微生物的代谢调控理论
微生物的生长和代谢调控机制

微生物的生长和代谢调控机制微生物是指那些生存于我们周围环境中,不可肉眼观察的微小生物。
较为常见的微生物包括细菌、真菌、病毒等等。
它们在自然生态系统和人类社会中扮演着非常重要的角色,不仅能够为我们提供许多有益的物质,还可以协助我们处理生活中一些难以处理的问题。
因此,微生物的生长和代谢调控机制备受人们的关注。
微生物生长机制从生物化学角度来看,主要就是细胞分裂(复制),即由一个细胞分裂成两个子细胞。
在细胞分裂过程中,细胞会通过代谢反应来合成DNA、RNA、蛋白质等组成成分,并最终形成新的细胞。
其中,代谢反应是微生物生长的关键。
代谢调控机制是细胞能够从进食中提取营养物质,利用这些营养物质完成自身的分裂和增长。
在自然环境中,营养供应并不总是均衡的,所以微生物必须要有一种机制,来调节自身的代谢反应和生长速度,以应对不同的环境条件。
下面我们将分别介绍微生物的生长和代谢调控机制。
微生物的生长机制:生长需要满足细胞内各种重要物质的合成需求;这些物质包括核酸、蛋白质、细胞壁和细胞膜等。
核酸是组成细胞遗传信息的重要物质,而蛋白质则是细胞的基本组成成分;细胞壁和细胞膜则是保护和维持细胞结构的重要结构。
所有这些物质的合成都需要依赖于代谢物(营养物质),如糖类、氨基酸、核酸、脂类等,在特定的环境条件下,细胞就可以使用代谢物进行生长。
微生物的代谢调控机制:在营养物质不足的情况下,细胞的生长速度就会放缓或停止。
因此,微生物要能够感知和适应环境中营养物质的变化,从而调整自身的代谢和生长速率。
在微生物中,有许多专门的酶来协调代谢的反应,这是调节代谢反应的重要机制。
此外,微生物还可能通过对某些代谢物质的抑制和激活来实现代谢调控。
这种调节机制是通过信号通路实现的,微生物可以通过分泌不同的生物活性物质、调控细胞膜通透性和转录因子来调节代谢。
微生物的生长和代谢调控机制是一个复杂的过程,不同的微生物可能会有不同的机制。
但是,无论微生物的机制是什么,它们都需要依赖于环境中的营养物质来进行生长和繁殖。
微生物代谢调控原理的应用

微生物代谢调控原理的应用1. 概述微生物代谢调控原理是指通过对微生物的代谢过程进行调控和优化,来实现对微生物产生的产品或代谢产物进行控制和提高产量的一种方法。
微生物代谢调控原理的应用广泛,包括工业生产、生物制药、环境保护等方面。
2. 常用的微生物代谢调控方法•基因工程: 通过改变微生物的基因组,引入、修改或删除特定的基因,以达到调控微生物代谢的目的。
例如,可以通过基因工程使微生物产生特定的酶,从而提高产物的产量。
•代谢工程: 利用代谢工程方法来调控微生物的代谢途径,使其产生所需的产物或代谢产物。
代谢工程包括代谢路径的重建、代谢途径的优化以及代谢产物的调控等方面。
•生物传感器: 生物传感器是一种能够检测微生物代谢过程并进行实时监测的工具。
通过生物传感器可以获取微生物在不同代谢状态下的信息,从而进行代谢调控。
•发酵工艺优化: 发酵工艺是微生物代谢调控的重要环节。
通过对发酵条件、培养基成分等进行优化,可以达到调控微生物代谢的目的,提高产物产量。
3. 微生物代谢调控在工业生产中的应用•生物燃料生产: 在生物燃料生产过程中,利用微生物进行代谢调控可以提高生物燃料的产量和质量。
通过调控微生物的代谢途径,使其产生更多的生物燃料或提高生物燃料的效能。
