勾股定理(基础)知识讲解
勾股定理知识点总结大全

勾股定理知识点总结大全一、勾股定理的定义勾股定理又称毕达哥拉斯定理,它是指:在直角三角形中,直角边的平方等于其他两条边的平方和。
具体表达方式是:设直角三角形的两个直角边分别为a、b,斜边为c,则有a²+b²=c²。
这就是著名的毕达哥拉斯定理,也是勾股定理的核心概念。
二、勾股定理的证明1. 几何证明勾股定理有多种证明方法,其中有几何证明是最常见的。
几何证明主要通过图形的构造和变换,利用几何形状的属性,从而证明勾股定理。
常见的几何证明方法包括利用正方形、相似三角形、垂直平分线、圆的性质等,通过构造等辅助图形,最终得到a²+b²=c²的结论。
2. 代数证明另外,勾股定理也可以通过代数方法进行证明。
代数证明主要通过变换方程、化简运算,利用数学公式和规律,从而得到a²+b²=c²的结论。
通过几何和代数两种证明方法,可以更全面地理解勾股定理的内涵和外延,为后续的学习和应用打下坚实的基础。
三、勾股定理的性质1. 勾股三元数根据勾股定理,我们可以找到很多满足a²+b²=c²的整数解组,这样的整数解组叫做勾股三元数。
例如:3²+4²=5²、5²+12²=13²、9²+40²=41²等。
勾股三元数的性质是研究勾股定理的重要方面,它们具有很多有趣的特性和规律,对于数论的研究有着重要的意义。
2. 勾股定理的逆定理对于一个三元数组(a, b, c),如果它满足a²+b²=c²,则称它是勾股三元数。
而勾股定理的逆定理表明,每个整数对(a, b),都可以构成一个勾股三元数。
这个逆定理的证明非常复杂,它涉及到模运算、费马大定理、椭圆曲线等高深的数学知识,是数论和代数学研究的重要课题之一。
3. 勾股定理的推广在直角三角形外,勾股定理也有很多推广成立的情况。
勾股定理公式知识点总结

勾股定理公式知识点总结一、勾股定理的证明方法勾股定理的证明有许多种方法,下面介绍其中比较常见的几种证明方法:1. 几何法证明几何法证明是最直观的证明方法之一,它利用几何图形和性质进行推理。
一种常见的几何法证明是利用平行四边形的性质,将直角三角形的两个直角边分别构造成平行四边形的边,利用平行四边形的对角线相等性质即可证明勾股定理。
2. 代数法证明代数法证明是利用代数运算推导出勾股定理成立的证明方法。
一种常见的代数法证明是利用两个直角三角形组成一个正方形,通过展开式的数字运算推导出勾股定理成立。
3. 数学归纳法证明数学归纳法是一种数学论证方法,通过证明当n=k时定理成立,再证明当n=k+1时定理也成立,从而得出在一切正整数n上定理成立的论证方法。
勾股定理的证明中也可以使用数学归纳法证明。
4. 数学分析法证明数学分析法是通过数学函数的图像分析证明定理的方法。
通过分析直角三角形和斜边的关系,利用函数的性质进行推导,可以证明勾股定理成立。
以上是勾股定理的几种常见的证明方法,它们都是通过不同的数学思维和方法来证明同一个定理的正确性。
在学习和掌握勾股定理时,可以通过比较不同的证明方法,增加对定理的理解和掌握。
二、勾股定理的应用场景勾股定理是数学中的基础定理,它被广泛地应用于各种实际问题中。
下面将介绍一些勾股定理在实际应用中的具体场景:1. 地理测量在地理测量中,经常需要利用勾股定理来计算直角三角形的边长。
例如,利用直角三角形的边长和角度来计算地球上两点的距离,或者计算某一点的具体位置等。
2. 建筑设计在建筑设计中,经常需要利用勾股定理来设计直角三角形结构的建筑物。
例如,在设计楼梯的高度和跨度,或者在设计房屋的墙角和斜面等方面,都需要用到勾股定理。
3. 机械制造在机械制造中,勾股定理也有广泛的应用。
例如,在设计机械零件的装配结构、角度、长度等方面,都需要用到勾股定理来进行计算和设计。
4. 航空航天在航空航天领域,勾股定理也有重要的应用。
勾股定理知识点总结

17.1勾股定理考点一:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2) 技巧归纳:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题考点二:勾股定理的证明一般是通过剪拼,借助面积进行证明。
其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不变。
图1是由4个全等三角形拼成的,得到一个以a+b 为边长的大正方形和以直角三角形斜边c 为边长的小正方形。
则大正方形的面积可表示为(a+b)2,又可表示为12ab ·4+c 2,所以(a+b)2=12ab ·4+c 2,整理得a 2+b 2=c 2在图2的另一种拼法中,以c 为边长的正方形的面积可表示成四个全等的直角三角形与边长为(b-a)的正方形的面积的和,所以12ab ·4+(b-a)2=c 2,整理得a 2+b 2=c 2.考点三:勾股定理的应用(1)勾股定理的应用条件勾股定理只适用于直角三角形,所以常作辅助线——高,构造直角三角形。
