完整版椭圆离心率高考练习题

完整版椭圆离心率高考练习题
完整版椭圆离心率高考练习题

椭圆的离心率专题训练

一.选择题(共29小题)

.椭圆的左右焦点分别为F,F,若椭圆C1上恰好有6个不同的点21P,使得△FFP为等腰三角形,则椭圆C的离心率的取值范围是()21

...B . CAD

,则方程,b]分别取一个数,记为a5]和[2,4轴上且表示焦点在x2.在区间[1,

离心率小于的椭圆的概率为()

. DA . BC..

(a>b>0)3.上一点已知椭圆A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,

,则该椭圆离心率e设∠ABF=α,且的取值范围为()

.A .B. D

C .

交于不同的两点,且这两个交点在4.斜率为与椭圆x轴上的直线l的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()

. DCA . B..

:C5.设椭圆上的点,PF⊥FF,,>a>b0)的左、右焦点分别为F、FP是C(=121122∠PFF=30°,则C的离心率为()21

. D B. C

A..

.已知椭圆上除长轴端点外6为其左、右焦点,P为椭圆CF,F,21

,且有I的重心为的任一点,△FPFG的离心,椭圆λ(其中为实数)C,

内心21)(e=

率.

..B . CAD.

为椭圆)c,00),F(为椭圆上一点且,7.已知F(﹣c,的两个焦点,P12则此椭圆离心率的取值范围是()

. D C

A.. B .

=1(a>8b.椭圆>+0)的左、右焦点分别是F,F,过F作倾斜角为120°

的直线与212椭圆的一个交点为M,若MF垂直于x轴,则椭圆的离心率为()1

.﹣)﹣ C.2(2AD. B.2

满足上的点P,F,若CC的离心9.椭圆C的两个焦点分别是F,则椭圆

e的取值范围是()

21率

或. BD. C A..10.设F,F为椭圆的两个焦点,若椭圆上存在点P

满足∠FPF=120°,则椭圆的离心率2211的取值范围是()

. D. C

A. B.

分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点.设11A,AP,使得21

>﹣,则该椭圆的离心率的取值范围是()

.DC .B.(0 ,) A.(0),

12.设椭圆C的两个焦点为F、F,过点F的直线与椭圆C交于点M,N,若|MF|=|FF|,212112且|MF|=4,|NF|=3,则椭圆Г的离心率为()11

.DC .AB..

关于直线Fx+y=0,)的左焦点为F若0椭圆13.(2015?高安市校级模拟)Ca:+=1(>b>的对称点A是椭圆C上的点,则椭圆C的离心率为()

椭圆与双曲线综合练习题(培优专题练习)

椭圆与双曲线综合练习题 1.已知椭圆+=1(a >b >0)的离心率是,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1·k 2的值为( ) A . B . - C . D . - 2. 若点P 为共焦点的椭圆1C 和双曲线2C 的一个交点,1F 、2F 分别是它们的左右焦点.设椭圆离心率为1e ,双曲线离心率为2e ,若021=?PF PF , ) A.4 B. 3 C. 2 D. 1 4.已知椭圆E :+=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于,则椭圆E 的离心率的取值范围是( ) A . (0,] B . (0,] C . [,1) D . [,1) 5.已知为椭圆的两个焦点,P 为椭圆上一点且,则此椭圆离心率的取值范围是( ) A. B. C. D. 6.椭圆C :+=1(a >b >0) 的右焦点为F ,椭圆C 与x 轴正半轴交于A 点,与y 轴正半轴交于B (0,2),且·=4+4,则椭圆C 的方程为( )A .+=1 B .+=1 C .+=1 D .+=1 7.过椭圆C :+y 2=1的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于点M ,若 =λ1,=λ2,则λ1+λ2等于( )A . 10 B . 5 C . -5 D . -10 8. 设F 1,F 2分别为双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的左、右焦点.若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( ) A .3x ±4y =0 B .3x +5y =0 C .5x ±4y =0 D .4x ±3y =0 9.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +(a >0),则点P 的轨迹是( ) A . 椭圆 B . 线段 C . 不存在 D . 椭圆或线段 10.已知F 1,F 2是椭圆+=1(a >b >0)的左,右焦点,点P 是椭圆上的点,I 是△F 1PF 2内切圆的圆心,直线PI 交x 轴于点M ,则|PI |∶|IM |的值为( ) A . B . C . D . 11.已知双曲线-=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个

关于椭圆离心率专项练习(1)