•生物塑料生产: 微生物代谢调控可以用于生物塑料的生产过程中。
通过调控微生物的代谢途径和发酵条件,可以合成高效的生物塑料,降低生产成本。
•生物制药: 微生物代谢调控在生物制药中有重要应用。
通过调控微生物的代谢途径和产物分泌路径,可以提高药品的产量和纯度,降低生产成本。
4. 微生物代谢调控在环境保护中的应用•环境污染治理: 微生物代谢调控可以应用于环境污染的治理。
通过调控微生物的代谢途径和代谢产物,可以实现对污染物的降解和清除。
•生物修复: 微生物代谢调控在生物修复中也有重要应用。
通过调控微生物的代谢途径和产物分泌,可以促进土壤、水体等环境的修复和恢复。
•废弃物处理: 微生物代谢调控可以应用于废弃物的处理。
微生物生长和代谢的调控机制

微生物生长和代谢的调控机制微生物是一类具有极强适应性的生物,不仅可以生长于各种极端环境中,还可以分解各种复杂有机物质,在生态系统中发挥着重要的作用。
微生物生长和代谢是由多种调控机制共同协同完成的。
本文将从营养调控、信号转导、转录调控、翻译后修饰等方面进行探讨。
一、营养调控微生物的生长和代谢受生长环境的影响很大,营养物质的获取对于微生物生长发育至关重要。
营养物质作为微生物代谢的原料,能够通过特定的营养调节机制调节细胞内的代谢活性,从而影响微生物的生长和代谢。
例如,细胞脱氧核糖核酸(dNTP)含量对于DNA复制和细胞周期的正常进行起着关键性的调节作用。
当细胞内dNTP含量过高或过低时,会导致DNA复制错误和细胞凋亡等异常现象。
二、信号转导信号转导是微生物生长和代谢的重要调控机制。
细胞内的信号分子能够在不同的代谢途径之间传递信息,并且可以调节细胞的基因表达和代谢产物的合成。
例如,环状二核苷酸(cAMP)和磷酸四酮酸(PPGPP)等信号分子能够分别参与细胞的能量代谢和应激响应,并且能够反馈到细胞的转录调控和翻译后修饰过程中,从而影响微生物的代谢和生长。
三、转录调控微生物的代谢和生长受到转录调控的影响很大,转录因子能够调节基因的表达。
微生物利用转录因子与DNA结合的方式能够对基因进行正、负调节,并且能够根据环境的变化快速地调节基因表达。
例如,传统大肠杆菌的转录因子LacI能够通过与lactose结合来诱导lac operon的转录,从而合成乳糖酶等相关酶。
四、翻译后修饰微生物的代谢和生长与翻译后修饰密切相关。
在蛋白质翻译过程中,N-端信号肽可以调节蛋白质的定位和转运,C-端的修饰可以调节酶活性或稳定性。
例如,乳酸杆菌中的多肽链胺酸酶(DppA)能够利用翻译后修饰方式形成互作性肽链,并且可以与微生物的其他表面蛋白相互结合,从而形成生物膜。
综上,微生物生长和代谢的调控机制是由多种调控机制共同协调完成的。
营养调控、信号转导、转录调控和翻译后修饰等机制可以协同作用,从而实现微生物的生长和代谢的调节。
微生物代谢途径分析与调控机制研究

微生物代谢途径分析与调控机制研究微生物是一类非常重要的生物体,它们擅长利用各种有机物和无机物进行代谢,从而维持自身生命活动。
微生物代谢途径是微生物进行代谢的过程,研究微生物代谢途径及其调控机制对于人类健康、环保、农业等领域都有着重要意义。
一、微生物代谢途径分析微生物代谢途径包括碳水化合物代谢、脂肪代谢、氨基酸代谢、核苷酸代谢等多个方面。
其中,碳水化合物代谢是微生物代谢途径中最重要的组成部分之一。
1. 碳水化合物代谢碳水化合物代谢是微生物体内最常见的代谢途径之一。
