间谐波简单分析

合集下载

电力系统中谐波分析与治理

电力系统中谐波分析与治理

电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。

然而,谐波问题却成为了影响电力系统质量的一个不容忽视的因素。

谐波不仅会导致电力设备的损坏,还会增加电能损耗,降低电力系统的可靠性。

因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有十分重要的意义。

一、谐波的产生要理解谐波,首先需要了解它的产生原因。

谐波主要来源于电力系统中的非线性负载。

常见的非线性负载包括各种电力电子设备,如变频器、整流器、逆变器等,以及电弧炉、荧光灯等。

以变频器为例,它通过对电源进行快速的通断控制来实现对电机转速的调节。

在这个过程中,电流和电压的波形不再是标准的正弦波,而是包含了各种频率的谐波成分。

整流器在将交流电转换为直流电的过程中,由于其工作特性,也会产生谐波。

同样,电弧炉在工作时,电弧的不稳定燃烧会导致电流的剧烈变化,从而产生谐波。

二、谐波的危害谐波的存在给电力系统带来了诸多危害。

对电力设备而言,谐波会使变压器、电动机等设备产生额外的损耗,导致设备发热增加,缩短使用寿命。

对于电容器来说,谐波电流可能会使其过载甚至损坏。

在电能质量方面,谐波会导致电压和电流波形的畸变,使电能质量下降,影响用电设备的正常运行。

例如,对于计算机等精密电子设备,谐波可能会引起数据丢失、误操作等问题。

此外,谐波还会增加电力系统的无功功率,降低功率因数,从而增加线路损耗和电能浪费。

三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析。

目前,常用的谐波分析方法主要有傅里叶变换、小波变换和瞬时无功功率理论等。

傅里叶变换是谐波分析中最常用的方法之一。

它可以将一个复杂的周期性信号分解为不同频率的正弦波分量,从而得到各次谐波的幅值和相位信息。

然而,傅里叶变换在处理非平稳信号时存在一定的局限性。

小波变换则能够很好地处理非平稳信号,它通过对信号进行多尺度分析,可以更准确地捕捉到信号在不同时间和频率上的特征。

电力系统间谐波对继电保护的影响分析

电力系统间谐波对继电保护的影响分析

电力系统间谐波对继电保护的影响分析摘要:电力系统运行下电力系统间谐波对继电保护装置有着一定的影响,针对当前继电保护的重要机制,做好谐波处理至关重要。

下面文章对电力系统间谐波对继电保护的影响与治理措施展开探讨。

关键词:电力系统;继电保护;谐波;间谐波引言电力系统是指由发电厂、输电线路以及用电客户端等环节构成的一种电能循环系统,它是通过电能生产以及传输等形式,从而有效的将不同的电力分配给相关的用户,这是一个非常复杂的过程,有关部门通过不同的措施和方法,加强对电力系统和信息数据的控制值,并且安装相应的电力保护装置,并且在自动化技术的应用下实现监控自动化、调度自动化的目的。

但是在电力系统的运行过程中,还是会或多或少的出现不同的安全和质量隐患,造成对电力结构的影响,谐波就是其中的主要危害因素,需要对它进行全面的分析,找到有效的抑制方法。

1间谐波的产生机理随着各个领域用电的广泛增加,电网中的变压器、三相电机等传统的非线性装置以及整流器、变频器等现代的非线性装置的使用量和使用范围也跟着大量增加。

这些负荷装置在电力系统中运行时,造成了电网供电的不平衡性,同时对电力系统的整个运行质量产生了严重的影响。

电力电网中,非线性负载是产生各类谐波的主要来源。

而电力互感器铁心饱和引起的电感变化则是主要的非线性负载来源之一。

实际电力系统中,外界激发作用多见于开关分、合闸,线路接地、断线等,这些都会引起电压、电流互感器铁心饱和。

铁磁谐振作为铁心饱和引起回路共振的一种特殊现象,多见于如下电力网络:空载或轻载条件下(回路损耗足够小),电磁式电压互感器和线路对地电容组成的振荡网络;空载变压器和空载长架空线路对地电容组成的振荡回路等。