关于椭圆离心率的演练 一、直接求出a c ,或求出a 与b 的比值,以求解e 。 在椭圆中,a c e =,222 22221a b a b a a c a c e -=-=== 1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 2.已知椭圆两条准线间的距离是焦距的2倍,则其离心率为 3.若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则椭圆的离心率为 4.已知矩形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为 5.若椭圆)0(,122 22>>=+b a b y a x 短轴端点为P 满足21PF PF ⊥, 则椭圆的离心率为 6..已知)0.0(121>>=+n m n m 则当mn 取得最小值时,椭圆1 22 22=+n y m x 的的离心率为 7.椭圆22 221(0)x y a b a b +=>>的焦点为1F ,2F ,两条准线与x 轴的交点 分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是 8.已知F 1为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为=e 。 9.P 是椭圆22a x +22 b y =1(a >b >0)上一点,21F F 、是椭圆的左右焦点,已知 ,2,1221αα=∠=∠F PF F PF ,321α=∠PF F 椭圆的离心率为=e 10.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,若 75,151221=∠=∠F PF F PF , 则椭圆的离心率为 11.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为 12.设椭圆22 22b y a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1 且垂直于x 轴的弦的长等于点F 1到l 1的距离,则椭圆的离心率是 。 13.椭圆 12222=+b y a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F

圆锥曲线离心率专题

. . .. . 圆锥曲线离心率专题训练 1.已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值围是() A. [,1)B. [,1) C. (0,] D. (0,] 2.二次曲线时,该曲线离心率e的围是() A.B.C.D. 3.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,∠OPA=90°,则该椭圆的离心率e的围是() A. [,1)B. (,1) C. [,) D. (0,) 4.双曲线的离心率e∈(1,2),则k的取值围是() A.(﹣∞,0)B.(﹣3,0)C.(﹣12,0)D.(﹣60,﹣12) 5.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值围是()A.B.C.D. 6.已知椭圆的接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值围()A.B.C.D. 7.已知椭圆x2+my2=1的离心率,则实数m的取值围是() A.B.C.D. 8.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值围为(1,2),则该椭圆的离心率的取值围是() A. (0,)B. (,) C. (,) D. (,1) 9.椭圆的接矩形的最大面积的取值围是[3b2,4b2],则该椭圆的离心率e的取值围是()A.B.C.D.

10.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值围为() A.[2,+∞)B.(,+∞)C. [,+∞) D.(,+∞)11.已知双曲线的焦距为2c,离心率为e,若点(﹣1,0)与点(1,0)到直线 的距离之和为S,且S,则离心率e的取值围是() A.B.C.D. 12.已知F1,F2是椭圆的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭 圆离心率e的取值围是() A.B.C.D. 13.已知方程x3+2ax2+3bx+c=0(a,b,c∈R)的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则 的取值围是() A.B.C.D. 14.已知椭圆上到点A(0,b)距离最远的点是B(0,﹣b),则椭圆的离心率的取值围为()A.B.C.D. 15.已知双曲线的中心在原点,焦点x轴上,它的一条渐近线与x轴的夹角为α,且,则双曲线的离 心率的取值围是() A.B.C.(1,2)D. 16.已知双曲线﹣=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值围是() A. (1,]B. (1,) C. (2,] D.(,2]

椭圆、双曲线离心率难题专题

椭圆、双曲线离心率难题专题 1. (2018学年杭高高三开学考15)已知1F ,2F 分别是椭圆()22 22133 x y a a +=>的左右焦点,A 是椭圆上 一动点,圆C 与1F A 的延长线以及线段2AF 相切,若()2,0M 为一切点,则椭圆的离心率为 . 2. (2018学年杭十四中4月月考2)已知双曲线2221x y a -=的一条渐近线方程是y ,则双曲线的 离心率为( ) A B C D 3. (2018学年浙江名校协作体高三上开学考2)双曲线2 213 x y -=的焦距为( ) A .2 B . C . D .4 4. (2018学年浙江名校协作体高三下开学考12)已知直线l 为双曲线()22 22:10,0x y C a b a b -=>>的一条 渐近线,1F ,2F 是双曲线C 的左、右焦点,点1F 关于直线l 的对称点在双曲线C 的另一条渐近线上,则双曲线C 的渐近线的斜率为 ,离心率e 的值为 . 5. (2018学年浙江重点中学高三上期末热身联考3)已知双曲线2 221y x a -=的一条渐近线方程为y =, 则该双曲线的离心率是( ) A . 3 B C .2 D 6. (2019届超级全能生2月模拟16)已知椭圆()22 2210x y a b a b +=>>的左、右焦点分别为1F ,2F ,椭圆

