),(22y x B ,则1x 、2x 是①的两根, ∴1

4)

24(822

1+-=

+k k k x x

∵)2,4(P 为AB 中点, ∴1

4)24(4242

21+-=+=

k k k x x ,21-=k . ∴所求直线方程为082=-+y x .

方法二:(点差法)设直线与椭圆交点),(11y x A ,),(22y x B . ∵)2,4(P 为AB 中点,∴821=+x x ,421=+y y . 又∵A ,B 在椭圆上,∴364212

1

=+y x ,3642

222=+y x 两式相减得

0)(4)(2

22

12

22

1=-+-y y x x ,

即0))((4))((21212121=-++-+y y y y x x x x .

2

1

)(4)(21212121-=++-=--y y x x x x y y .

∴直线方程为082=-+y x .

方法三:(数形结合)设所求直线与椭圆的一个交点为),(y x A ,另一个交点)4,8(y x B --. ∵A 、B 在椭圆上,∴3642

2

=+y x ①。

36)4(4)8(2

2

=-+-y x ②

从而A ,B 在方程①-②的图形082=-+y x 上,而过A 、B 的直线只有一条,∴直线方程为082=-+y x .

说明:直线与圆锥曲线的位置关系是重点考查的解析几何问题,“设而不求”的方法是处理此类问题的有效方法. 四、探索问题及其他

例10、 已知椭圆13

42

2=+

y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.

分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.

利用上述条件建立m 的不等式即可求得m 的取值范围.

解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称, 直线AB 与l 交于),(00y x M 点. ∵l 的斜率4=l k , ∴设直线AB 的方程为

n x y +-=4

1

由方程组???????=++-=,134

,412

2y x n x y 消去y 得 0481681322=-+-n nx x ①。

∴13

82

1n

x x =

+.

于是1342210

n x x x =

+=

,13

124100n

n x y =+-=, 即点M 的坐标为)13

12,134(n

n .

∵点M 在直线m x y +=4上,

∴m n

n +?

=1344. 解得m n 4

13

-=. ②

将式②代入式①得048169261322

=-++m mx x

∵A ,B 是椭圆上的两点,

∴0)48169(134)26(2

2

>-?-=?m m .

解得13

13

213132<

<-

m . (法2)同解法1得出m n 413-

=,∴m m x -=-=)4

13

(1340, m m m m x y 34

13

)(414134100-=--?-=--=,即M 点坐标为)3,(m m --.

∵A ,B 为椭圆上的两点, ∴M 点在椭圆的内部,

13

)3(4)(22<-+-m m . 解得13

13

213132<

<-

m . (法3)设),(11y x A ,),(22y x B 是椭圆上关于l 对称的两点,直线AB 与l 的交点M 的坐标为

),(00y x .

∵A ,B 在椭圆上,∴1342121=+y x ,13

42

222=+y

x .两式相减得

0))((4))((321212121=-++-+y y y y x x x x ,

即0)(24)(23210210=-?+-?y y y x x x .

∴)

(

4

3

2

1

2

1

2

1x

x

y

x

x

x

y

y

-

=

-

-

又∵直线l

AB⊥,∴1-

=

?

l

AB

k

k,

∴1

4

4

3

0-

=

?

-

y

x

,即

3x

y=①。

又M点在直线l上,

∴m

x

y+

=

4②。

由①,②得M点的坐标为)

3

,

(m

m-

-.以下同解法2.

说明:涉及椭圆上两点A,B关于直线l恒对称,求有关参数的取值范围问题,可以采用列参数满足的不等式:

(1)利用直线AB与椭圆恒有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式0

>

?,建立参数方程.

(2)利用弦AB的中点)

,

(

y

x

M在椭圆内部,满足1

2

2

0<

+

b

y

a

x

,将

x,

y利用参数表示,建立参数不等式.

例11 在面积为1的PMN

?中,

2

1

tan=

M,2

tan-

=

N,建立适当的坐标系,求出以M、N为焦点且过P点的椭圆方程.

解:以MN的中点为原点,MN所在直线为x轴建立直角坐标系,设)

,

(y

x

P.

?

?

?

?

?

?

?

?

?

=

=

+

-

=

-

.1

,

2

1

,2

cy

c

x

y

c

x

y

?