对于中性点非有效接地系统,非线性电感元件和电容元件组成振荡回路,回路稳态运行(线性状态)时的自振频率小于某一低频谐振频率,而当铁芯饱和(非线性状态)时,电感迅速减小,则会发生铁磁谐振。

譬如中性点不接地系统中,空载投切线路或母线时,线路对地电容与母线(或线路)PT构成LC振荡回路,在某一谐振频率下会发生串联(电压)谐振,该频段谐波电压幅值大,会对系统产生较大影响。

谐波分析

谐波分析

一、 谐波:1、谐波频率与基波频率的比值(n=fn/f1) 称为谐波次数。

电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics )或分数谐波。

谐波实际上是一种 干扰量,使电网受到“污染”。

电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其谐波范围一般 为2≤n ≤40。

根据公式(1)计算谐波电流补偿率KK = ×100%电流总谐波畸变率:THD I =IH I1;IH=(Ih )2∞ℎ=2×100%;Ih---第h 次谐波电流(方均根值)I1---基波电流(方均根值) 第h 次谐波电流含有率:HRI h =Ih I1×100%2、现有有源滤波器的补偿效果注:试验所用负载为三相整流非线性负载,(2~25)次谐波单机100补偿率:50%负载以上补偿率大于90%;50%负载以下补偿率在70%~90%单机100A 动态响应时间在1ms ~20ms单机100A 功率消耗:8%左右单机100A 噪声:70dB单机100A 无功补偿:补偿前0.2~0.8(容性或感性),补偿后能达到0.98二、 谐波负载现状分析:电网谐波产生主要有以下几种情况:一是发电源质量不高产生谐波; 二是输配电系统产生谐波; 三是用电设备产生的谐波。

如下:1、 变频器(风机、水泵、电梯)、吸塑机负载主要谐波次数:5次、7次2、 电焊机、列车负载主要谐波次数:3次谐波3、 中频炉负载主要谐波次数:5、7、11、13次谐波4、 电弧炉、电石炉主要谐波次数:27次5、 节能灯负载主要谐波次数:3次谐波6、 整流设备(电力机车、铝电解槽、充电装置、开关电源等)产生的谐波主要看3次最严重 ,6脉整流会带来 6n+1 6N-1谐波 主要就是5次和7次谐波; 12脉整流就会有 12n+1 12n-1谐波 主要11次和13次谐波 18脉则是 18n+1 补偿前谐波电流畸变率THDi —补偿后谐波电流畸变率THDi补偿前谐波电流畸变率THDi18n-1 17次和19次谐波,一般情况下主要产生5、7次谐波!晶闸管整流设备。

谐波分析实验报告

谐波分析实验报告

谐波分析实验机15 权奇勋2011010562一.合成方波对于方波,n次谐波的表达式为:1sin nx,n=1,3,5......n1) 合成基波与三次谐波,幅值分别为1、1/3,相角均为0,(2)分别合成叠加5次、7次、9次谐波:叠加5次谐波叠加7次谐波叠加9次谐波通过观察波形,发现:叠加谐波次数越高,合成波形越趋近于方波。

(3)分别改变3、5次谐波与基波间的相角,研究谐波间相角改变对合成波形的影响将3次谐波的初相角改为-π/2将5次谐波的初相角改为-π/2分析结论:改变谐波与基波间的相角,会使合成波形与方波相比有较大的失真。

且改变相角的谐波次数越低,失真越大。

(4)分别改变3、5次谐波与基波间的幅值比例关系,研究谐波间幅值比例改变对合成波形的影响3次谐波幅值改为(1/3)×2=2/35次谐波幅值改为(1/5)×2=2/5分析结论:改变谐波的幅值,会使合成波形与方波相比产生失真;且幅值改变的倍率相同的情况下,改变谐波的次数越低,失真越大。