上点P 满足122PF PF =,射线PM 平分12F PF ∠,过坐标原点O 作PM 的平行线交1PF 于点Q ,且 121 4PQ F F =,则椭圆的离心率是 . 7. (2019届慈溪中学5月模拟6)若椭圆、双曲线均是以直角三角形ABC 的斜边AC 的两端点为焦点 的 曲线,且都过点B ,它们的离心率分别是1e ,2e ,则2212 11 e e +=( ) A . 32 B .2 C .3 D . 52 8. (2019届杭二仿真考16)存在第一象限的点()00,M x y 在椭圆()22 2210x y a b a b +=>>上,使得过点M 且与椭圆在此点的切线00221x x y y a b +=垂直的直线经过点,02c ?? ??? (c 为椭圆半焦距),则椭圆离心率的取 值范围是 . 9. (2019届杭州4月模拟10)已知椭圆()22 22:10x y a b a b Γ+=>>,直线1x y +=与椭圆Γ交于,M N 两点, 以线段MN 为直径的圆经过原点.若椭圆Γ ,则a 的取值范围为( ) A .( B .? C .? ?? D .? ?? 10. (2019届湖州三校4月模拟17)已知椭圆()22 2210x y a b a b +=>>的两个顶点()(),0,0,A a B b ,过,A B 分别作AB 的垂线交该椭圆于不同的顶点C ,D 两点,若23BD AC =,则椭圆的离心率是 . 11. (2019届稽阳联谊4月模拟16)已知,C F 分别是椭圆22 22:1x y a b Γ+=的左顶点和左焦点,,A B 是椭圆 的下、上顶点,设AF 和BC 交于点D ,若2CD DB =u u u r u u u r ,则椭圆Γ的离心率为 .

数学-高中数学求椭圆的离心率习题专题

圆锥曲线的离心率问题的求解 离心率是圆锥曲线的一个重要性质,是描述曲线形状的重要参数. 椭圆的离心率是描述椭圆扁平程度的一个重要数据; 双曲线的离心率是描述双曲线“张口”大小的一个重要数据; 而抛物线的离心率是特征值1. 圆锥曲线的统一定义是按离心率的范围不同,确定圆锥曲线中的椭圆、双曲线和抛物线的类型. 求离心率的关键是列出一个与a,b,c,e 有关的等式或不等关系.在此,要活用圆锥曲线的特征三角形.常用方法: 1.利用曲线定义。圆锥曲线的统一定义是与离心率密不可分的,在题目中挖掘这隐含信息有助于解题. 2.利用曲线变量范围。圆锥曲中变量的变化范围对离心率的影响是直接的,充分利用这一点,可优化解题. 3.利用直线与曲线的位置关系。根据题意找出直线与曲线相对的位置关系,列出相关元素的不等式,可迅速解题. 4.利用点与曲线的位置关系。根据某点在曲线的内部或外部,列出不等式,再求范围,是一个重要的解题途径. 5.联立方程组。如果有两曲线相交,将两个方程联立,解出交点,再利用范围,列出不等式并求其解. 6.三角函数的有界性。用三角知识建立等量关系,再利用三角函数的有界性,列出不等式易解. 7.用根的判别式根据条件建立与a、b、c相关的一元二次方程,再用根的判别式列出不等式,可得简解 8.构造关于e 的方程求解. 9.数形结合法:解析几何和平面几何都是研究图形性质的,只不过平面几何只限于研究直线形和圆。因此,在题设条件中有关圆、直线的问题,或题目中构造出直线形与圆,可以利用平面几何的性质简化计算。 圆锥曲线的离心率练习题 1、已知椭圆的方程 222 2 1(0)x y a b a b +=>>,F 1,F 2是椭圆左右两个焦点,P 是椭圆上的一点 若12PF PF =,求椭圆离心率的取值范围。 2、已知椭圆的方程 222 2 1(0)x y a b a b + =>>,F 1,F 2是椭圆的两个焦点,P 是椭圆上的一点 若123 F PF π ∠= ,求椭圆离心率的取值范围。

圆锥曲线离心率专题 历年真题

1.(福建卷)已知双曲线(a >0,b <0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 A.( 1,2) B. (1,2] C.[2,+∞) D.(2,+∞) 2.(湖南卷)过双曲线M:的左顶点A 作斜率为1的直线,若与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 ( ) A. B. C. D. 3.(辽宁卷)方程的两个根可分别作为( ) A.一椭圆和一双曲线的离心率B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率 4.(全国II )已知双曲线x 2a 2-y 2b 2 =1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 5.(陕西卷)已知双曲线x2a2-y22 =1(a>2)的两条渐近线的夹角为π3 ,则双曲线的离心率为 A.2 B. 3 C.263 D.233 6.(全国卷)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) (A )(B )(C )(D ) 7.(广东卷)若焦点在x 轴上的椭圆的离心率为,则m=() (A)(B)(C)(D) 8.(福建卷)已知F 1、F 2是双曲线 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是()