(2)勾股定理的实际应用勾股定理反映了直角三角形3条边之间的关系,利用勾股定理,可以解决直角三角形的有关计算和证明.例如:已知直角三角形的两条直角边可求斜边;已知直角三角形的斜边和一条直角边,可求另一条直角边。
勾股定理还可以解决生产生活中的一些实际问题。
在解决问题的过程中,往往利用勾股定理列方程(组),将实际问题转化成直角三角形的模型来解决。
(3)利用勾股定理作长为 n (n 为大于1的整数)的线段实数与数轴上的点是一一对应的,有理数在数轴上较易找到与它对应的点,而若要在数轴上直接标出无理数对应的点则较难。
勾股定理(知识点)

A B C ac 弦勾勾股定理(知识点)【知识要点】1.勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角8,15,17等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4;(1⇒∠A+(2)在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°1AB可表示如下:⇒BC=2∠C=90°(3)直角三角形斜边上的中线等于斜边的一半。
∠ACB=90°1AB=BD=AD可表示如下: CD=2D为AB的中点6.数轴上表示无理数1.2.、∠B、A.a2+b2=c2B.a2=2b2C.c2=2a2D.b2=2a23.矩形ABCD,AB=5cm,AC=13cm,则这个矩形的面积为60cm2.4.如图,在△ABC中,∠BAC=90o,AB=15,AC=20,AD⊥BC,垂足为D,则△ABC斜边上的高AD=12.5.已知等腰三角形底边长为10cm,腰长为13cm,则腰上的高....为(C)A.12cmB.60cm C.12013cm D.1013cm136.一个直角三角形的三边为三个连续偶数,则它的三边长分别为6,8,10.7.(易错题)已知直角三角形的两边x,y的长满足│x-4│+3 y=0,则第三边的长为5或.8.10.11.别用.12.,分别以13.形A,49cm第4题第11题第12题第13题14.在Rt△ABC,∠C=90°(1)已知c=17,b=8,求a。
勾股定理知识点总结梳理

勾股定理知识点总结梳理一、概念勾股定理是指直角三角形中,直角边上的两个小正方形的面积之和等于斜边上的一个大正方形的面积。
具体来说,设直角三角形的斜边长为 c,直角边长分别为 a 和 b,则有 a^2 + b^2 = c^2。
这就是著名的勾股定理。
这个定理是古希腊数学家毕达哥拉斯在公元前6世纪发现的,因而也被称为毕达哥拉斯定理。
二、证明方法勾股定理的证明方法有很多种,其中比较经典的是几何证明和代数证明两种方法。
1. 几何证明几何证明是从图形的角度出发,通过构造几何图形来证明勾股定理。
一种经典的几何证明是通过构造一个边长为 a+b,边长为 a,b的三个正方形,然后利用这三个正方形的关系来证明勾股定理。
具体步骤如下:(1)首先,我们分别在直角三角形的两条直角边上分别构造正方形,假设它们的边长分别为 a 和 b。
(2)然后再对边长为 a+b 的正方形进行构造,使得它的面积等于 a^2 + b^2,这样就构成了一个大正方形。
(3)最后,我们可以通过计算其中每个三角形的面积,再将它们相加,就可以得到大正方形的面积,从而证明 a^2 + b^2 = c^2。
2. 代数证明代数证明是通过代数方程式来推导和证明勾股定理。
一种经典的代数证明方法是利用平面直角坐标系,假设直角三角形的顶点分别为(0,0)、(a,0)和(0,b),斜边的顶点为(a,b)。
然后根据两点间的距离公式,可以推导出 a^2 + b^2 = c^2。
这种方法比较直观和简单,适合初学者理解和掌握。
三、应用勾股定理在实际生活和科学研究中有着广泛的应用。
主要体现在以下几个方面:1. 测量和建筑在测量和建筑领域,勾股定理被广泛应用于测量三角形的边长和角度,以及设计相应的建筑结构。
例如,在房屋建筑中可以利用勾股定理来确定墙角是否垂直,以及计算各种角落的长度。
2. 航空航天在航空航天领域,勾股定理被应用于导航、飞行轨迹规划和飞行器设计等方面。
例如,飞行员需要根据勾股定理计算飞机的飞行距离和高度,以确保飞行过程中的安全。
勾股定理(基础)知识讲解