二.合成锯齿波(最高谐波次数选为9)对于锯齿波,n次谐波的表达式为:π1nx+p),n=1,2,3......1)合成波的形状与谐波次数的关系叠加2次谐波叠加4次谐波叠加9次谐波通过观察波形,发现:叠加谐波次数越高,合成波形越趋近于锯齿波。

(2)分别改变2、4次谐波与基波间的幅值比例关系2次谐波的幅值改为(1/2)×2=14次谐波的幅值改为(1/4×2)=1/2分析结论:改变谐波的幅值,会使合成波形与锯齿波相比产生失真;且幅值改变的倍率相同的情况下,改变谐波的次数越低,失真越大。

(3)分别改变2、4次谐波与基波间的相角2次谐波的初相角改为pi+pi/2=3pi/24次谐波的初相角改为pi+pi/2=3pi/2分析结论:改变谐波与基波间的相角,会使合成波形与锯齿波相比有较大的失真。

且改变相角的谐波次数越低,失真越大。

三.合成三角波(最高谐波次数选为9)对于三角波,n次谐波的表达式为:π×π1nx,n=1,3,5......1)合成波的形状与谐波次数的关系叠加3次谐波叠加5次谐波叠加9次谐波通过观察波形,发现:叠加谐波次数越高,合成波形越趋近于三角波。

整周波控制icc电流的间谐波分析

整周波控制icc电流的间谐波分析

禚基墨且、整周波控制(I C C)电流的问谐波分析付华良(常州纺织服装职业技术学院,江苏常州213164)睛弼闻谐波是频率介于两个谐波之间的信号。

电力系统问谐波对人体健康状况的影响越来越受王l j人们的关注。

某些家用电器中应用的ICC技术使其输出信号中舍有大量的间谐波成分。

本文对电烤炉的输出电流数据进行了FFT分析和有效值分析,并对二者进行了对比.证明其中含有大量的闹谐波,时以后研究间谐波时^体健康的影响提供了理论依据。

瞎篷词】问谐波;ICC;FFT算法;有效植分析电力系统中中含有的大量间谐波对人体的影响已经越来越受到人们的关注。

国内外有许多报适脱明:电能质量问题使得许多人的健康状况出现了问题,长期使用某些家用电器会使人身体产生极为严重的不良反应,然而医生对此却查不出确切原因,有人在家用电器的电线周围装E过滤装置,段时闻后,各种不良反应逐渐消失。

这些情况表明:电能质量问题对人体健康有一定的影响。

电力系统向用户提供的电压一般都是正弦波,但某些家用电器中应用的整周波控制(Int egra l C ycl eC ont r01)技术使得电器输出信号中产生大量的谐波和间谐波。

其中低于基频的问谐波可能是威胁^.体健康的最主要因素。

本文在简单介绍FFT算法和ICC技术后,对I CC的输出波形分别做了三种分析:FFT分析,有效值和有效值的F FT分析,以及给一个标准正弦信号乘上开关函数后的FFT分析。

1间谐波和I C C技术简介I EC61000-2—1对间谐波的定义如下:在工频电压和电流的各种谐波成分之间,存在着与基波频率不成整数倍关系的信号,它们表现为离散频率或宽带频谱。

最近的IEC61000—2—2将间谐波定义为:任何非整数倍基波频率的频率。

I C C技术是一种有效的嘲氏电压的方式,它使用一种简单的电力装置将输入电压的—个或几个(或半个)周期减小为O,此时输出电压就会失去几个周波,因此在一段时期内输出电压的频率要1氏于输入电压。

电力系统中谐波分析与治理

电力系统中谐波分析与治理

电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。

然而,谐波问题却成为了影响电力系统性能的一个重要因素。

谐波的存在不仅会降低电能质量,还可能对电力设备造成损害,增加能耗,甚至影响整个电力系统的安全稳定运行。

因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有极其重要的意义。

一、谐波的产生谐波是指频率为基波频率整数倍的正弦波分量。

在电力系统中,谐波的产生主要源于以下几个方面:1、非线性负载电力系统中的许多负载,如电力电子设备(如变频器、整流器、逆变器等)、电弧炉、荧光灯等,其电流与电压之间不是线性关系,从而导致电流发生畸变,产生谐波。