A.B.C.D. 9.[全国]设双曲线的焦点在轴上,两条渐近线为,则该双曲线的离心率()A.B.C.D. 10.(福建理)已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是正三角形,则这个椭圆的离心率是() A.B.C.D. 11.(重庆理)已知双曲线的左,右焦点分别为,点P在双曲线的右支上,且,则此双曲线的离心率e的最大值为:() A.B.C.D. 12.(福建卷11)又曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为()A.(1,3)B. C.(3,+)D. 13.(江西卷7)已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是()A. B. C. D. 14.(全国二9)设,则双曲线的离心率的取值范围是() A.B.C.D. 15.(陕西卷8)双曲线(,)的左、右焦点分别是,过作倾斜角为 的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为()

圆锥曲线离心率专题

圆锥曲线离心率专题训练 1.已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值范围是() A. [,1)B. [,1) C. (0,] D. (0,] 2.二次曲线时,该曲线离心率e的范围是() A. B. C. D. 3.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,∠OPA=90°,则该椭圆的离心率e的范围是() A. [,1) B. (,1) C. [,) D. (0,) 4.双曲线的离心率e∈(1,2),则k的取值范围是() A.(﹣∞,0)B.(﹣3,0) C. (﹣12,0)D. (﹣60,﹣12) 5.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是() A. B. C.D. 6.已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围( ) A. B. C. D. 7.已知椭圆x2+my2=1的离心率,则实数m的取值范围是() A. B.C.D. 8.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值范围为(1,2),则该椭圆的离心率的取值范围是() A. (0,) B. (,) C. (,) D. (,1) 9.椭圆的内接矩形的最大面积的取值范围是[3b2,4b2],则该椭圆的离心率e的取值范围 是() A. B. C. D.

10.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为() A. [2,+∞) B.(,+∞)C. [,+∞) D.(,+∞) 11.已知双曲线的焦距为2c,离心率为e,若点(﹣1,0)与点(1,0)到直线 的距离之和为S,且S,则离心率e的取值范围是() A. B. C. D. 12.已知F1,F2是椭圆的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭圆离 心率e的取值范围是() A.B. C. D. 13.已知方程x3+2ax2+3bx+c=0(a,b,c∈R)的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则的取值范围是( ) A. B. C. D. 14.已知椭圆上到点A(0,b)距离最远的点是B(0,﹣b),则椭圆的离心率的取值范围为() A.B.C. D. 15.已知双曲线的中心在原点,焦点x轴上,它的一条渐近线与x轴的夹角为α,且,则双曲线的离心率的取值范围是() A. B. C. (1,2) D. 16.已知双曲线﹣=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值范围是() A. (1,]B. (1,) C. (2,] D.(,2]

椭圆离心率高考练习题

椭圆的离心率专题训练 一.选择题(共29小题) 1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值围是() A. B. C. D. 2.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为() A. B. C. D. 3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值围为() A. B. C. D. 4.斜率为的直线l与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为() A. B. C. D. 5.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为() A. B. C. D. 6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,心I,且有(其中λ为实数),椭圆C的离心率e=() A. B. C. D. 7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值围是() A. B.C.D. 8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为() A. B.2﹣C.2(2﹣) D. 9.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值围是() A. B.C.D.或 10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值围是() A. B. C. D. 11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P,使得>﹣,则该椭圆的离心率的取值围是() A.(0,)B.(0,)C. D. 12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为() A. B. C. D.

高二数学圆锥曲线(椭圆专题训练)

1、在直角坐标系xOy中,曲线C的参数方程为 3cos, sin, x y θ θ = ? ? = ? (θ为参数),直线l的参 数方程为 4, 1, x a t t y t =+ ? ? =- ? (为参数). (1)若a=?1,求C与l的交点坐标; (2)若C上的点到l a. 2、已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1 ,P4(1 ,)中恰有三点在椭圆C上. (1)求C的方程; (2)设直线l不经过P2点且与C相交于A,B两点。若直线P2A与直线P2B的斜率的和为–1,证明:l过定点. 22 22 =1 x y a b + 2

3、如图,在平面直角坐标系xOy 中,椭圆22 22:1(0)x y E a b a b +=>>的左、右焦点分 别为12,F F ,离心率为 1 2 ,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程; (2)若直线12,l l 的交点Q 在椭圆E 上,求点P 的坐标. 4 、

5、在平面直角坐标系xOy 中,椭圆E :22 221x y a b +=()0a b >>,焦距为2. (Ⅰ)求椭圆E 的方程; (Ⅱ)如图,动直线l :1y k x =交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k = M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的 最大值,并求取得最大值时直线l 的斜率.

