铁矿石烧结技术的应用及其作用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铁矿石烧结技术的应用及其作用

一:烧结的原理及应用:

烧结过程是许多物理化学变化的综合过程。这个过程不仅错综复杂,而且瞬息万变,在几分钟甚至几秒钟内,烧结料就因强烈的热交换而从70 ℃以下被加热到1200~1400℃,与此同时,它还要从固相中产生液相,然后液相又被迅速冷却而凝固。这些物理化学变化包括:燃料的燃烧和热交换;水分的蒸发及冷凝;碳酸盐的分解,燃料中挥发分的挥发;铁矿物的氧化、还原与分解;硫化物的氧化和去除;固相间的反应与液相生成;液相的冷却凝结和烧结矿的再氧化等。

原理

燃烧和传热---烧结料层中的气流运动---水分的蒸发与凝结分解---氧化和还原---非铁元素在烧结过程中的行为---矿粉的熔融和凝固

烧结工艺

熔剂和燃料的加工---配料---混合和制粒---点火燃烧---烧结矿的热破碎和筛分---烧结矿的冷却---烧结矿整理---烧结厂的余热利用

铁矿石造块的主要方法之一。将贫铁矿经过选矿得到的铁精矿,富铁矿在破碎和筛分过程中产生的粉矿,生产中回收的含铁粉料(高炉和转炉炉尘,轧钢铁皮等)、熔剂(石灰石、生石灰、消石灰、白云石和菱镁石等)和燃料(焦粉和无烟煤)等,按要求比例配合,加水混合制成颗粒状烧结混合料,平铺在烧结台车上,经点火抽风烧结成块。

简史1887年英国人亨廷顿(T.Huntington)和赫伯莱茵(F.Heberlein)首次申请了硫化矿鼓风烧结法和用于此法的烧结盘设备的专利。1906年美国人德怀特(A.Dwight)和劳埃德(R.Lloyd)在美国取得抽风带式烧结机的专利。1911年第一台有效面积为8m2的连续带式抽风烧结机(亦称DL型烧结机)在美国宾夕法尼亚州的布罗肯钢铁公司建成投产。这种设备一出现就很快取代了压团机(见方团矿)和烧结盘(见烧结盘烧结)等造块设备。随着钢铁工业的发展,烧结矿的产量也迅速增加,到80年代全世界烧结矿的产量达到5亿多吨。中国最早的带式抽风烧结机于1926年在鞍山建成投产,烧结机有效面积为21.81m2。1935~1937年又有4台50m2烧结机相继投产,1943年烧结矿最高年产量达24.7万t。中华人民共和国成立后,钢铁工业迅速发展,烧结能力和产量均有很大提高。到1991年末,全国烧结机总有效面积达到9064m2,烧结矿年产量达到9654万t,重点企业高炉熟料率达90%。

带式抽风烧结法出现后,不仅烧结矿的生产规模和产量有了很大提高,而且生产技术有了很大进步:(1)加强了烧结原料的加工处理,如矿粉混匀,燃料和熔剂的破碎、混合料的准确配料、制粒和预热等;(2)开发了各种增产、节能和

改善质量的新工艺,如厚料层烧结、低温烧结、小球烧结、双球烧结、细精矿烧结、双层烧结、热风烧结、新点火工艺、烧结矿整粒等;(3)烧结设备大型化、机械化和自动化,计算机用于生产管理和操作控制;(4)应用了除尘、脱硫和去除氮的氧化物等环保技术。

原理矿粉烧结包括许多物理和化学反应过程。无论采用何种烧结方法,烧结过程基本上可以分为:干燥去水、烧结料预热、燃料燃烧、高温固结和冷却等阶段。这些过程是在烧结料中分层依次进行的。图1示出抽风条件下烧结过程各层的反应。抽入的空气通过已烧结好的热烧结矿层被预热,在燃烧层中使固体燃料燃烧,放出热量,获得高温(1250~1500℃)。从燃烧层抽出的高温废气将烧结料预热和脱水干燥。根据温度和气氛条件,在各层进行着不同的物理和化学反应:游离水和结晶水的蒸发和分解,碳酸盐的分解,铁氧化物铁tie的分解、还原和氧化,硫、砷等杂质的去除,一些氧化物(CaO、SiO2,FeO,Fe2O3,MgO)的固相和液相反应;液相的冷却结晶和固结等。