2、电力变压器变压器的铁芯饱和特性会导致磁化电流出现尖顶波形,进而产生谐波。

3、发电机由于发电机的三相绕组在制作上很难做到绝对对称,以及铁芯的不均匀等因素,也会产生少量的谐波。

二、谐波的危害谐波对电力系统的危害是多方面的,主要包括以下几点:1、增加电能损耗谐波电流在电力线路中流动时,会增加线路的电阻损耗和涡流损耗,导致电能的浪费。

2、影响电力设备的正常运行谐波会使电机产生额外的转矩脉动和发热,降低电机的效率和使用寿命;对电容器来说,谐波可能导致其过电流和过电压,甚至损坏;对于变压器,谐波会增加铁芯损耗和绕组的发热。

3、干扰通信系统谐波会产生电磁干扰,影响通信设备的正常工作,导致信号失真、误码率增加等问题。

4、降低电能质量谐波会使电压和电流波形发生畸变,导致电压波动、闪变等问题,影响供电的可靠性和稳定性。

三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析和测量。

常见的谐波分析方法主要有以下几种:1、傅里叶变换这是谐波分析中最常用的方法之一。

通过对周期性信号进行傅里叶级数展开,可以得到各次谐波的幅值和相位。

2、快速傅里叶变换(FFT)FFT 是一种快速计算傅里叶变换的算法,大大提高了计算效率,适用于对大量数据的实时分析。

基于HHT的微网中谐波与间谐波的检测与分析

基于HHT的微网中谐波与间谐波的检测与分析
析 方法 更好 地反 映了信 号 的物理 意 义 。通过 对信 号
s)∑C (: i £ - { -
式 中 :i I c 为 MF分量 ;n r为残 余分 量 。
( 1 )
进 行 Hi etH a g变换 ,能 得 到信 号 的瞬 时 幅值 l r un b —
和 瞬 时 频率 。对 于谐 波 而言 , 这种 时频 分 析 方 法 能
当 r 为常数 或 者基本 呈单 调 趋势 时 , MD分 解 n E 就 可 以停 止 。
根 据 信 号 自身 的特 性 进行 自适 应分 解 , 不 存 在 基 且
函数 的选 择 问题 , 以实 现微 网谐 波 的 自动提 取 。 可
12 Hlet 换 i r变 b
对于I MF分 量 的 Hi et l r变换 , 如下 定义 : b 有
号, 只要 选 择 合 适 的小 波 基 . 可 以使 小 波 变 换 在 就 时域 和频 域都具 有 表征 信 号局部 特 征 的能力 。但 是 小 波 变 换方 法 是一 种 基 于基 函数 展 开 的理 论 。 同样
的 问题 运 用 不 同 的 基 函 数 进 行 处 理 所 得 到 的结 果 是 不 同的 , 优基 的选择 在 很 大程 度 上 取 决 于设 计 最 者 的经 验 , 没有 规律 可循 。 希 尔 伯 特 一 变 换 ( i et H a gT as YI 黄 H l r u n rnf I, b — o T HH )是 N re . a g等人 于 1 9 T od nEHun 9 8年 提 出 的一 种 完全 自适 应 的时频 分 析方 法[ 1 与其 他时 频分 析 9] -。 1
21
谐 波 的检 测 及 补偿 研 究 已经 日趋 成熟 , 而对 于 间谐