椭圆离心率问题专题练习

椭圆离心率问题专题练习 1. 已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,若 75,151221=∠=∠F PF F PF , 则椭圆的离心率为 2.椭圆122 22=+b y a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F 到直线AB 的距离等 于 2 1 ∣AF ∣,椭圆的离心率为 3.椭圆122 22=+b y a x (a>b>0)的四个顶点为A 、B 、C 、D ,若四边形ABCD 的内切圆恰好过 焦点,椭圆的离心率为 4. 以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,椭圆的离心率为 5.以椭圆的一个焦点F 为圆心作一个圆,使该圆过椭圆的中心O 并且与椭圆交于M 、N 两 点,如果∣MF ∣=∣MO ∣,椭圆的离心率为 6. 如图所示,A 、B 是椭圆122 22=+b y a x (a>b>0)的两个端点,F 2是右焦点, 且AB ⊥BF 2,椭圆的离心率为 7.已知直线L 过椭圆 122 22=+b y a x (a>b>0)的 顶点A (a,0)、B(0,b),如果坐标原点到直线L 距离为2 a ,椭圆的离心率为 · 8.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,且 6021=∠PF F ,椭圆离心率e 的取值范围为 9.椭圆12222=+b y a x (a>b>0)和圆x 2+y 2=(c b +2 )2有四个交点,其中c 2=a 2-b 2 , 椭圆离心 率e 的取值范围为 10.设椭圆122 22=+b y a x (a>b>0)的两焦点为F 1、F 2,长轴两端点为A 、B ,若椭圆上存在一

椭圆微专题901-离心率

专题01:椭圆的离心率 1:椭圆基本量运算,范围:01e <<,e 越大,椭圆就越扁。 2:利用定义求椭圆的离心率(a c e = 或 2 21?? ? ??-=a b e ) 3:运用几何图形中线段的几何意义结合椭圆的定义求离心率e 例:设椭圆) (0b a 1b y a x 22 22>>=+的左、右焦点分别为21F F 、,如果椭圆上存在点P ,使?=∠90PF F 21,求离心率e 的取值范围。 解:设()()()0,c F ,0,c F ,y ,x P 21- 法1:利用椭圆几何范围。 由→ → ⊥P F P F 21得2 2 2 c y x =+,将这个方程与椭圆方程联立,消去y ,可解得2 222222 b a b a c a x --= 2 222)(e a c a -=。 由椭圆的性质知22a x 0<≤,得),以12 2 [e ∈。 法2:判别式法。 由椭圆定义知||||||||||||PF PF a PF PF PF PF a 1212 22 122 224+=?++=,又因为 ?=∠9021PF F , 可得2 2 212 22 14||||||c F F PF PF ==+,则)(2||||2 2 21c a PF PF -=2 2b =, 1 PF ∴, 2 PF 是方 程 2222=+-b az z 的两个根,则 22 210)(84222 2 2 2 ≥?≥=?≥--=?e a c e c a a 解法3:正弦定理 ∠=∠=PF F PF F 1221αβ,,由正弦定理有 ||sin sin | |||90sin ||sin ||sin ||21212121F F PF PF F F PF PF =++??==β ααβ

专题椭圆的离心率解法大全

专题:椭圆的离心率 一,利用定义求椭圆的离心率(a c e = 或 2 21?? ? ??-=a b e ) 1,已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率=e 3 2,椭圆1422=+m y x 的离心率为2 1,则=m [解析]当焦点在x 轴上时, 32124=?=-m m ; 当焦点在y 轴上时,316 214=?=-m m m , 综上3 16 = m 或3 3,已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是 5 3 4,已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆12 2=+n y m x 的离心率为 [解析]由??? ???≠=+=0 222 2mn n m n n m n ?? ?==42n m ,椭圆122=+n y m x 的离心率为22 5,已知)0.0(12 1>>=+n m n m 则当mn 取得最小值时,椭圆12222=+n y m x 的的离心率为23 6,设椭圆22 22b y a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1且垂直于x 轴的弦的长等于点F 1到l 1的 距离,则椭圆的离心率是2 1 。 二,运用几何图形中线段的几何意义结合椭圆的定义求离心率e 1,在?Rt ABC 中,ο 90=∠A ,1==AC AB ,如果一个椭圆过A 、B 两点,它的一个焦点为C ,另一个焦点在AB 上,求这个椭圆的离心率 ( ) 36-= e 2, 如图所示,椭圆中心在原点,F 是左焦点,直线1AB 与BF 交于D,且ο 901=∠BDB , 则椭圆的离心率为( ) [解析] =?=-?-=-?e ac c a c b a b 221)(21 5- 3,以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,则椭圆的离心率是13- 变式(1):以椭圆的一个焦点F 为圆心作一个圆,使该圆过椭圆的中心O 并且与椭圆交于M 、N 两点,如果∣MF∣=∣MO∣,则椭圆的离心率是13-