燃烧和传热固体碳的燃烧可以提供烧结过程热收入中80%以上的热量和1250~1500℃的高温(在燃烧层),保证了烧结过程中脱水、石灰石分解、铁氧化物的分解和还原、去硫、液相生成和固结等物理和化学反应的进行。燃烧反应对烧结机产量也有影响。

烧结料层中碳的燃烧反应较复杂,一般可表示为:C+O2=CO2;2C+O2=2CO;CO2+C=2CO;2CO+O2=2CO2。在碳集中的区域,气相中CO浓度高,CO2浓度低,气氛呈还原性;在少碳和无碳的区域,CO浓度低,CO2浓度高,气氛呈氧化性。料层中碳燃烧应具备两个最重要的条件是燃料颗粒表面加热到着火温度和灼热的燃料表面需接触有足够氧浓度的气流。提高气流中氧的浓度、气流温度、气流速度和增加燃料的反应表面积等均有助于提高燃烧反应速度。烧结常用的燃料是焦粉和无烟煤;高挥发分的煤种,因大量挥发分在着火前挥发,容易堵塞管道,故不宜用于烧结。

烧结过程中传热速度很快。烧结料都是小颗粒物料,传热效率很高,而且还存在水分蒸发、分解等吸热过程,所以热传导在烧结料中进行得很快。烧结过程中热量利用好,主要表现在废气温度低和烧结过程的“自动蓄热作用”。后者是指被抽空气通过灼热的烧结矿层(相当“蓄热室”作用)时被预热到1000℃以上,增加了燃烧层中的热收入量(约占燃烧层总热收入的40%至60%),提高了燃烧层的温度,随烧结矿层的增厚,这部分热收入增多;燃烧层温度升高,烧结液相增多,烧结矿强度提高,但烧结速度降低。燃烧层温度受燃料配加量和自动蓄热作用,以及燃烧层中各种化学反应的热效应等因素所影响。增加配碳量、增加放热反应和减少吸热反应有利于提高燃烧层温度,提高料层也有同样的作用。

二:烧结技术作用:

⑴烧结生产是一种人造富矿的生产过程,自然界中大量存在的贫矿可通过选矿和烧结成为能满足高炉冶炼要求的优质人造富矿,从而使自然资源得到充分利用。

⑵烧结过程中可以利用高炉炉尘、转炉炉尘、轧钢皮、铁屑等其它钢铁及

化工工业的若干含铁废料,使这些含铁废料得到有效利用,做到变废为宝,变害为利。

⑶经过烧结制成的烧结矿,与天然矿相比,粒度合适,还原性好,成分稳定,造渣性能良好。

具体表现在一下几个方面:

(1)烧结矿品位每升高1%,高炉焦比降低2%、产量提高3%;

(2)烧结矿FeO变动,影响高炉焦比和产量,同时影响烧结矿的还原性和软容性能;

(3)烧结矿碱度稳定是稳定高炉炉况的重要条件之一;

(4)烧结矿强度对高炉冶炼有较大影响。入炉矿含粉率升高,将导致高炉焦比升高、产量降低;

(5)烧结矿还原性对高炉的影响,主要体现在烧结矿FeO含量,FeO高低影响着高炉冶炼的直接还原度(rd)。直接还原度增加,焦比升高、产量降低;

(6)烧结矿的低温还原粉化率(RDI)升高,高炉产量下降、焦比升高;

(7)烧结矿荷重软化温度升高,高炉的透气性改善,产量提高;

(8)熔滴性能直接影响高炉内熔滴带的位置和厚度,影响Si、Mn等元素的直接还原,从而影响生铁的成分和高炉技术经济指标。

(9)通过烧结,可为高炉提供化学成分稳定、粒度均匀、还原性好、冶金性能高的优质烧结矿,为高炉优质、高产、低耗、长寿创造良好的条件;

(10)可去除硫、锌等有害杂质;

(11)可利用工业生产的废弃物,如高炉炉尘、炼钢炉尘、轧钢皮、硫酸渣、钢渣等;

(12)可回收有色金属和稀有、稀土金属。

具体来说,烧结技术在钢铁生产中有不可代替的作用,烧结技术的进步关系到我国钢铁生产的进步,关系国民经济的健康稳定的发展,是国民经济中不可或缺的一个环节。

相关文档
最新文档