勾股定理(基础)【学习目标】1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想;2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题.【要点梳理】【高清课堂 勾股定理 知识要点】要点一、勾股定理直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式: 222a c b =-,222b c a =-, ()222c a b ab =+-.要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以. 要点三、勾股定理的作用1. 已知直角三角形的任意两条边长,求第三边;2. 用于解决带有平方关系的证明问题;3. 与勾股定理有关的面积计算;4.勾股定理在实际生活中的应用.【典型例题】类型一、勾股定理的直接应用1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)若a =5,b =12,求c ;(2)若c =26,b =24,求a .【思路点拨】利用勾股定理222a b c +=来求未知边长.【答案与解析】解:(1)因为△ABC 中,∠C =90°,222a b c +=,a =5,b =12,所以2222251225144169c a b =+=+=+=.所以c =13.(2)因为△ABC 中,∠C =90°,222a b c +=,c =26,b =24,所以222222624676576100a c b =-=-=-=.所以a =10.【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式.举一反三:【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)已知b =6,c =10,求a ;(2)已知:3:5a c =,b =32,求a 、c .【答案】解:(1)∵ ∠C =90°,b =6,c =10,∴ 2222210664a c b =-=-=,∴ a =8.(2)设3a k =,5c k =,∵ ∠C =90°,b =32,∴ 222a b c +=.即222(3)32(5)k k +=.解得k =8.∴ 33824a k ==⨯=,55840c k ==⨯=.类型二、与勾股定理有关的证明2、(2015•丰台区一模)阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,然后按图1的方法将它们摆成正方形.由图1可以得到(a+b)2=4×,整理,得a2+2ab+b2=2ab+c2.所以a2+b2=c2.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述证明勾股定理的方法,完成下面的填空:由图2可以得到,整理,得,所以.【答案与解析】证明:∵S大正方形=c2,S大正方形=4S△+S小正方形=4×ab+(b﹣a)2,∴c2=4×ab+(b﹣a)2,整理,得2ab+b2﹣2ab+a2=c2,∴c2=a2+b2.故答案是:;2ab+b2﹣2ab+a2=c2;a2+b2=c2.【总结升华】本题考查利用图形面积的关系证明勾股定理,解题关键是利用三角形和正方形边长的关系进行组合图形.举一反三:【变式】如图,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE2-BE2等于()A.AC2B.BD2C.BC2D.DE2【答案】连接AD 构造直角三角形,得,选A .类型三、与勾股定理有关的线段长【高清课堂 勾股定理 例3】3、如图,长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .6【答案】D ;【解析】解:设AB =x ,则AF =x ,∵ △ABE 折叠后的图形为△AFE ,∴ △ABE ≌△AFE .BE =EF ,EC =BC -BE =8-3=5,在Rt △EFC 中,由勾股定理解得FC =4,在Rt △ABC 中,()22284x x +=+,解得6x =. 【总结升华】折叠问题包括“全等形”、“勾股定理”两大问题,最后通过勾股定理求解. 类型四、与勾股定理有关的面积计算4、如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )A .6B .5C .11D .16【思路点拨】本题主要考察了全等三角形与勾股定理的综合应用,由b 是正方形,可求△ABC ≌△CDE .由勾股定理可求b 的面积=a 的面积+c 的面积.【答案】D【解析】解:∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC , 在△ABC 和△CDE 中,∵ABC CDE ACB DEC AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDE∴BC=DE∵222AB BC AC +=∴222AB DE AC +=∴b 的面积为5+11=16,故选D .【总结升华】此题巧妙的运用了勾股定理解决了面积问题,考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.举一反三:【变式】(2015•东莞模拟)如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=( )A.25B.31C.32D.40【答案】解:如图,由题意得:AB 2=S 1+S 2=13,AC 2=S 3+S 4=18,∴BC 2=AB 2+AC 2=31,∴S=BC 2=31,故选B .