高二数学椭圆专项练习题及参考答案

高二数学椭圆专项练习题及参考答案 训练指要 熟练掌握椭圆的定义、标准方程、几何性质;会用待定系数法求椭圆方程. 一、选择题 1.椭圆中心在坐标原点,对称轴为坐标轴,离心率为0.6,长、短轴之和为36,则椭圆方程为 A.16410022=+y x B.1100 6422=+y x C.1100641641002222=+=+y x y x 或 D.110 818102222=+=+y x y x 或 2.若方程x 2 +ky 2 =2,表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1) 3.已知圆x 2+y 2 =4,又Q (3,0),P 为圆上任一点,则PQ 的中垂线与OP 之交点M 轨迹为(O 为原点) A.直线 B.圆 C.椭圆 D.双曲线 二、填空题 4.设椭圆120 452 2=+y x 的两个焦点为F 1、F 2,P 为椭圆上一点,且PF 1⊥PF 2,则||PF 1|- |PF 2||=_________. 5.(2002年全国高考题)椭圆5x 2+ky 2 =5的一个焦点是(0,2),那么k =_________. 三、解答题 6.椭圆22 22b y a x +=1(a >b >0),B (0,b )、B ′(0,-b ),A (a ,0),F 为椭圆的右焦点,若直线 AB ⊥ B ′F ,求椭圆的离心率. 7.在面积为1的△PMN 中,tan M =2 1 ,tan N =-2,建立适当的坐标系,求以M 、N 为焦点且过点P 的椭圆方程. 8.如图,从椭圆22 22b y a x +=1(a >b >0)上一点M 向x 轴作垂线, 恰好通过椭圆的左焦点F 1,且它的长轴端点A 及短轴的端点B 的连 线AB ∥OM . (1)求椭圆的离心率e ; (2)设Q 是椭圆上任意一点,F 2是右焦点,求∠F 1QF 2的取值范围; (3)设Q 是椭圆上一点,当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若△F 1PQ 的面积为203,求此时椭圆的方程.

求椭圆方程专题练习

1 / 10 【求椭圆方程专题练习】 题型一 已知椭圆求方程----设列解答求方程 1椭圆C :)0(122 22 >>=+b a b y a x 过点)1,3(P 且离心率为36 2椭圆 :E 122 22=+b x a y ()0>>b a 经过点() 0,3A 和点()2,0B 3椭圆过点,且离心率 4椭圆C :22221(0)x y a b a b +=>> 的离心率为2,且在x 轴上的 顶点分别为A 1(-2,0),A 2(2,0) 5椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离 的最大值为3;最小值为1 6椭圆C 的中心在原点,焦点在x 轴上,它的一个顶点恰好是抛物线2 4x y =的焦 。 7椭圆的左右焦点分别为、,是椭圆上的一点,,坐标原点到直线的距离为. 8. F 1、F 2分别为椭圆C :)0(122 22>>=+b a b y a x 的左、右两个焦点,A 、B 为两个 顶点,已知椭圆C 上的点)2 3,1(到F 1、F 2两点的距离之和为4. 9.椭圆离心率为33,过焦点F 且与x 轴垂直的直线被椭圆截得的线段长为334 )0(1:2222>>=+b a b y a x C )23 ,1(21= e 22 2:1(0)2 x y C a a + =>1F 2F A C 2120AF F F ?=u u u u r u u u u r O 1AF 11 3OF 解:依题意可知?? ???+=222c b a 解得?????=== c b a ∴椭圆方程为122=+y x 解:依题意可知?? ???+=222c b a 解得?????=== c b a ∴椭圆方程为122=+y x 解:依题意可知?? ???+=222c b a 解得??? ??= == c b a ∴椭圆方程为122=+y x 解:依题意可知? ?? ?? +=2 22c b a 解得??? ??=== c b a ∴椭圆方程为122=+y x 解:依题意可知?? ? ? ? +=222c b a 解得??? ??= == c b a ∴椭圆方程为122=+y x 解:依题意可知?? ???+=222c b a 解得?????=== c b a ∴椭圆方程为122=+y x 解:依题意可知?? ???+=222c b a 解得??? ??===c b a ∴椭圆方程为122=+y x 解:依题意可知?? ???+=222c b a 解得??? ??= == c b a ∴椭圆方程为122=+y x 解:依题意可知?? ? ??+=222c b a 解得?????= == c b a ∴椭圆方程为122=+y x