?

?

??

?

?

=

=

=

2

3

3

4

3

5

c

c

y

c

x

即)

3

2

,

3

2

5

(P

∴???

????=-=+,

43,134********b a b a 得?????==.3,

41522b a

∴所求椭圆方程为13

15422=+y x 例12、

ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的

轨迹和顶点A 的轨迹. 分析:(1)由已知可得

20=+GB GC ,再用椭圆定义求解.由G 的轨迹方程G 、A 坐标的

关系,利用代入法求A 的轨迹方程.

解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系. 设G 点坐标为()y x ,,由

20=+GB GC ,

知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点. 因10=a ,8=c ,有6=b ,

故其方程为

()0136

10022≠=+y y x . (2)设()y x A ,,()y x G '',,则

()0136

1002

2≠'='+'y y x . ① 由题意有??????

?

='='33y y x

x ,代入①,

得A 的轨迹方程为()01324

9002

2≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).

第三部分:椭圆常考题型解题方法针对性习题

1、过点T(-1,0)作直线l 与曲线N :2

y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。

2、已知椭圆C :22221(0)x y a b a b +=>>的离心率为3

2

,且在x 轴上的顶点分别为

A 1(-2,0),A 2(2,0)。 (I )求椭圆的方程;

(II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论

椭圆常考题型解题方法针对性习题答案

1、解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)l y k x =+,0k

≠,11(,)A x y ,22(,)B x y 。

由2

(1)y k x y x

=+??

=?消y 整理,得2222

(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得

2242(21)4410k k k ?=--=-+> 即2

1

04

k <<

② 由韦达定理,得:212221

,k x x k -+=-121x x =。 则线段AB 的中点为22

211

(,)22k k k

--。 线段的垂直平分线方程为:2

2

1112()22k y x k k k --=-- 令y=0,得0

21122x k =

-,则211

(,0)22

E k - ABE ?Q 为正三角形,

∴211

(

,0)22

E k -到直线AB 的距离d 为32AB 。

AB =

Q 2

k =

d =

2

22k k

=g

解得k = 此时053x =。 2、解:(I )由已知椭圆C

的离心率2

c e a =

=2a =,

则得1c b =。 从而椭圆的方程为2

214

x y += (II )设11(,)M x y ,22(,)N x y ,直线1A M 的斜率为1k ,则直线1A M 的方程为1(2)y k x =+,

由122

(2)44

y k x x y =+??

+=?消y 整理得222

121(14)161640k x k x k +++-= 12x -Q 和是方程的两个根,

21121164214k x k -∴-=+ 则2

11

2

12814k x k -=+,1121414k y k =+, 即点M 的坐标为211

22

11

284(,)1414k k k k -++, 同理,设直线A 2N 的斜率为k 2,则得点N 的坐标为222

22

22

824(,)1414k k k k --++ 12(2),(2)p p y k t y k t =+=-Q 12122k k k k t

-∴

=-+,

Q 直线MN 的方程为:

121

121

y y y y x x x x --=--, ∴令y=0,得211212x y x y x y y -=

-,将点M 、N 的坐标代入,化简后得:4

x t

=

又2t

>Q ,∴4

02t

<

< Q

椭圆的焦点为

4

t

∴=

3t =

故当3t =时,MN 过椭圆的焦点。

高中数学-选修2-1-椭圆题型大全-(1)

高中数学-选修2-1-椭圆题型大全-(1)

椭圆题 1、命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件 2、已知1 F 、2 F 是两个定点,且4 2 1=F F ,若动点P 满足4 2 1 =+PF PF 则动点P 的轨迹是( ) A 、椭圆 B 、圆 C 、直线 D 、线段 3、已知1 F 、 2 F 是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长1 F P 到Q ,使得2 PF PQ =,那么动点Q 的轨迹是 ( ) A 、椭圆 B 、圆 C 、直线 D 、点 4、已知1 F 、2 F 是平面α内的定点,并且) 0(22 1>=c c F F ,M 是α 内的动点,且a MF MF 221 =+,判断动点M 的轨迹. 5、椭圆 19 252 2=+y x 上一点M 到焦点1 F 的距离为2,N 为1 MF 的中 点,O 是椭圆的中心,则ON 的值是 。 6、若方程13 52 2=-+-k y k x 表示椭圆,求k 的范围. 7、 轴上的椭圆”的 表示焦点在”是“方程“y ny mx n m 1022=+>>( ) A 、充分而不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件