微生物通过碳水化合物的分解和利用,可以产生能量、生长、繁殖等等。
其代谢途径主要包括糖酵解途径和柠檬酸循环。
糖酵解途径是指将简单的碳水化合物如葡萄糖或果糖代谢转化成乳酸、丙酮酸或乙醇等产物的过程。
柠檬酸循环是指将较复杂的碳水化合物如脂肪酸、氨基酸等代谢转化成能量和一些有用的化合物的过程。
2. 脂肪代谢微生物的脂肪代谢是指将脂肪酸作为能量来源进行代谢。
脂肪酸主要合成于微生物体内的细胞膜中,是脂质的主要来源。
脂肪酸的代谢包括氧化和还原过程。
微生物通过氧化和还原反应,可以产生大量的ATP,为自身的生长和繁殖提供能量。
3. 氨基酸代谢氨基酸是微生物体内最简单的含氮有机物,是蛋白质的组成部分。
微生物通过氨基酸代谢可以产生能量和一些有用的化合物,在氨基酸代谢途径中,谷氨酸和丝氨酸代谢是最为重要的两个方面。
4. 核苷酸代谢核苷酸是细胞体内一类重要的生物大分子。
微生物通过核苷酸代谢可以合成DNA和RNA等生物大分子,同时也可以提供能量和一些重要的原料。
核苷酸代谢途径包括核苷酸合成途径和核苷酸降解途径。
二、微生物代谢途径的调控机制研究微生物体内的代谢途径受到多种因素的影响,生长环境和表观遗传学因素是其中的重要影响因素之一。
生长环境中的物理、化学等因素是微生物代谢途径调控的主要因素之一。
例如,温度、血糖、pH等因素都会直接或间接地影响微生物代谢途径的运行。
近年来,随着表观遗传学理论的不断发展,人们对微生物代谢途径调控机制的理解也越来越深入。
微生物的代谢可以通过什么方式调节

微生物的代谢可以通过什么方式调节引言:微生物是一类微小的生物体,包括细菌、真菌、病毒等。
微生物的代谢是指微生物体内化学过程的总和,包括营养物质的摄取、分解、合成和转化等。
微生物的代谢方式的调节对于微生物的生长、繁殖以及产生有用的代谢产物具有重要意义。
本文将介绍微生物代谢调节的几种方式。
概述:微生物的代谢调节可以通过包括基因表达调控、信号传导、环境响应、代谢产物反馈调控以及细胞内能量平衡等多种方式来实现。
这些调控方式可以使微生物根据外界环境的变化,调整代谢途径,以适应不同的生存条件。
正文:一、基因表达调控1. 转录调控:微生物的代谢调节最基本的方式是通过转录调控。
微生物通过启动子区域的结构特征和转录因子的结合来调控基因的转录,从而调节酶的合成。
例如,当微生物需要产生某种特定酶时,相关的转录因子被激活并与启动子结合,启动基因的转录。
2. 翻译调控:除了通过转录调控来调节基因的表达外,微生物还可以通过翻译调控来影响蛋白质的合成水平。
这可以通过调控转录后修饰、mRNA稳定性和翻译效率等途径实现。
二、信号传导1. 孤立态信号传导:微生物可以通过发送和接收特定的信号分子来进行细胞间的通信。
这些信号分子可以是激素、激活因子或抑制因子等,它们通过特定的信号传导通路传递信号,从而调节代谢途径的活性。
2. 确定信号:微生物还可以通过环境感知来进行代谢调节。
例如,当微生物感知到特定的环境因素,如温度、pH值、氧气浓度等发生变化时,它们可以通过转导途径来调整代谢途径以适应外界环境的改变。
三、环境响应1. 高温应激响应:高温是微生物生长和代谢的重要限制因素之一。
为了适应高温环境,微生物可以通过调节热休克蛋白表达、膜脂组分改变以及调节酶的热稳定性等途径来进行代谢调节。
2. 氧气响应:氧气是微生物代谢的重要底物和能量供应者。