类型五、利用勾股定理解决实际问题5、一圆形饭盒,底面半径为8cm ,高为12cm ,若往里面放双筷子(精细不计),那么筷子最长不超过多少,可正好盖上盒盖?【答案与解析】解:如图所示,因为饭盒底面半径为8cm ,所以底面直径DC 长为16cm .则在Rt △BCD 中,22222=16+12=400BD DC BC =+,所以20BD = (cm ).答:筷子最长不超过20cm ,可正好盖上盒盖.【总结升华】本题实质是求饭盒中任意两点间的最大距离,其最大距离是以饭盒两底面的一对平行直径和相应的两条高组成的长方形的对角线长.举一反三:【变式】如图所示,一旗杆在离地面5m 处断裂,旗杆顶部落在离底部12m 处,则旗杆折断前有多高?【答案】解:因为旗杆是垂直于地面的,所以∠C =90°,BC =5m ,AC =12m ,∴ 22222512169AB BC AC =+=+=.∴ 13AB =(m ).∴ BC +AB =5+13=18(m ).∴ 旗杆折断前的高度为18m .。
勾股定理专题知识点+常考题型+重难点题型
勾股定理专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (3)1.勾股定理: (3)2.勾股定理的逆定理: (3)3.勾股定理的证明 (3)4.含特殊角的直角三角形三边的关系 (3)5.逆命题与逆定理 (4)三、常考题型 (5)1.勾股定理在几何计算中的应用-求线段的长 (5)2. 勾股定理在几何计算中的应用-坐标平面内两点的距离 (6)3. 勾股定理在几何计算中的应用-面积问题 (8)4.构造直角三角形 (9)5.勾股定理的逆定理的应用 (11)四、重难点题型 (14)1.利用勾股定理解计算问题 (14)2勾股数组 (15)3.与线段平方关系有关的证明题 (16)4.矩形和直角三角形中的折叠问题 (18)二、基础知识点1.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2注:1)仅在直角三角形中存在勾股定理2)由于直角三角形的斜边最长,故运用勾股定理时,一定要抓住直角三角形最长边(即斜边)的平方等于两短边两直角边的平方和,避免出现这样的错误2.勾股定理的逆定理:如果三角形三边长分别为a,b,c,且满足a2+b2=c2,那么这个三角形是以c为斜边的直角三角形。
注:在同一个三角形中,大边对大角,小角对小边3.勾股定理的证明方法一:方法二:4.含特殊角的直角三角形三边的关系勾股数:1)a=3,b=4,c=52)a=5,b=12,c=13特殊直角三角形①a=x,c=2x,b=√3x②a=x,b=x,c=√2x③AC=x,DC=x,AD=√2x,BD=√2x④AC=x,AF=2x,DC=√3x,BD=2x5.逆命题与逆定理命题与定理命题:判断一件事的语句定理:经过我们一定推理,得到的真命题互逆命题:两个命题的题设、结论正好相反的命题。
若将其中一个叫做原命题,则另一个就是它的逆命题逆定理:若一个定理的逆命题成立,则这个定理与原定理互为逆定理三、常考题型1.勾股定理在几何计算中的应用-求线段的长解析:应用勾股定理,在直角三角形中,“知二求一”。
勾股定理基础知识点
知识点一:勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(2) 勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边(3)理解勾股定理的一些变式(在三角形ABC 中,∠C=90°): c 2=a 2+b 2,a2=c 2-b 2, b 2=c 2-a 2 , c 2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
c a b =+22a cb =-22b c a =-22在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;知识点四:勾股数满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么当k>0时,ka,kb,kc同样也是勾股数组)常见勾股数:①3、4、5;②5、12、13;口诀:5月12记一生(13)③8、15、17;口诀:八月十五在一起(17)④7、24、25;⑤10、24、26;⑥9、40、41;⑦6、8、10;⑧9;12;15;⑨15、20、25.知识点五:勾股树知识点六:勾股定理的逆定理如果三角形的三边长分别为:a、b、c,且满足a2+b2=c2,那么这个三角形是直角三角形。
勾股定理重点知识点
勾股定理
一、两个定理
(1)勾股定理:
(2)勾股定理的逆定理:
二、常用的两组勾股数:
思考: 勾股数的倍数还是勾股数码?