8、已知方程 11 252 2=-+-m y m x 表示焦点在y 轴上的椭圆,则实数 m 的范围是 . 9、已知方程2 22 =+ky x 表示焦点在y 轴上的椭圆,则实数k 的范围是 . 10、方程2 31y x -= 所表示的曲线是 . 11、如果方程2 22 =+ky x 表示焦点在y 轴上的椭圆,求实数k 的取值范围。 12、已知椭圆0 6322 =-+m y mx 的一个焦点为)2,0(,求m 的值。 13、已知方程2 22 =+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 . 14、根据下列条件求椭圆的标准方程: (1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为26; (2)长轴是短轴的2倍,且过点(2,-6); (3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点) 2,3(),1,6( 21 --P P ,求椭圆方程. 15、以)0,2(1 -F 和)0,2(2 F 为焦点的椭圆经过点)2,0(A 点,则该椭 圆的方程为 。 16、如果椭圆:k y x =+22 4上两点间的最大距离为8,则k 的 值为 。 17、已知中心在原点的椭圆C 的两个焦点和椭圆 36 94:222=+y x C 的两个焦点一个正方形的四个顶点,且椭圆C

高中数学椭圆经典例题(学生+老 师)

(教师版)椭圆标准方程典型例题 例1已知椭圆的一个焦点为(0,2)求的值. 分析:把椭圆的方程化为标准方程,由,根据关系可求出的值. 解:方程变形为.因为焦点在轴上,所以,解得. 又,所以,适合.故. 例2已知椭圆的中心在原点,且经过点,,求椭圆的标准方程.分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设 条件,运用待定系数法, 求出参数和(或和)的值,即可求得椭圆的标准方程.解:当焦点在轴上时,设其方程为. 由椭圆过点,知.又,代入得,,故椭圆的方程为. 当焦点在轴上时,设其方程为. 由椭圆过点,知.又,联立解得,,故椭圆的方程为. 例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹. 分析:(1)由已知可得,再利用椭圆定义求解. (2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程. 解:(1)以所在的直线为轴,中点为原点建立直角坐标系.设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点.因,, 有, 故其方程为. (2)设,,则.① 由题意有代入①,得的轨迹方程为,其轨迹是椭圆(除去轴上两点). 例4已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方 程. 解:设两焦点为、,且,.从椭圆定义知.即. 从知垂直焦点所在的对称轴,所以在中,, 可求出,,从而. ∴所求椭圆方程为或.

例5已知椭圆方程,长轴端点为,,焦点为,,是椭圆上一点,,.求:的面积(用、、表示). 分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积.解:如图,设,由椭圆的对称性,不妨设在第一象限. 由余弦定理知:·.① 由椭圆定义知:②,则得. 故. 例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程. 分析:关键是根据题意,列出点P满足的关系式. 解:如图所示,设动圆和定圆内切于点.动点到两定点, 即定点和定圆圆心距离之和恰好等于定圆半径, 即.∴点的轨迹是以,为两焦点, 半长轴为4,半短轴长为的椭圆的方程:. 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标

椭圆的常见题型及解法(一).

椭圆的常见题型及其解法(一) 椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助. 一、椭圆的焦半径 椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。 1.公式的推导 设P (,)是椭圆上的任意一点, 分别是椭圆的左、右焦点,椭圆 ,求证,。证法1: 。 因为,所以 ∴ 又因为,所以 ∴, 证法2:设P 到左、右准线的距离分别为,由椭圆的第二定义知1 1 PF e d ,又,所 以, 而 。