微生物可以通过调节酶的氧气需求以及调整氧气通透性等途径来适应不同氧气浓度的环境。
四、代谢产物反馈调控1. 酶的反馈抑制:微生物的代谢途径中,常常存在着反馈抑制机制。
微生物的代谢途径和调控机制

微生物的代谢途径和调控机制微生物是一种非常常见而又重要的生物,它们在生态系统中有着重要的作用。
微生物的代谢途径和调控机制是微生物研究中不可忽视的一部分。
本文将从微生物的代谢途径和调控机制两个方面展开论述。
微生物的代谢途径微生物的代谢途径是指微生物在自身体内进行能量代谢的一系列反应,包括有氧呼吸、厌氧呼吸和发酵等。
其中,有氧呼吸是指微生物利用氧气作为终端电子受体,将有机物完全氧化成为二氧化碳和水,并产生能量。
厌氧呼吸则是指微生物在氧气不足的条件下,利用其他物质作为电子受体,将有机物部分氧化,并产生能量。
而发酵则是指微生物在氧气缺乏时,将有机物在不需要外部电子受体的条件下,分解成酸、醇和气体等产物,并产生能量。
微生物的代谢途径对于微生物的生存和繁殖有着至关重要的作用。
不同的微生物对于不同种类物质的代谢能力不同,这也是微生物能够适应不同环境的原因之一。
例如,某些微生物能够代谢硫、铁等金属离子,从而在海洋底部形成硫化物流,而某些细菌则能够将氮气转化为氨,提供生态系统的必需氮源。
微生物的调控机制微生物的代谢途径需要受到调控才能保证生命过程的正常。
微生物的调控机制包括转录调控、翻译调控和代谢调控等。
其中,转录调控是指微生物可以通过正反馈和负反馈机制,调控基因的表达量。
翻译调控则是指微生物可以通过启动子和转录因子等控制RNA的合成和mRNA的稳定性,影响蛋白质的表达量。
而代谢调控则是指微生物通过代谢产物的反馈和前体物的调节,调控酶的活性和基因表达,从而控制代谢途径的进行。
微生物的调控机制不仅对维持其生命活动有着重要的作用,同时也对于人类的健康有着深远的影响。
以大肠杆菌为例,它是肠道中普遍存在的微生物,当体内钙浓度过低时,大肠杆菌就会通过感应系统调控Calcium Transporter (CaT)的表达量,从而增加体内钙的吸收,保证人体的健康。
总结微生物的代谢途径和调控机制是微生物研究中的重要内容。
通过对微生物的代谢途径和调控机制的研究,不仅可以更好地了解微生物对环境的适应性和生命活动的本质,同时也可以为生物技术和人类健康等方面提供有益的参考和支持。
02微生物代谢调控理论及其在微生物发酵中的应用

☆别构酶:也称变构酶,它是代谢过程 中的关键酶。通过效应物(调节物) 和酶的别构中心的结合来调节其活性, 从而调节酶反应速度和代谢过程。
变 构 调 节
☆多功能酶:一般是指在结构上只有 一条多肽链,但具有两种或两种以 上的催化活力或结合功能的蛋白质。
3
反馈调节
• 反馈调节主要是指代谢过程的中间产 物,或终产物对于代谢早期阶段上关 键酶的抑制作用。 • 微生物通过反馈调节作用,按照自身 的要求来改变自己的代谢。
葡萄糖 ↓ 丙酮酸 ↓ 丙氨酸←天冬氨酸→→→赖氨酸
在乳糖发酵短杆菌中赖氨酸、丙氨酸的 生物合成途径及其调节
◆丙酮酸和天冬氨酸是赖氨酸和丙氨酸生 物合成中共用的前体物。 ◆虽然丙氨酸并不抑制赖氨酸的生物合成, 但是丙氨酸的形成意味着赖氨酸前体物丙 酮酸和天冬氨酸的减少。 ◆因此育成丙氨酸缺陷型,切断丙氨酸的 生物合成,就会提高赖氨酸的产量。