求椭圆方程专题练习

【求椭圆方程专题练习】 题型一 已知椭圆求方程----设列解答求方程 1椭圆C :)0(122 22>>=+b a b y a x 过点)1,3(P 且离心率为36 2椭圆:E 122 22=+b x a y ()0>>b a 经过点() 0,3A 和点()2,0B 3椭圆)0(1:2222>>=+b a b y a x C 过点)23,1(,且离心率21 = e 4椭圆C :22 221(0)x y a b a b +=>> x 轴上的 顶点分别为A 1(-2,0),A 2(2,0) 5椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离 的最大值为3;最小值为1 6椭圆C 的中心在原点,焦点在x 轴上,它的一个顶点恰好是抛物线2 4x y =的焦 点,离心率等于5 。 解:依题意可知?? ?? ?+=222c b a 解得??? ??= == c b a ∴椭圆方程为122=+y x 解:依题意可知?? ?? ?+=222c b a 解得??? ??= == c b a ∴椭圆方程为122=+y x 解:依题意可知?????+=222c b a 解得?????= == c b a ∴椭圆方程为122=+y x 解:依题意可知?? ? ? ?+=222c b a 解得?????= == c b a ∴椭圆方程为122=+y x 解:依题意可知?? ? ? ?+=222c b a 解得?????= == c b a ∴椭圆方程为122=+y x 解:依题意可知?????+=222c b a 解得?????= == c b a ∴椭圆方程为122=+y x 解:依题意可知??? ?? +2 2c 解得?? ???= ==c b a ∴椭圆方程为122=+y x

高中数学椭圆离心率求法专题

关于椭圆离心率 设椭圆x a y b a b 222 210+=>>()的左、右焦点分别为F F 12、,如果椭 圆上存在点P ,使∠=?F PF 1290,求离心率e 的取值范围。 解法1:利用曲线范围 设P (x ,y ),又知F c F c 1200(,),(,)-,则 F P x c y F P x c y F PF F P F P F P F P x c x c y x y c 121212122222 9000→→ → → → → =+=-∠=?⊥?=+-+=+=()()()(),,,由,知, 则, 即得 将这个方程与椭圆方程联立,消去y ,可解得 x a c a b a b F PF x a a c a b a b a 2 222222 1222 222222 2 9000= --∠=? ≤<≤--<但由椭圆范围及知即 可得,即,且从而得,且所以,) c b c a c c a e c a e c a e 2222222 2212 2 1≥≥-<= ≥=<∈[ 解法2:利用二次方程有实根 由椭圆定义知 ||||||||||||PF PF a PF PF PF PF a 121222122224+=?++=

又由,知则可得这样,与是方程的两个实根,因此 ∠=?+===--+-=F PF PF PF F F c PF PF a c PF PF u au a c 12122212221222122229042220||||||||||() ||||() ?=--≥?=≥ ?≥ 4801 22 2 2222 22a a c e c a e () 因此,e ∈[ )2 2 1 解法3:利用三角函数有界性 记∠=∠=PF F PF F 1221αβ,,由正弦定理有 ||sin ||sin || sin ||||sin sin ||||||||sin sin sin cos cos PF PF F F PF PF F F PF PF a F F c e c a 121212121212902211 22 2 122 βααβ αβ αβ αβ αβ == ??++=+=== =+=+-= -又,,则有 而知从而可得09002 45222 12 2 1 ≤-

关于椭圆离心率专项练习(1)