∴,。 2.公式的应用 例1 椭圆上三个不同的点A ()、B ()、C ()到焦点F (4, 0)的距离成等差数列,则 12 x x + . 解:在已知椭圆中,右准线方程为 25 4x = ,设A 、B 、C 到右准线的距离为 , 则、、。 ∵ , , ,而|AF|、|BF|、|CF|成等差数列。 ∴,即,。 例2.12,F F 是椭圆22 14x y +=的两个焦点,P 是椭圆上的动点,求 的最大值和最 小值。 解:设 ,则10202,2.PF x PF x =+ =-2 12034.4 PF PF x ?=- P 在椭圆上,022x ∴-≤≤,12PF PF ?的最大值为4,最小值为1. 变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB 的长度。 解:由已知 可得 ,所以直线AB 的方程 为 ,代入椭圆方程 得 设 ,则 ,从而 变式练习2. 设Q 是椭圆22 221(0)x y a b a b +=>>上任意一点,求证:以2QF (或1QF )为

【有关高中数学教学的】高中数学经典大题150道

【有关高中数学教学的】高中数学经典大题150道 学习活动对学生来说本身就具有重要的意义,但是由于个体间的差异和教学时间紧迫等客观因素决定了在数学课堂上教师不可能兼顾到每一个学生的实际情况. 第一篇:民族地区的高中数学教学 1. 当前高中数学教学的问题和分析 ①不注重知识的循序渐进:从初中到高中的知识跨越是一个循序渐进的过程,一定要做到让学生吸收。 而现在的教师为了让学生掌握的更多,没节制的拓宽知识面,不断地补充一些公式或者特殊的解题方法,这些在高中生的高三复习阶段屡见不鲜,导致学生的负担过重不能更好的发挥。 ②因材施教没有落到实处:一些高中教师教学过程中分层教学把握不到位,教法单一。 只讲”范式”,不讲”变式”,只要求记结论、套题型,多数学生浅尝辄止,不求甚解。 学生学习毫无兴致,导致两级分化严重。 2. 教学新思路探索 2.1注重生源状况研究,实施因材施教依据少数民族地区生源质量较差的实际情况,

教师需要对其因材施教。 结合班级里学生能力参差不齐的实际,传统的一些僵化教法根本无法适应当前新课程改革的要求,无法推进后进生的转化。 教师需要根据生源状况,将其分为差、中、好三个档次,对后进生在知识方面进行详细的了解,设计问题的过程中可以梯度小一点,采取”小步子、慢速度”的原则。 2.2掌握新课改新课程的基本理念在新课改下,高中数学旨在构建学生发展和学习的良好基础,激励学生学习的积极主动性;促进学生的全面发展,注重学生数学思维的形成,把信息技术和课程化作一体,建立适应学生个性发展的学习体系。 这一切都要求教师提高自身的综合素质,在教学中探索更好的教学方法,实现从知识的传授到学生能力的培养的跨越。 2.3注重知识传授的循序渐进以及改进方法新课改高中数学教学的关键就是循序渐进,只有完成这个环节,才能顺利的开展教学。 有的老师眼中只有成绩,一味赶进度,形成”填鸭式”的教学模式。 但事实上这样会适得其反,数学学科肩负着学生运算能力、逻辑思维能力和空间想象能力的培养。 它的特点就是很抽象,对能力的要求很高。 所以如果不遵从循序渐进的原则,那么必然会形成很多学生的掉队,不仅会影响学生的兴趣,更重要的是还会影响其成绩。 所以高中数学教学方法一定要活,因材施教,要具有针对性。 教师要真正成为学生的引导和合作者。 考虑学生的自身状况以及学习需要,辅以多媒体教学,培养学生的积极性和兴趣,做到学生不仅能够掌握现有概念和技能,还能独立思考学习,要充分鼓励学生自主探索。

高中数学椭圆大题之向量综合

高中数学椭圆大题之向量综合 题型一:单一共线型 例1、已知B A 、是椭圆1222=+y x 上的两点,并且点)0,2(-N 满足NB NA λ=,当?? ? ???∈31,51λ时,求直线AB 斜率的取值范围. 例2、已知定点)0,2(M ,若过M 的直线l (斜率不为零)与椭圆13 22 =+y x 交于不同的两点F E 、(E 在点F M 、之间),记OMF OME S S ??= λ,求λ的取值范围.

练1、椭圆12322 22=+c y c x 的两个焦点分别为)0,(1c F -和)0,(2c F ,过点)0,3(c E 的直线与椭圆交于B A 、两点, 且B F A F 21//,B F A F 212=,求直线AB 的斜率. 练2、设)0,(1c F -,)0,(2c F 分别为椭圆13 22 =+y x 的左右焦点,B A 、在椭圆上,若F F 215=,求点A 的坐标.