⑴切断了生物合成苏氨酸和蛋氨酸的支路 代谢,使天冬氨酸半醛这一中间产物全 部转入赖氨酸的合成; ⑵通过限量添加高丝氨酸,可使蛋氨酸、 苏氨酸生成有限,因而解除了苏氨酸、 赖氨酸对天冬氨酸激酶的协同反馈抑制, 使赖氨酸得以积累。
例3
鸟氨酸发酵
• 利用营养缺陷型菌株发酵生产中间产 物,如可以利用谷氨酸棒杆菌的瓜氨 酸营养缺陷型(缺少转氨甲酰酶)进 行发酵大量累积鸟氨酸。
所谓代谢控制发酵,就是人为地 在DNA分子水平上改变和控制微生物 的代谢活动,使目的产物大量生成、 积累。
★ 改变微生物代谢调节的方法:
☆采用物理化学诱变,获得营养缺 陷型,这是氨基酸生产菌育种的 最有效的方法。
营养缺陷型:指某菌种失去合成某种物 质的能力,即合成途径中某一步发生突 变,使合成反应不能完成,最终产物不 能积累到引起反馈调节的浓度,从而有 利于中间产物或另一分支途径的末端产 物得以积累。
第五章 代谢调控

末端代谢产物阻遏在微生物代谢调节中有 着重要的作用,它保证了细胞内各种物质维持 适当的浓度。当微生物已合成了足量的产物, 或外界加入该物质后,就停止有关酶的合成。 而缺乏该物质时,又开始合成有关的酶。
2.2 分解代谢物对酶合成的阻遏
当细胞内同时存在两种可利用底 物(碳源或氮源)时,利用快的底物会阻 遏与利用慢的底物有关的酶合成。现 在知道,这种阻遏并不是由于快速利 用底物直接作用的结果,而是由这种 底物分解过程中产生的中间代谢物引 起的,所以称为分解代谢物阻遏。
培养基中加入精氨酸阻遏精氨酸合成酶系的合成
大肠杆菌的甲硫氨酸是由高丝氨酸经胱硫醚 和高半胱氨酸合成的,在仅含葡萄糖和无机盐 的培养基中,大肠杆菌细胞含有将高丝氨酸转 化为甲硫氨酸的三种酶,但当培养基中加入甲 硫氨酸时,这三种酶消失。
甲硫氨酸反馈阻遏大肠杆菌的蛋氨酸合成酶的合成 (R):表示反馈阻遏
{ • 酶活性
对酶活性的前馈 对酶活性的反馈
四. 次级代谢与次级代谢调节
次级代谢是相对于初级代谢而言的, 所谓初级代谢是一类普遍存在于生物中 的代谢类型,是与生物生存有关的,涉 及能量产生和能量消耗的代谢类型。初 级代谢产物如单糖、核苷酸、脂肪酸等 单体,以及由它们组成的各种大分于聚 合物,如蛋白质、核酸、多糖、脂类等。
调节酶的抑制剂通常是代谢终产物或其结构类 似物,作用是抑制酶的活性。效应物的作用是 可逆的,一旦效应物浓度降低,酶活性就会恢 复。调节酶常常是催化分支代谢途径一系列反 应中第一个反应的酶,这样就避免了不必要的 能量浪费。
综上,微生物代谢的调节方式包括以下几点:
{ • 酶合成
酶合成的诱导 末端产物对酶合成的阻遏 分解代谢产物对酶合成的阻遏
第五章 代谢调控
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 一、初级代谢和次级代谢
• 合成代谢和分解代谢(P49) • 初级代谢和次级代谢(P49~ P50)
二、代谢调控的方式 • (1)调节营养物质透过细胞膜而进入细胞的 能力---通道调节; • (2)调节代谢流---通量调节; • (3)通过酶的定位以限制它与相应底物 的接近---限制其基质有形接近。
• (4)顺序反馈抑制:
• 当E过多时,可抑制C→D,这时由于C的浓度过大而促使 反应向F、G方向进行,结果又造成了另一末端产物G浓度 的增高。由于G过多就抑制了C→F,结果造成C的浓度进 一步增高。C过多又对A→B间的酶发生抑制,从而达到了 反馈抑制的效果。这种通过逐步有顺序的方式达到的调 节,称为顺序反馈抑制。