电力系统中的谐波分析技术及应用教程

电力系统中的谐波分析技术及应用教程

电力系统中的谐波分析技术及应用教程简介:在电力系统中,谐波分析技术被广泛应用于电力质量监测与评估、设备故障诊断与排除、谐波滤波器的设计等方面。

本文将介绍电力系统中谐波分析的基本原理、常用的谐波分析方法以及谐波分析在电力系统中的应用。

一、谐波分析的基本原理1.1 谐波的概念谐波是指波形与基波具有相同频率但具有不同幅值和相位的波形。

在电力系统中,谐波是由非线性负载和电力设备引起的。

常见的负载谐波包括电弧炉、变频器、电子设备等。

1.2 谐波分析的原理谐波分析的基本原理是将电力系统中的电压和电流信号经过傅里叶变换,将复杂的波形分解为一系列的正弦波,然后通过计算得到各个谐波分量的频率、幅值和相位。

根据这些参数,可以评估电力系统中的谐波程度,进而采取相应的措施进行修复或优化。

二、谐波分析方法2.1 快速傅里叶变换(FFT)快速傅里叶变换是最常用的谐波分析方法之一,它可以将时域信号转换为频域信号。

通过FFT分析,可以得到电力系统中各个谐波分量的频率、幅值和相位,并进一步计算谐波总畸变率(THD)等参数。

FFT算法的优势在于高速、高效,并且可以利用现有的计算平台进行实时分析。

2.2 小波变换小波变换是一种时频分析方法,可以同时提供时间域和频域信息。

相比于FFT,小波变换在时域和频域的分辨率上更具优势,能够更准确地分析瞬态过程和短时谐波。

小波变换在电力系统中的应用越来越广泛。

2.3 自适应滤波器法自适应滤波器法结合了信号处理和协方差分析原理,可以自动识别和消除电力系统中的谐波。

通过建立自适应滤波器,可以实时跟踪电力系统中的谐波分量,并对其进行有效的滤波补偿。

自适应滤波器法在电力系统的谐波控制中具有重要的应用价值。

三、谐波分析在电力系统中的应用3.1 电力质量监测与评估谐波对电力质量产生显著的影响,会导致电压波动、电流畸变、设备损坏等问题。

通过谐波分析,可以准确评估电力系统中的谐波情况,及时发现潜在问题,并采取措施改善电力质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

间谐波介绍
随着电力电子元件等非线性设备在电力系统中的广泛应用,由此而产生的谐波对电网的污染也越来越严重。

谐波问题已引起广泛关注。

通常的谐波一般指频率为工频(基波频率)整数倍的成分,而对非整数倍基波频率的成分则称之为间谐波。

1.DFT(FFT)分析间谐波应注意的问题
1)在进行DFT(FFT)分析时,由于间谐波和谐波之间的频域宽度小于一个基波频率,故分析窗的宽度至少需要一个信号周期以上,即分析窗的宽度需要增加。

如果某一信号确实含有间谐波,分析时只要采样窗宽度选择恰当,就可以得到真正的间谐波。

例:有一信号:x(t)=sin(2π60t)+0.5sin(2π90t),这里60 Hz 是基波频率,90 Hz分量是介于基频和二次谐波之间的间谐波。

在用DFT(FFT)分析该间谐波问题时,为了得到90 Hz的频谱,需要取采样窗的宽度为两个信号周期(33.3 ms),即频率分辨率为30 Hz,这样分析就可以得到该信号中含有的90 Hz间谐波分量。

2)有些信号并不含有真正的间谐波,只是在进行DFT(FFT)分析时,由于频谱泄漏和栅栏效应而产生了一些额外的间谐波。

再如(1)中分析时采用的信号x(t),如果把90Hz的间谐波频率改为100 Hz,采样窗口还是用两个信号周期(33.3 ms),即每隔30Hz就得到一个频率值,而100 Hz并不是30的整数倍,由于DFT(FFT)分析时是按30 Hz的整数倍进行采样的,所以就不能完整重复的采集到100 Hz分量,此即频谱泄漏现象,由此而产生了一些新的间谐波分量,实际上这些间谐波在原信号中并不存在。