题型二、点在曲线上 例1、已知椭圆2 2 2 33b y x =+,斜率为1且过右焦点F 的直线交椭圆于A 、B 两点,M 为椭圆上任一点,且 OB OA OM μλ+=,证明22μλ+为定值. 练1、椭圆C:12 32 2=+y x ,过右焦点F 的直线l 与C 交于A,B 两点,C 上是否存在点P ,使得当l 绕F 转到某一位置时,有 +=成立?若存在,求 出所有P 的坐标与l 的方程;若不存在,说明理由.

练2、设动点P 满足OM 2+=,其中M,N 是椭圆C:12 42 2=+y x 上的点,直线OM 与ON 的斜率之积为2 1 - ,求P 的轨迹.

高中数学:椭圆知识点归纳总结及经典例题

椭 圆 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c). 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx 2 +ny 2 =1(m>0,n>0)不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M(x, y),点P(x 0 , y 0 ), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得x 2 +(2y)2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.范围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b)、B 2(0, b)是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a,0)、A 2(a,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a, 0)、A 2(a, 0)、B 1(0, -b)、B 2(0, b).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴的长等于2b.a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2 . a A 1y O F 1F 2 x B 2 B 1 A 2c b y O F 1F 2x M c c x F 2 F 1 O y M c c y x P O P ' M

2015高中数学必修4第三章经典习题含答案

第三章经典习题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150 分。考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.sin 2 π12-cos 2 π12的值为( ) A .-1 2 B.1 2 C .-3 2 D.32 [答案] C [解析] 原式=-(cos 2 π12-sin 2 π12)=-cos π6=-32. 2.函数f (x )=sin2x -cos2x 的最小正周期是( ) A.π23 B .π C .2π D .4π [答案] B [解析] f (x )=sin2x -cos2x =2sin(2x -π4),故T =2π 2=π. 3.已知cos θ=13,θ∈(0,π),则cos(3π 2+2θ)=( ) A .-429 B .-79 C.429 D.79

[答案] C [解析] cos(3π2+2θ)=sin2θ=2sin θcos θ=2×223×13=42 9. 4.若tan α=3,tan β=4 3,则tan(α-β)等于( ) A .-3 B .-1 3 C .3 D.13 [答案] D [解析] tan(α-β)=tan α-tan β 1+tan αtan β=3-43 1+3× 43=1 3. 5.cos 275°+cos 215°+cos75°·cos15°的值是( ) A.54 B.62 C.32 D .1+2 3 [答案] A [解析] 原式=sin 2 15°+cos 2 15°+sin15°cos15°=1+12sin30°=5 4. 6.y =cos 2x -sin 2x +2sin x cos x 的最小值是( ) A. 2 B .- 2 C .2 D .-2 [答案] B [解析] y =cos2x +sin2x =2sin(2x +π 4),∴y max =- 2. 7.若tan α=2,tan(β-α)=3,则tan(β-2α)=( )

高中数学圆和椭圆练习题(综合)

一、选择题(本题共12道小题,每小题5分,共60分) 1.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是( ) A .a <-2或 a > 3 2 B .- 3 2 >长轴两个端点分别为A 、B ,椭圆上点P 和A 、B 的连 线的斜率之积为1 2 - ,则椭圆C 的离心率为 (A ) 1 2 (B )22 (C )32 (D )33 10.已知椭圆C :+=1,M ,N 是坐标平面内的两点,且M 与C 的焦点不重 合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=( ) A .4 B .8 C .12 D .16

高中数学_椭圆,知识题型总结

陈氏优学 教学课题 椭圆 知识点一:椭圆的定义 平面内一个动点到两个定点 、 的距离之和等于常数( ),这个动 点 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若,则动点的轨迹为线段; 若 ,则动点 的轨迹无图形. 讲练结合一.椭圆的定义 1.若ABC ?的两个顶点()()4,0,4,0A B -,ABC ?的周长为18,则顶点C 的轨迹方程是 知识点二:椭圆的标准方程 1.当焦点在轴上时,椭圆的标准方程:,其中; 2.当焦点在轴上时,椭圆的标准方程:,其中; 注意: 1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有 和 ; 3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为, ;当焦点在 轴上时,椭圆的焦点坐标为 , 。 讲练结合二.利用标准方程确定参数