• 分解代谢物阻遏的典型实例:葡萄糖效应 • 葡萄糖效应( glucose effect): 又称葡萄糖阻遏或分解代谢产生阻遏作用。葡 萄糖或某些容易利用的碳源,其分解代谢产物阻 遏某些诱导酶体系编码的基因转录的现象。
(二)酶合成调节的机制
1.操纵子:是在转录水平上控制基因表达 的协调单位,由调节基因(R)、启动子 (P)、操纵基因(O)和在功能上相关的 几个结构基因(S)组成 ;
• 调节基因:用于编码调节蛋白的基因。 • 启动基因:是一种能被依赖于DNA的RNA聚合酶所 识别的碱基顺序,它既是RNA多聚酶的结合部位, 也是转录的起始点;
• 操纵基因是位于启动基因和结构基因之间的一 段碱基顺序,能与阻遏物(一种调节蛋白)相 结合,以此来决定结构基因的转录是否能进行; • 结构基因则是决定某一多肽的DNA模板,可根 据其上的碱基顺序转录出对应的mRNA,然后再 可通过核糖体而转译出相应的酶。一个操纵子 的转录,就合成了一个mRNA分子。
• 同时诱导,即当诱导物加入后,微生物能同时 或几乎同时诱导几种酶的合成,它主要存在于 短的代谢途径中。例如,将乳糖加入到E.coli 培养基中后,即可同时诱导出β -半乳糖苷透性 酶、β -半乳糖苷酶和半乳糖苷转乙酰酶的合成; • 顺序诱导,即先合成能分解底物的酶,再依次 合成分解各中间代谢物的酶,以达到对较复杂 代谢途径的分段调节。
(2)分解代谢物阻遏
• 概念:指细胞内同时有两种分解底物(碳源或 氮源)存在时,利用快的那种分解底物会阻遏 利用慢的底物的有关酶合成的现象。 • 分解代谢物的阻遏作用,并非由于快速利用的 甲碳源本身直接作用的结果,而是通过甲碳源 (或氮源等)在其分解过程中所产生的中间代 谢物所引起的阻遏作用。 • 因此,分解代谢物的阻遏作用,就是指代谢反 应链中,某些中间代谢物或末端代谢物的过量 累积而阻遏代谢途径中一些酶合成的现象。
第三章 微生物的代谢调控 理论及其在食品发酵与酿 造中的应用
王青云
E-mail:jalywang6688@
第一节 微生物的代谢与调节的 生化基础
代谢调节
★ 是生物在长期进化过程中,为适应外界条件而形成的 一种复杂的生理机能。通过调节作用细胞内的各种物质及 能量代谢得到协调和统一,使生物体能更好地利用环境条 件来完成复杂的生命活动。
(1)酶活性的激活:指在分解代谢途径中,后面的
反应可被较前面的中间产物所促进。
(2)酶活性的抑制:主要是反馈抑制。
反馈抑制:某代谢途径的末端产物(即终产物)过量 时,这个产物可反过来直接抑制该途径中第一个酶的 活性,促使整个反应过程减慢或停止,从而避免了末
端产物的过多累积。
(3)反馈抑制的类型 • ① 直线式代谢途径中的反馈抑制
一、发酵工艺条件的控制
环境条件既影响微生物生长,又影响代谢速度和方向 及产物形成与积累。 现以谷氨酸棒杆菌发酵为例来说明控制发酵条件包括 O2浓度、NH4浓度 、pH、磷酸盐浓度、生物素浓度等, 环境条件改变,可使代谢转换方向,不生成谷氨酸, 而生成乳酸、琥珀酸、谷氨酰胺等产物。
二、菌种遗传特性的改变
[ATP]+0.5[ADP] 能荷(EC))= [ATP]+[ADP]+[AMP] ×100%
当细胞中腺苷酸全部是ATP,能荷为1; 当细胞中腺苷酸全部是ADP,能荷为0.5; 当细胞中腺苷酸全部是AMP,能荷为0 当细胞或线粒体中三种核苷酸同时并存时, 能荷大小随三者比例而异,三者的比例随细胞 生理状态而变化。