由于频谱泄漏而使波形没有了重复性。

栅栏效应使得信号本身具有的一些间谐波被其它间谐波给淹没了。

又如上述的信号x(t),设其含有100 Hz的间谐波,同样用两个信号周期的采样窗来分析。

那么栅栏效应就会使100 Hz的间谐波被淹没掉,而出现90 Hz的间谐波分量,实际上该90 Hz 的间谐波在原信号中是不存在的。

3)当用DFT(FFT)分析波动负荷时,并不能肯定得到的所有间谐波都是信号本身含有的。

比如对于变压器涌流,其可以看成是一个快速变化的冲击信号。

当用12个信号周期的采样窗时,在360 Hz和420 Hz处出现了峰值,但是
用60个信号周期的采样窗时,在这两个频率处都出现了凹陷,不过其邻近的频率却具有较大的幅值,这些频率都是一些非整数倍基波频率的间谐波。

这一不同结论主要是由采样窗的宽度不同引起的,实质上是由变压器涌流快速波动的特性造成的。

2.间谐波的来源
2.1变频装置
变频器的广泛应用正在取代传统的直流调速装置。

交流调速分为两大类,即交-直-交变频器和交-交变频器。

这两种变频器在使用中其供电电流中均有谐波成分,产生的谐波频率有以下表达式:0
fh-
p
+
+
m
=
-
(
p
/
2
/
)1
1
1nf
p
fh-
+
nf
=
/
1
2
2f
h1——与触发脉冲数有关的频率;
fh2——与触发脉冲数无关的频率;
p1——触发脉冲数;
f1——电源输入的基波频率;
p2——和变频器负载相数有关的系数;
f0——变频器的输出频率。

从(1)式和(2)式可以看出,供电电流的谐波频率并不全是基波频率和输出频率的整数倍,即含有间谐波分量。

图5表示某台6脉动交-交变频器在输入工频为60 Hz,输出频率为5 Hz时输入电流的频谱。

3.间谐波的危害
3.1波形畸变
间谐波既会使波形过零点偏移,又会使正负半波幅值发生变化。

3.2闪变(闪烁)
只要间谐波频率接近谐波或是基波频率,闪变就会发生,谐波是工频的整数倍,所以谐波总是与基波频率保持同步变化的,但间谐波与谐波和基波就不是同步变化的,如果某一信号含有间谐波为f1,那么该信号波形的包络线就会以fm 的频率波动,其中:
fk:与间谐波f1的频率接近的谐波或基波频率,由于人眼对于在8 Hz频率附近的灯光闪烁较为敏感,如果间谐波与谐波或基波之间的差值在8 Hz以内,
那么人的视觉就会受到严重的干扰。

如:有一信号sin(2π60t)+αsin(2π174t),其中α=0.3。

波形包络线明显有6 Hz的波动,即每隔0.167 s波动一次。

如果电灯对这一峰值变化敏感的话,就会引起灯光闪烁,造成人的视觉混乱。

3.3对测量仪表的影响
间谐波因改变电压过零点而易使采样数据或过零工作的数字继电器产生误差,甚至误操作造成事故,而且还会影响传统谐波测量的结果和准确度,以及使计量仪器发生计量误差。

间谐波电压还会引起电视机图象滚动以及无线电收音机或其它音频设备的噪声。

3.4对电动机的影响
间谐波对电动机的噪声和振动影响很大,气隙磁通和转子电流因间谐波而相互作用产生的力可分解成多频分量。

若力的分量频率和电动机定子的固有频率接近且在“圆周振型”阶数上耦合较深,就会产生很强的噪声和振动。

3.5对功率因数的影响
由于间谐波引起波形畸变,从而降低负荷的功率因数,增加各种能量的损耗。

4.感想
在之前的学习中并未细致接触过间谐波,对于间谐波的害处更是一无所知,通过这次的学习之后,在将来工作时会注意规避间谐波,,或者在误差分析等等也会考虑得更为全面一些。

随着电力电子元件的广泛运用,其对电网带来的污染与损害越发隐忍关注,间谐波作为一个起点,也会加强我们对于电力电子元件的学习,在利用电力电子元件为现代化电网建设带来的好处的同时,尽量降低其带来的损害。

相关文档
最新文档