1.椭圆22 14x y m + =的焦距为2,则m = 。 2.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。 知识点三:椭圆的简单几何性质 椭圆的的简单几何性质 (1)对称性 对于椭圆标准方程,把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方 程都不变,所以椭圆是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的 中心对称图形,这个对称中心称为椭圆的中心。 (2)范围 椭圆上所有的点都位于直线x=±a 和y=±b 所围成的矩形内,所以椭圆上点的坐标满足|x|≤a ,|y|≤b 。

(3)顶点 ①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0), A2(a,0),B1(0,―b),B2(0,b)。 ③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。a和b分别叫做椭圆的长半轴长 和短半轴长。 (4)离心率 ①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。 ②因为a>c>0,所以e的取值范围是0<e<1。e越接近1,则c就越接近a,从而 越小,因 此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这时椭圆就越接近于圆。当且仅当 a=b时,c=0,这时两个焦点重合,图形变为圆,方程为x2+y2=a2。 椭圆的图像中线段的几何特征(如下图):

高考数学大题经典习题(2020年九月整理).doc

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1(2)(2)3 f x a x bx a x =-+-+-,则 ()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ?? ? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

高中数学椭圆练习题(文科)

椭圆练习题(文科) 1.椭圆22 11625 x y +=的焦点坐标为_______________________ 2.已知a =4, b =1,焦点在x 轴上的椭圆方程是_______________________ 3.已知焦点坐标为(0, -4), (0, 4),且a =6的椭圆方程是_______________________ 4.若椭圆22 110036 x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是_____ 5.已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 6.过点(3, -2)且与椭圆4x 2+9y 2 =36有相同焦点的椭圆的方程是 (A )2211510x y += (B )221510x y += (C )22 11015 x y += (D )2212510x y += 7.点P 为椭圆22 154 x y +=上一点,以点P 以及焦点F 1, F 2为顶点的三角形的面积为1,则点P 的坐标是(A )(± , 1) (B ), ±1) (C )(D )(, ±1) 8=10为不含根式的形式是 (A )2212516x y += (B )221259x y += (C )2211625x y += (D )22 1925 x y += 9.椭圆22 125 x y m m +=-+的焦点坐标是 (A )(±7, 0) (B )(0, ±7) (C )(±7,0) (D )(0, ±7) 10.过椭圆4x 2+2y 2 =1的一个焦点F 1的弦AB 与另一个焦点F 2围成的三角形△ABF 2的周长是 . 11.已知椭圆方程为22 1499 x y +=中,F 1, F 2分别为它的两个焦点,则下列说法正确的有_____ ①焦点在x 轴上,其坐标为(±7, 0);② 若椭圆上有一点P 到F 1的距离为10,则P 到F 2的距离为4;③焦点在y 轴上,其坐标为(0, ±210);④ a =49, b =9, c =40, 12.如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为 (A )53 (B )312 (C )43 (D )910 13.设椭圆的标准方程为22 135x y k k +=--,若其焦点在x 轴上,则k 的取值范围是_____ 14.椭圆的对称轴为坐标轴,若长、短轴之和为18,焦距为6,那么椭圆的方程为

高中数学椭圆练习题

椭圆标准方程典型例题 例1 已知椭圆0632 2=-+m y mx 的一个焦点为(0,2)求m 的值. 例2 已知椭圆的中心在原点,且经过点()03, P ,b a 3=,求椭圆的标准方程. 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和3 52,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 例5 已知椭圆方程()0122 22>>=+b a b y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示). 例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内 切,求动圆圆心P 的轨迹方程 例7 已知椭圆1222=+y x ,(1)求过点?? ? ??2121,P 且被P 平分的弦所在直线的方程;

(2)求斜率为2的平行弦的中点轨迹方程; (3)过()12, A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=?OQ OP k k , 求线段PQ 中点M 的轨迹方程. 例8 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为 5 102,求直线的方程. 例9 以椭圆13 122 2=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程. 已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范 例10 已知1cos sin 2 2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.