结论:
三、两个特殊的三角形:
(1)等腰直角三角形:0C 90∠=,计算AB 的长度
x x
C
由此可以得到:
(2)0C 90∠=,A ∠=030,计算AC 和AB 的长度
x C
B
A
由此可以得到两个结论:(1)
(2) 练习:1、在等腰直角三角形ABC 中,0C 90∠=且c=2,求a ,b 的长和三角形的面积。
2、在ABC ∆中,0C 90∠=,0B 60∠=, c=2,求a ,b 的长和三角形的面积
四、利用等面积法求线段的长度
(1)在三角形ABC 中,AE 和BD 都是三角形的高,则BC AE AC BD ⋅=⋅;知三求一
B
C A
E
练习:(1)在三角形ABC 中,AE 和BD 都是三角形的高,已知AD=2,CD=3,BC=6,求AE 的长和三角形ABC 的面积
B
C A
E
(2)如图,已知直角三角形ABC 的两直角边AC,BC 的长分别为4cm,3cm,求斜边AB 上的
高CD 的长和AD,BD 的长
B A
C D
五、长方体的性质
已知:a,b,c
为长方体的长、宽、高,则体对角线BH=a=b=c时长方体就
是正方体,此时BH=
E
B
练习:1、一个长方形的盒子,长、宽、高分别是3,4,5,一根长为7的木棒能放进去吗?
2、一正方体的体对角线长是3,求正方体的体积。
勾股定理知识点与常见题型
勾股定理一.知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边 在ABC ∆中,90C ∠=︒,则c =,b,a②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,若22a b +=2c ,则三角形是直角三角形;若222a b c +<时,则三角形是钝角三角形;若222a b c +>时,则三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a cb +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形cba HG F EDCBAbacbac cabcab a bc cbaED CBACB6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25 8,15,17 9,12,15等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.题型一:直接考查勾股定理 1、在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长2、 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?3、有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?4、如图∠B =∠ACD =90°, AD =13,CD =12, BC =3,则AB 的长是多少?5.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7或256.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )A 、24cm 2B 、36cm 2C 、48cm 2D 、60cm 27.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为A .42B .32C .42或32D .37或33题型二:等面积法求高如图,△ABC 中,∠ACB=900,AC=7,BC=24,C D ⊥AB 于D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理(基础)
责编:杜少波
【学习目标】
1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想;
2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);
3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题. 【要点梳理】 【高清课堂 勾股定理 知识要点】
要点一、勾股定理
直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222
a b c +=.
要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.
(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长
可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的
目的.
(3)理解勾股定理的一些变式: 222a c b =-,222b c a =-, ()2
22c a b ab =+-.
要点二、勾股定理的证明
方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.
图(1)中,所以.
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.
图(2)中,所以.
方法三:如图(3)所示,将两个直角三角形拼成直角梯形.
,所以. 要点三、勾股定理的作用
1. 已知直角三角形的任意两条边长,求第三边;
2. 用于解决带有平方关系的证明问题;
3. 与勾股定理有关的面积计算;
4.勾股定理在实际生活中的应用.
【典型例题】
类型一、勾股定理的直接应用
1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .
(1)若a =5,b =12,求c ;
(2)若c =26,b =24,求a .
【思路点拨】利用勾股定理222a b c +=来求未知边长.
【答案与解析】
解:(1)因为△ABC 中,∠C =90°,222a b c +=,a =5,b =12,
所以2222251225144169c a b =+=+=+=.所以c =13.
(2)因为△ABC 中,∠C =90°,222a b c +=,c =26,b =24,
所以222222624676576100a c b =-=-=-=.所以a =10.
【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式.
举一反三:
【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .
(1)已知b =6,c =10,求a ;
(2)已知:3:5a c =,b =32,求a 、c .
【答案】
解:(1)∵ ∠C =90°,b =6,c =10,
∴ 2222210664a c b =-=-=,
∴ a =8.
(2)设3a k =,5c k =,
∵ ∠C =90°,b =32,
∴ 222a b c +=.
即222(3)32(5)k k +=.
解得k =8.
∴ 33824a k ==⨯=,55840c k ==⨯=.
类型二、与勾股定理有关的证明。