• 调节蛋白 • 是一类变构蛋白,它有两个特殊位点,其一可 与操纵基因结合,另一位点则可与效应物相结 合。当调节蛋白与效应物结合后,就发生变构 作用。有的调节蛋白在其变构后可提高与操纵 基因的结合能力,有的则会降低其结合能力。 • 调节蛋白可分两种,其一称阻遏物,它能 在没有诱导物(效应物的一种)时与操纵基因 相结合;另一则称阻遏物蛋白,它只能在辅阻 遏物(效应物的另一种)存在时才能与操纵基 因相结合。
(一)酶合成调节的类型 • 1.诱导
• 根据酶的生成是否与环境中所存在的该酶底物 或其有关物的关系,可把酶划分成组成酶和诱 导酶两类。 • 诱导酶:是细胞为适应外来底物或其结构类似 物而临时合成的一类酶。 • 能促进诱导酶产生的物质称为诱导物,它可以 是该酶的底物,也可以是难以代谢的底物类似 物或是底物的前体物质。
• ② 分支代谢途径中的反馈抑制。 • 在分支代谢途径中,反馈抑制的情况较为复杂。 • 为避免在一个分支上的产物过多时不致同时影 响另一分支上产物的供应,微生物已发展出多 种调节方式。
• (1)协同反馈抑制: 指分支代谢途径中的几个 末端产物同时过量时才能抑制共同途径中的第一 个酶的一种反馈调节方式。 • (2)合作反馈抑制: 指两种末端产物同时存在 时,可以起着比一种末端产物大得多的反馈抑制 作用。 • (3)累积反馈抑制: 每一分支途径的末端产物 按一定百分率单独抑制共同途径中前面的酶,所 以当几种末端产物共同存在时,它们的抑制作用 是累积的。
• 操纵子分两类: • 一类是诱导型操纵子,只有当存在诱导物(一 种效应物)时,其转录频率才最高,并随之转 译出大量诱导酶,出现诱导现象。 • 另一类是阻遏型操纵子,只有当缺乏辅阻遏物 (一种效应物)时,其转录频率才最高。由阻 遏型操纵子所编码的酶的合成,只有通过去阻 遏作用才能启动。
• 效应物 • 是一类低分子量的信号物质(如糖类及 其衍生物、氨基酸和核苷酸等),包括 诱导物和辅阻遏物两种,它们可与调节 蛋白相结合以使后者发生变构作用,并 进一步提高或降低与操纵基因的结合能 力。
• (三)多功能酶:分子组成只有一条多 肽链பைடு நூலகம்但具有两种或两种以上催化活力 的酶。
• 一个终产物的过量,在使共同途径第一步反应 受到部分抑制的同时,分支途径第一步反应也 受到抑制,使代谢沿着其他分支进行。因此, 一个产物的过量不致干扰其他产物的生成。
第二节 微生物代谢的协调作用
一、酶活性的调节
酶活性的调节:是指在酶分子水平上的 一种代谢调节,它是通过改变现成的酶分 子活性来调节新陈代谢的速率,包括酶活 性的激活和抑制两个方面。
粗调:酶量的调节。
代谢流调节
微调:现有的酶的活性的调节。
三、与代谢调节有关的酶
(一)同功酶调节
• 同功酶:指能催化相同的生化反应,但酶蛋白分子结构 有差异的一类酶,它们虽同存于一个个体或同一组织中, 但在生理、免疫和理化特性上却存在着差别。 • 同功酶在代谢调节中的作用:在一个分支代谢途径中, 如果在分支点以前的一个较早的反应是由几个同功酶所 催化时,则分支代谢的几个最终产物往往分别对这几个 同功酶发生抑制作用。
大肠杆菌乳糖酶诱导合成---调节基因产物对转录的调控
调节基因
操纵基因
结构基因
mRNA 阻遏蛋白
诱导物(乳糖)
操纵基因——基因合成的开关. 关——阻遏蛋白阻挡操纵基因,结构基因不表达.