综合题:高一数学函数经典习题及答案

函 数 练 习 题 一、 求函数的定义域 1、求下列函数的定义域: ⑴33y x =+- ⑵y = ⑶01(21)111 y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311 x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =

6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 )5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3) 11、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<< 13、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 14、函数1()(0)f x x x x =+≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数

高中数学椭圆经典试题练习

椭圆练习题 一、选择题 1.椭圆2x m +2 4 y =1的焦距为2,则m 的值为( ) A .5 B .3 C .5或3 D .8 2.设椭圆)0( 122 22>>=+b a b y a x 的离心率为e=12,右焦点为F (c ,0),方程ax 2+bx -c =0的两 个实根分别为x 1和x 2,则点P (x 1,x 2)( ) A .必在圆x 2+y 2=2内 B .必在圆x 2+y 2=2上 C .必在圆x 2+y 2=2外 D .以上三种情形都有可能 3.在椭圆)0( 122 22>>=+b a b y a x 上取三点,其横坐标满足1322x x x +=,三点与某一焦 点的连线段长分别为123,,r r r ,则123,,r r r 满足( ) A .123,,r r r 成等差数列 B . 123 112 r r r += C .123,,r r r 成等比数列 D .以上结论全不对 4.椭圆22 1 4x y m +=的离心率e 满足方程2 2520x x -+=,则m 的所有可能值的积为 ( ) A .3 B . 316 C .16 D .-16 5.已知c 是椭圆)0(12222>>=+b a b y a x 的半焦距,则a c b +的取值范围是 ( ) A (1, +∞) B ),2(∞+ C )2, 1( D ]2,1( 6. 过椭圆左焦点F 且倾斜角为 60的直线交椭圆于A 、B 两点,若FB FA 2=,则椭圆的离心率为 ( ) A . 32 B. 22 C. 21 D. 3 2 7.过原点的直线l 与曲线C:13 22 =+y x 相交,若直线l 被曲线C 所截得的线段长不大于6,则直线l 的倾斜角α的取值范围是 ( ) A 656παπ≤≤ B 326παπ<< C 323παπ≤≤ D. 434παπ≤≤ 8.椭圆)10(,2 222<<=+a a y x a 上离顶点A(0,a )最远点为(0,)a -成立的充要条件为 ( )

(完整word版)高一数学必修一经典高难度测试题含答案

高中数学必修1复习测试题(难题版) 1.设5log 3 1=a ,5 13=b ,3 .051??? ??=c ,则有( ) A .a b c << B .c b a << C .c a b << D .b c a << 2.已知定义域为R 的函数)(x f 在),4(∞+上为减函数,且函数()y f x =的对称轴为4x =,则( ) A .)3()2(f f > B .)5()2(f f > C .)5()3(f f > D .)6()3(f f > 3.函数lg y x = 的图象是( )

4.下列等式能够成立的是( ) A .ππ-=-3)3(66 B = C =34 ()x y =+ 5.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( ) A .)2()1()23(f f f <-<- B .)1()2 3 ()2(-<-

6.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-,则()y f x =在R 上的解析式为 A . ()(2)f x x x =-+ B .()||(2)f x x x =- C .()(||2)f x x x =- D. ()||(||2)f x x x =- 7.已知函数log (2)a y ax =-在区间[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(0,2) D .(2,)+∞

高中数学-椭圆经典练习题-配答案

椭圆练习题 一.选择题: 1.已知椭圆 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( D ) A .2 B .3 C .5 D .7 2.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( C ) A. B. C. D. 3.与椭圆9x 2 +4y 2 =36有相同焦点,且短轴长为4的椭圆方程是( B ) A 4.椭圆的一个焦点是,那么等于( A ) A. B. C. D. 5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( B ) A. B. C. D. 6.椭圆两焦点为 , ,P 在椭圆上,若 △的面积的最大值为12,则椭圆方程为( B ) A. B . C . D . 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2| 的等差中项,则该椭圆方程是( C )。 A +=1 B +=1 C +=1 D +=1 8.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( C ) (A)450 (B)600 (C)900 (D)120 9.椭圆 上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为( A ) A. 4 B . 2 C. 8 D . 116 252 2=+y x 22143x y +=22134x y +=2214x y +=22 14 y x +=5185 8014520125201 20 252222222 2=+=+=+=+y x D y x C y x B y x 2 2 55x ky -=(0,2)k 1-1512 21(4,0)F -2(4,0)F 12PF F 221169x y +=221259x y +=2212516x y +=22 1254 x y +=16x 29y 216x 212y 24x 23y 23x 24 y 222 1259 x y +=2 3