关于椭圆离心率专项练习(1) 一、直接求出a c ,或求出a 与b 的比值,以求解e 。 在椭圆中,a c e =,22 222221a b a b a a c a c e -=-=== 1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 2.已知椭圆两条准线间的距离是焦距的2倍,则其离心率为 3.若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则椭圆的离心率为 4.已知矩形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为 5.若椭圆)0(,122 22>>=+b a b y a x 短轴端点为P 满足21PF PF ⊥,则椭圆的离心率为 6..已知)0.0(12 1>>=+n m n m 则当mn 取得最小值时,椭圆12222=+n y m x 的的离心率为 7.椭圆22 221(0)x y a b a b +=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若 12MN F F 2≤,则该椭圆离心率的取值范围是 8.已知F 1为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为=e 。 9.P 是椭圆22a x +22 b y =1(a >b >0)上一点,21F F 、是椭圆的左右焦点,已知,2,1221αα=∠=∠F PF F PF ,321α=∠PF F 椭圆的离心率为=e 10.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,若ο ο 75,151221=∠=∠F PF F PF , 则椭圆的离心率为 11.在给定椭圆中,过焦点且垂直于长轴的弦长为 2,焦点到相应准线的距离为1,则该椭圆的离心率为 12.设椭圆22 22b y a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1且垂直于x 轴的弦的长等于点F 1 到l 1的距离,则椭圆的离心率是 。 13.椭圆 12 222=+b y a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F 到直线AB 的距离等于21 ∣AF∣, 则椭圆的离心率是 。 14.椭圆122 22=+b y a x (a>b>0)的四个顶点为A 、B 、C 、D ,若四边形ABCD 的内切圆恰好过焦点,则椭圆 的离心率是 15.已知直线L 过椭圆122 22=+b y a x (a>b>0)的顶点A (a,0)、B(0,b),如果坐标原点到直线L 的距离为 2a ,则椭圆的离心率是 16.在平面直角坐标系中,椭圆22 22x y a b +=1( a b >>0)的焦距为2,以O 为圆心,a 为半径作圆,过点 2,0a c ?? ??? 作圆的两切线互相垂直,则离心率e =

圆锥曲线离心率问题

圆锥曲线的离心率问题 离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c之间的联系。 一、基础知识: 1、离心率公式:c e a =(其中c为圆锥曲线的半焦距) (1)椭圆:() 0,1 e∈ (2)双曲线:() 1,+ e∈∞ 2、圆锥曲线中,, a b c的几何性质及联系 (1)椭圆:222 a b c =+, ①2a:长轴长,也是同一点的焦半径的和: 122 PF PF a += ②2b:短轴长 ③2:c椭圆的焦距 (2)双曲线:222 c b a =+ ①2a:实轴长,也是同一点的焦半径差的绝对值: 122 PF PF a -= ②2b:虚轴长 ③2:c椭圆的焦距 3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,, a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向: (1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a有关,另一条边为焦距。从而可求解

(2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解 2、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑: (1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口 (2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可 (3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率 注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞ 二、典型例题: 例1:设12,F F 分别是椭圆()22 22:10x y C a b a b +=>>的左、右焦点,点P 在椭 圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( ) A . 3 B .6 C .13 D .1 6 思路:本题存在焦点三角形12PF F ,由线段1PF 的中点在y 轴上,O 为 12F F 中点可得2PF y ∥轴,从而212PF F F ⊥,又因为1230PF F ∠=,则直角 三角形12PF F

离心率专项练习

离心率专项练习 1、 如图,F 1,F 2是椭圆C 1:x 24 +y 2 =1与双曲线C 2的公共焦点,A , B 分别是 C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是_____________. 【解析】本题考查椭圆、双曲线的定义,几何图形和标准方程,简单几何性质,考查转化与化归思想、数形结合思想、函数与方程思想以及运算求解能力.设双曲线方程为x 2 a 2- y 2 b 2 =1(a >0,b >0)①,点A 的坐标为(x 0,y 0). 由题意得a 2+b 2=3=c 2②,则|OA |=c =3, 所以????? x 20+y 20=3,x 20+4y 20=4, 解得x 2 0=83,y 20=13,又点A 在双曲线上,代入①得,83b 2-13a 2=a 2b 2③,联立②③解得a =2,所以e =c a =62 . 2、 设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60°的直线A 1B 1 和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1,B 1和A 2,B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是__________. 【解析】本题主要考查双曲线的离心率、直线与曲线的位置关系、不等式的性质.设双曲线的焦点在x 轴上,则由题意知该双曲线的一条渐近线的斜率k (k >0)必须满足3 3 b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2, ∠PF 1F 2=30°,则C 的离心率为____________. 【解析】本题主要考查椭圆离心率的计算,涉及椭圆的定义、方程与几何性质等知识,意在考查考生的运算求解能力. 法一:由题意可设|PF 2|=m ,结合条件可知|PF 1|=2m ,|F 1F 2|=3m ,故离心率e =c a = 2c 2a = |F 1F 2||PF 1|+|PF 2|=3m 2m +m =3 3 . 法二:由PF 2⊥F 1F 2可知P 点的横坐标为c ,将x =c 代入椭圆方程可解得y =±b 2 a ,所以 |PF 2|=b 2a .又由∠PF 1F 2=30°可得|F 1F 2|=3|PF 2|,故2c =3·b 2 a ,变形可得3(a 2-c 2)=

相关文档
最新文档