开——诱导物阻止阻遏蛋白功能发挥.
三、能荷的调节
1. 能荷(energy charge)
能荷是一个表示细胞能量状态的参数。是细 胞中所含有的相当于 ATP的数量的腺苷酸分 子数占全部腺苷酸分子数的百分比,其表示 式为:
• (一)应用营养缺陷型菌株以解除正常的反馈调节 • 营养缺陷型菌株:野生型菌株经过人工诱变或者自然 突变失去合成某种营养(氨基酸,维生素,核酸等) 的能力,只有在基本培养基中补充所缺乏的营养因子 才能生长的菌株。 • 营养缺陷型是一种生化突变株,它的出现是由基因突 变引起的。由于核酸系列中某碱基发生突变,导致该 基因所控制的酶合成受阻,该菌株也因此不能合成某 种营养因子,从而使正常代谢失去平衡。
• (1)末端产物阻遏
• 指由某代谢途径末端产物的过量累积而引起的 阻遏。对直线式反应途径来说,末端产物阻遏 的情况较为简单,即产物作用于代谢途径中的 各种酶,使之合成受阻遏。
• 对分支代谢途径来说,情况就较复杂。每种末 端产物仅专一地阻遏合成它的那条分支途径的 酶。 • 代谢途径分支点以前的“公共酶”仅受所有分 支途径末端产物的阻遏,此即称多价阻遏作用。 • 末端产物阻遏在代谢调节中有着重要的作用, 它可保证细胞内各种物质维持适当的浓度。
•
• •
• 3.能荷调节的意义
当能荷降低时:则激活催化糖分解,(能量生成)酶 系,或解除ATP对这些酶的抑制(如糖原磷酸化酶、 果糖磷酸激酶、柠檬酸合成酶、异柠檬酸脱氢酶、反 丁烯二酸酶等)并抑制糖原合成酶,1、6磷酸果糖酯 酶,从而加速糖分解和TCA的产能代谢。 当能荷升高时:细胞中AMP,ADP转变为ATP,这 时ATP则抑制糖原降解以及糖酵解和TCA环中的关键 酶(如糖原磷酸化酶,磷酸果糖激酶,柠檬酸合成酶, 异柠檬酸脱氢酶)并激活糖类合成酶(糖原合成酶、 1、6-P-果糖酯酶)从而抑制糖的分解,加速糖原的 合成。
二、酶合成的调节
• 酶合成的调节是一种通过调节酶的合成量进而 调节代谢速率的调节机制,这是一种在基因水 平上(在原核生物中主要在转录水平上)的代 谢调节。 • 凡能促进酶生物合成的现象,称为诱导。 • 能阻碍酶生物合成的现象,则称为阻遏。
酶合成调节与酶活性调节的比较