高考数学大题经典习题

1. 对于函数()32 1(2)(2)3 f x a x bx a x =- +-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 2 2sin cos t t t -+ t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()32 1(2)(2)3 f x a x bx a x =- +-+-,则 ()2 '(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02(2)323(2)0 a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-+ ∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -+ ≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得22 4a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3)((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

椭圆经典例题(带答案-适用于基础性巩固)

椭圆标准方程典型例题(参考答案) 例1 已知椭圆0632 2 =-+m y mx 的一个焦点为(0,2)求m 的值. 解:方程变形为 1262 2=+m y x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2 262=-m ,5=m 适合.故5=m . 例2 已知椭圆的中心在原点,且经过点()03, P ,b a 3=,求椭圆的标准方程. 解:当焦点在x 轴上时,设其方程为()0122 22>>=+b a b y a x . 由椭圆过点()03, P ,知10922=+b a .又b a 3=,代入得12=b ,92 =a ,故椭圆的方程为1922=+y x . 当焦点在y 轴上时,设其方程为()0122 22>>=+b a b x a y . 由椭圆过点()03, P ,知10922=+b a .又 b a 3=,联立解得812=a ,92 =b ,故椭圆的方程为198122=+x y . 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b , 故其方程为 ()0136 1002 2≠=+y y x . (2)设()y x A ,,()y x G '',,则 ()0136 1002 2≠'='+'y y x . ① 由题意有??? ????='='33 y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点). 例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和3 5 2,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 解:设两焦点为1F 、2F ,且3541= PF ,3 5 22=PF .从椭圆定义知52221=+=PF PF a .即5=a . 从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12F PF Rt ?中,2 1 sin 12 21==∠PF PF F PF ,

2014年高考椭圆综合题做题技巧与方法总结

2014年高考椭圆综合题做题技巧与方法总结 知识点梳理: 1. 椭圆定义: (1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点. 当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在; 当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<>=+b a b y a x )0(12 22 2>>=+b a b x a y 性 质 参数关系 222c b a += 焦点 )0,(),0,(c c - ),0(),,0(c c - 焦距 c 2 范围 b y a x ≤≤||,|| b x a y ≤≤||,|| 顶点 ),0(),,0(),0,(),0,(b b a a -- )0,(),0,(),,0(),,0(b b a a -- 对称性 关于x 轴、y 轴和原点对称 离心率 )1,0(∈=a c e

准线 c a x 2 ±= c a y 2 ±= 考点1 椭圆定义及标准方程 题型1:椭圆定义的运用 [例1 ] 椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 A .4a B .2(a -c) C .2(a+c) D .以上答案均有可能 [解析]按小球的运行路径分三种情况: (1)A C A --,此时小球经过的路程为2(a -c); (2)A B D B A ----, 此时小球经过的路程为2(a+c); (3)A Q B P A ----此时小球经过的路程为4a,故选D 总结:考虑小球的运行路径要全面 练习 1.短轴长为5,离心率3 2 = e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A.3 B.6 C.12 D.24 [解析]C. 长半轴a=3,△ABF 2的周长为4a=12 2.已知P 为椭圆22 12516 x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆 22(3)4x y -+=上的点,则PM PN +的最小值为( ) A . 5 B . 7 C .13 D . 15 [解析]B. 两圆心C 、D 恰为椭圆的焦点,10||||=+∴ PD PC ,PM PN +的最小值为10-1-2=7 题型2 求椭圆的标准方程 [例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程. 【解题思路】将题中所给条件用关于参数c b a ,,的式子“描述”出来 [解析]设椭圆的方程为122 22=+b y a x 或)0(12222>>=+b a a y b x , O x y D P A B C Q

相关文档
最新文档